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Abstract

Mutation rates vary widely along genomes and across inheritance systems. This suggests that com-

plex traits – resulting from the contributions of multiple determinants – might be composite in terms

of the underlying mutation rates. Here we investigate through mathematical modeling whether such an

heterogeneity may drive changes in a trait’s architecture, especially in fluctuating environments where

phenotypic instability can be beneficial. We first identify a convexity principle, related to the shape of

the trait’s fitness function, setting conditions under which composite architectures should be adaptive

or, conversely and more commonly, should be selected against. Simulations reveal, however, that ap-

plying this principle to realistic evolving populations requires taking into account pervasive epistatic

interactions that take place in the system. Indeed, the fate of a mutation affecting the architecture de-

pends on the (epi)genetic background, itself depending upon the current architecture in the population.

We tackle this problem by borrowing the adaptive dynamics framework from evolutionary ecology –

where it is routinely used to deal with such resident/mutant dependencies – and find that the princi-

ple excluding composite architectures generally prevails. Yet, the predicted evolutionary trajectories

will typically depend on the initial architecture, possibly resulting in historical contingencies. Finally,

by relaxing the large population size assumption, we unexpectedly find that not only the strength of

selection on a trait’s architecture, but also its direction, depend on population size, revealing a new

occurrence of the recently coined phenomenon of ‘sign inversion’.
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1 Introduction1

Complex traits, those resulting from the combined contributions of multiple determinants, may in prin-2

ciple be subject to composite mutations rates. For example, genes contributing to the same trait may3

mutate at rates spanning orders of magnitude because their genomic environments differ, or simply their4

lengths (Rando and Verstrepen 2007; Hodgkinson and Eyre-Walker 2011; Oman, Alam, and Ness 2022).5

The possibility of heritable yet non-genetic contributions introduces even more pronounced heterogeneity6

in mutation rates sensu lato, that is, in the rates of random change, whatever the inheritance mechanism7

(Rando and Verstrepen 2007; Danchin 2013). Indeed, non-genetic inheritance systems, as multiple as8

they may be, share the property of being less stable than DNA sequences (Johannes et al. 2009; Rechavi,9

Minevich, and Hobert 2011; Denkena, Johannes, and Colomé-Tatché 2021; Dodson and Rine 2015; Graaf10

et al. 2015). Here we investigate whether such an heterogeneity in mutation rates may drive the evolution11

of a trait’s architecture: just as mutation rates can be adaptively tuned by the degree of environmen-12

tal stability (Ishii et al. 1989; Johnson 1999; Andre and Godelle 2006), can trait architectures evolve13

toward optimally mixed contributions of determinants differing in their rates of mutations? Or, on the14

contrary, are non-composite mutation rates generally selected for, which should lead to simplified traits15

architectures, homogeneous in terms of the underlying mutation rates?16

We address these questions through mathematical modeling, assuming that selection acts on a single17

trait in an environment oscillating between two states. We further assume that the relative contribu-18

tions of two (or more) determinants to the trait, differing only in their respective mutation rates, are19

controlled by one evolving parameter, and we study its evolution. In our analysis, the mutation rates20

differ by orders of magnitude, such that they can be referred to as ‘fast’ and ‘slow’ in the case of two21

determinants. We start with the analytical treatment of an idealized situation where only the absolute22

growth rate of a mutant determines its fate, and find the architectures that maximize this fitness proxy.23

We thereby identify a general mathematical principle setting boundaries to the conditions where complex24

architectures, and thus composite mutation rates, may be optimal. According to this principle, whatever25

the degree of environmental instability, non-composite mutation rates are favored as long as individuals of26

intermediate phenotypic value do not perform better across different environments than the average of the27

extreme phenotypes. In other words, if the fitness function of the trait is convex, favoring specialists over28

generalists, the fitness function of the trait architecture is also convex such that non-mixed contributions29

are selectively favored. However, we also show that, as long as the degree of environmental instability30
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is not too high, non-composite mutation rates remain optimal even if the fitness function of the trait is31

concave.32

Absolute growth rates, however, ignore a potentially important aspect of the evolutionary dynamics33

at play in this system: a mutation necessarily occurs in an (epi)genetic background whose state (i) may34

depend on the strategy in place, and (ii) may critically affect the mutant’s fate. We address this issue by35

using the adaptive dynamics framework, initially built to deal with ecological interactions by accounting36

explicitly for context-dependencies in a mutant’s invasion success (Metz, Nisbet, and Geritz 1992; Geritz37

et al. 1998). This approach generally confirms the above outlined convexity argument, but also reveals that38

pervasive epistatic interactions render the system reluctant to change, because determinants contributing39

little to the trait tend to accumulate cryptic variation that becomes deleterious if the trait architecture40

is changed. This reveals that historical contingencies may prove important in the evolution of genetic41

architectures.42

Finally, we use simulations to relax the assumption of a large population size and thus investigate the43

consequences of genetic drift on the evolution of a trait’s architecture. In doing so, we reveal a counter-44

intuitive pattern whereby reducing population size below a threshold changes not only the efficiency but45

also the direction of selection. We relate this finding to a recently described phenomenon, coined ‘sign-46

inversion’, that generally takes place whenever some source of variability produces selective pressures47

differing in their direction, average duration, and strength (Raynes, Wylie, et al. 2018; Raynes, Burch,48

and Weinreich 2021). In such situations, weak but stable selection in one direction is dominant in large49

populations, while strong but occasional selection in the other direction becomes the main player in small50

populations. In our case, sudden environmental changes strongly select for a large contribution of the51

fastest determinant whereas environment stasis selects for a reduced input of mutations and therefore52

a high contribution of the slowest determinant. Yet, the latter selection pressure is typically weak and53

long-lasting, thereby acting efficiently in large populations only, resulting in a trait’s architecture that is54

contingent on population size.55

2 Models and tools56

2.1 Qualitative summary of the model57

Trait architecture. The model considers I ≥ 2 determinants with distinct mutation rates that con-58

tribute to a phenotypic trait, varying continuously from 0 to 1. Each determinant is characterized by59
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(i) its (epi)genotype, taking a binary value (Xi = 0 or Xi = 1), (ii) its mutation rate (µi > 0) at which60

the (epi)genotype switches randomly from Xi to 1 − Xi, and (iii) its relative contribution to the trait61

(αi ∈ [0, 1]). The contributions sum to one, that is
∑

i αi = 1. The resulting trait for a given individual62

is the weighted sum of its determinant values: ΦX(α) =
∑

i αiXi (simply denoted as Φ if unambiguous).63

In the following, the vector of contributions α = (αi)1≤i≤I of a single individual is referred to as its64

trait architecture. In the simulations, we assume that the values of α are subject to mutational changes,65

at the slowest rate minµi. Mutated α values are drawn in a Gaussian law centered on the parental value66

with variance 0.1, and constrained to satisfy
∑

i αi = 1.67

Notations in the case of two determinants (fast versus slow). The main part of our study68

is devoted to the case of two determinants, below referred to as ‘fast’ and ‘slow’, in reference to their69

contrasted mutation rates µF and µS (µF ≫ µS). In this particular case, we can denote the respective70

contributions of the fast and slow inheritance systems as αF and αS = 1− αF . The (epi)genotype values71

are then denoted XF and XS , both in {0, 1}.72

Evolutionary dynamics. We use a birth and death model, continuous in time, so that generations73

are overlapping. The fecundity rate is assumed to be homogeneous. Up to changing units of time, it is74

set to 1. Selection acts on the rate of mortality, namely s|Φ− Φ∗(t)|γ , where the strength of selection is75

controlled by parameter s, Φ∗ is the environment-dependent optimal phenotype, and the exponent γ ≥ 076

is the shape parameter of the fitness function (see Figure 1). We distinguish three cases on the basis of77

γ values: γ = 1 is our reference case, and corresponds to a linear relationship between trait and fitness;78

γ < 1 corresponds to a convex relationship resulting in a higher average fitness of specialists (Φ close to79

extremal values 0 or 1); in contrast γ > 1 results in a concave relationship favoring generalists (Φ close80

to 1
2).81

We assume that population size is regulated by an additional density-dependent contribution to the82

mortality rate N(t)
K , where N(t) is the instantaneous population size, and K denotes the carrying capacity.83

Environmental variation. We assume that the environment fluctuates between two possible states84

A/B associated with different optimal phenotypes Φ∗
A = 0 and Φ∗

B = 1. We consider periodic changes of85

period T , with a symmetrical alternance between A and B. It is relevant to distinguish three regimes of86

environmental variation in relation with mutation rates. First, the environment may be changing very87

rarely, that is, even more slowly than the slowest determinant (T (minµi) ≫ 1). Second, the environment88
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Figure 1: Shape of the fitness function 1 − s|Φ − Φ∗|γ , for γ = 1 (plain green, linear case), γ = 1/2 (dashed plain red,
strictly convex case) and γ = 2 (dotted blue, strictly concave case).

may be changing very often, that is much faster than the least stable determinant (T (maxµi) ≪ 1). A89

third, intermediate regime, is one where the rate of environmental change is comparable to the range of90

mutation rates.91

Previous occurrence of the model. The model is inspired by the study in (Rajon and Charlat92

2019) who restricted their model to the case of two determinants (I = 2), with respective contributions93

α1 = 1 − α and α2 = α, and to γ = 1. In their interpretation, the number α ∈ [0, 1] measures the94

balance between genetic and epigenetic contributions to the trait value. The only difference lies in the95

mutation rate, being significantly larger for the epigenetic contribution. While not limiting our interest96

to epigenetic inheritance, we retain from this initial work the focus on the variability of the mutation97

rates µi’s and its consequences on the evolution of α. Separation of mutation timescales remains indeed98

the main component of our mathematical analysis.99

2.2 A Lyapunov exponent approach in infinite populations100

We begin our analysis by considering a monomorphic population for the trait architecture α = (αi)1≤i≤I ,101

taking its growth rate as a proxy for its fitness. To this end, we introduce the Lyapunov exponent λ(α),102

which is the overall growth rate of the population over a complete cycle of environmental fluctuations.103

The rate λ(α) is measured in the long run, that is, once the respective frequencies of the (epi)genotypes104

(Xi)1≤i≤I have reached their periodic equilibrium distribution fg(t), where g denotes the (epi)genotype,105

taking value in {0, 1}2I . Technically, this equilibrium distribution is characterized by a periodic eigenvalue106

problem (Floquet spectral theory, see Appendix A), with the eigenvalue λ(α) defined by the following107

formula:108
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W (α) = exp(λ(α)) =

(
eigenvalue

(
exp

(
T

2
B

)
exp

(
T

2
A

))) 1
T

(1)

where A (resp. B) is the matrix describing the population dynamics in environment A (resp. B),109

which is defined by the various rates of mutation and mortality in the population. For instance, when110

I = 2, there are 22 = 4 possible states in the population, namely (0, 0), (1, 0), (0, 1), (1, 1). In particular,111

the variation of the state (0, 1) results from: (i) mutations from the states (0, 0) and (1, 1) at respective112

rates µ2 and µ1, (ii) mutations to the states (0, 0) and (1, 1) at the same rates, (iii) birth-death dynamics113

specific to the state (0, 1) at rate 1− sαγ
2 .114

The birth-death-mutation dynamics of the four states are then summarized in the following matrix115

A =



1− µ1 − µ2 µ2 µ1 0

µ2 1− µ1 − µ2 − sαγ
2 0 µ1

µ1 0 1− µ1 − µ2 − sαγ
1 µ2

0 µ1 µ2 1− µ1 − µ2 − s


Note that the matrix B is the same, up to a symmetrical change in the diagonal:116

B =



1− µ1 − µ2 − s µ2 µ1 0

µ2 1− µ1 − µ2 − sαγ
1 0 µ1

µ1 0 1− µ1 − µ2 − sαγ
2 µ2

0 µ1 µ2 1− µ1 − µ2


2.3 Adaptive dynamics117

The Lyapunov exponent approach described above ignores the influence that the state of the population118

in place (denoted the ‘resident’, with trait architecture αr), may have on the population dynamics of119

a ‘mutant’ with a different architecture αm. The adaptive dynamics framework allows to take these120

interactions into account by calculating the mutant’s growth rate at the time of invasion – also known as121

invasion fitness – assuming that its own influence on the resident’s population dynamics can be neglected122

at this initial stage.123

In our model, the way the resident may exert an influence on the mutant’s fitness is through its impact124

on the equilibrium frequencies of the (epi)genotypes, hence providing a favorable or unfavorable context125

for a different genetic architecture. For example, in the two-determinants case, and assuming a stable126
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environment, if the resident population happens to be monomorphic for αF,r = 1 and thus αS,r = 0, then127

XS reaches its neutral equilibrium distribution (1/2; 1/2). This means that a mutant with non zero αS,m128

will on average have lower fitness than the resident, even though the absolute growth rate, as measured129

by the Lyapunov exponent approach, would be highest for αS = 1.130

To take such resident / mutant interdependence into account, we computed in the two-determinants131

case the invasion fitness in all possible pairs of mutant and resident architectures (αF,m, αF,r), with αF,m132

and αF,r taken among 65 equally spread discrete values in the range [0, 1]. Since the environment state133

fluctuates cyclically, the equilibrium frequencies of the four combinations of possible (epi)genotype values134

(XF , XS) are periodic functions of time (see Section 2.2 and Appendix A). We thus calculated these135

frequencies at each of 64 timesteps equally spread over a period T . We then calculated, at each timestep136

and for each pair (αF,m, αF,r), the growth rate of the mutant. The instantaneous growth rate at time t137

of the mutant in a given genetic background can be calculated as:138

Wm,XF ,XS
(t) = 1− s |(1− αF,m)XS + αF,mXF − Φ∗(t)|γ , (2)

with Φ∗(t) denoting the optimal phenotype at time t (either Φ∗
A or Φ∗

B). Assuming that the architecture139

is determined by a modifier locus linked with those controlling the determinants, each combination created140

at the time of a mutation has its own independent dynamics and long-term relative growth rate, which is141

not impacted by the change in frequencies in the population and can thus be calculated as the arithmetic142

mean of the Wm,XF ,XS
(t) over the period.143

The average invasion fitness of a mutant’s architecture depends on its probability to appear in each144

background, represented by background frequencies in the following equation:145

W (m, r) =f(0,0)(t)W (m, 0, 0) + f(1,0)(t)W (m, 1, 0)

+ f(0,1)(t)W (m, 0, 1) + f(1,1)(t)W (m, 1, 1)

(3)

We represent the mutants’ relative invasion fitnesses for our 65×65 pairs (αm, αr) in so-called Pairwise146

Invasibility Plots (PIP), from which we identify singular strategies and characterize their evolutionary147

stability (according to Geritz et al. 1998).148
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2.4 Simulations in infinite and finite populations149

The numerical simulations for infinite populations are based on the discretisation of the continuous model150

described below. Although the model is valid for any number of inheritance systems, the numerical results151

are shown only for two inheritance systems in the case of infinite populations. Then, the population is152

divided in four groups according to their (epi)genotype: g(0,0), g(1,0), g(0,1) and g(1,1). Further, each153

subpopulation is indexed by individual architecture αF (simply denoted α in the following lines). The154

density within each subpopulation is driven by155

∂tgX(t, α) =
(
1− s|ΦX(α)− Φ∗(t)|γ − ρ(t)

)
gX(t, α) + (MG)X(t, α)

− µαgX(t, α) + µα

∫ 1

0
K(α− y, α)gX(t, y)dy.

(4)

In this equation:156

• 1−s|ΦX(α)− Φ∗(t)|γ −ρ(t) is the percapita growth rate, including selection and density dependent

saturation where ρ(t) is the total population density :

ρ(t) =

∫ 1

0

(
g(0,0)(t, α) + g(1,0)(t, α) + g(0,1)(t, α) + g(1,1)(t, α)

)
dα.

• (MG)X(t, α) describes the (epi)genotype mutation dynamics through the matrix operation MG157

defined by158

MG =



−µS − µF µF µS 0

µF −µS − µF 0 µS

µS 0 −µS − µF µF

0 µS µF −µS − µF





g(0,0)

g(1,0)

g(0,1)

g(1,1)


• µαgX(t, α) represents the mutation toward other trait architecture where µα is the mutation rate159

on α,160

• µα

∫ 1
0 K(α− y, α)gX(t, y)dy corresponds to the mutation from other trait architecture to the current161

one; in this term K is the mutation kernel that is assumed to be a Gaussian distribution centered162

on the progenitors trait architecture, conditioned to take values in [0, 1].163

8



The values of α are uniformly discretised in [0, 1]. The time discretisation is based on an explicit Runge-164

Kutta (RK2) scheme to reduce computational time and improve accuracy. The integral terms are com-165

puted according to standard quadrature methods.166

The model (4) is non-linear due to the density-dependent saturation. Nevertheless, it can be recast167

into a linear problem, and, in the periodic setting, the Lyapunov exponent λ(α) coincides with the168

averaged density over one period 1
T

∫ T
0 ρ(t)dt in the case of a monomorphic population when mutations169

are neglected, see Appendix A.170

For finite populations, the stochastic birth and death process described in Section 2.1 is simulated171

using a Monte-Carlo approach. We opted for a fixed time step discretisation to reduce computational172

time. Contrary to the infinite population density model (Equation 4), the population remains finite and173

fluctuates around the carrying capacity K. The generalization of the model to any number of inheritance174

systems is straightforward, at no computational cost, and so the Monte-Carlo approach is suitable when175

the number of inheritance systems is larger than three.176

3 Results and discussion177

The evolution of the trait architecture α may stem from two distinct effects: (i) its impact on the average178

fitness across the two environments, regardless of the various mutation rates and (ii) its control of the179

phenotypic contribution of inheritance systems with different mutation rates and thus presumably different180

variational properties. Our focus is on the second effect, that is, on the implications of the mutation rates181

on the trait architecture. We thus begin our analysis (Section 3.1) by setting γ = 1 such that the first182

effect is removed. Indeed, the averaged fitness does not depend on the phenotype when γ = 1, that is,183

in mathematical terms: 1 − s
2(|Φ − Φ∗

A|1 + |Φ − Φ∗
B|1) = 1 − s

2(|Φ − 0|1 + |Φ − 1|1) = 1 − s
2 for all Φ.184

In Section 3.2, we then investigate the sensitivity of our conclusions to changes in the shape of the trait185

fitness function.186

3.1 Architectures evolve in response to the degree of environmental instability187

3.1.1 Composite architectures are selected against when the fitness function is linear188

To assess which architecture (pure or composite) is optimal under various degrees of environmental in-189

stability, we first simulated temporal dynamics in the simple case I = 2 (two inheritance systems, fast190

and slow, with respective mutation rates µF and µS). In this particular case, we recall that respective191

9



0 2 4 6 8 10 12
Time (unit: ×103)

0.0

0.2

0.4

0.6

0.8

1.0

F T= 900
T=1200

(a)

0 2 4 6 8 10 12
Time (unit: ×103)

0.0

0.2

0.4

0.6

0.8

1.0

F

T=900

Median
Mean

(b)

0 2 4 6 8 10 12
Time (unit: ×103)

0.0

0.2

0.4

0.6

0.8

1.0

F

T=1200

Median
Mean

(c)

Figure 2: Temporal dynamics of the trait architecture with polymorphic initial configuration. (a) Simulation
of the deterministic PDE model (Equation 4), corresponding to an infinite population size, with a polymorphic initial
configuration where all αF values have the same frequency. The mean αF in the population is plotted over time for two
values of the time period of environmental change T . We observed the selection towards αF = 1 for the smaller period
T = 900 and the selection towards αF = 0 for the larger period T = 1200. (b-c) Monte-Carlo simulations associated
with finite population sizes, respectively for T = 900 (b) and T = 1200 (c). The equilibrium population size is set to
K = 216 ≈ 65000. The initial value of αF is drawn uniformly within the population. Each black line represents the
trajectory of the averaged value αF within the population over time. The colored lines represent the mean and median of 64
simulation replicates.

contributions of the fast and slow inheritance systems are denoted αF and αS = 1− αF . In this first set192

of simulations, the values of αF are equidistributed within the population at initial time (polymorphic193

case). As illustrated in Figure 2, we only observed in the long run selection for one or the other of the two194

extreme, non-composite trait architectures (αF = 0 and, symmetrically, αS = 1, or αF = 1 and αS = 0),195

depending on the environmental cycle duration T .196

Thus, in this setting, only the slow inheritance system should contribute to the trait (αF = 0) in197

scarcely changing environments (large T values); on the contrary, in unstable environments, only the fast198

inheritance system is expected to contribute (αF = 1). Interestingly, persistent intermediate values of199

αF (0 < αF < 1) were never observed. This phenomenon can be illustrated by considering the relative200

fitnesses of different αF as a function of T , as shown in Figure 3(a) where the intermediate value αF = 0.5201

never has maximal fitness (similar outcomes were observed for other intermediate values 0 < αF < 1,202

not shown). Notably, at very high frequency of environmental change (small period T ), fitness differences203

were found to be negligible.204
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Figure 3: The Lyapunov exponent is maximal for non-composite architectures. (a) Relative fitness ω(α) = W (α)
maxW

is represented as a function of the period T , for three different values of αF = 0, 0.5, 1. The maximal fitness is always attained
at extremal values αF = 0 or αF = 1. The analytical value Tc of the transition between ‘unstable’ and ‘stable’ environments
is reported by a cross-mark (Equation 5). (b) The optimal value (α∗

F = 0 or α∗
F = 1) is plotted as a function of the period

T for different values of the fast mutation rate µF . Again, the switching time Tc is well approximated by the analytical
expression (Equation 5) when µF is sufficiently distant from the values of s (10−1) and µS (10−4).

In fact, the counter-selection of intermediate αF values (and symmetrically, of intermediate αS values)205

turned out to be a theorem, whose statement is given below:206

Assume that the trait fitness function is linear (γ = 1), and I ≥ 2. Then the Lyapunov207

exponent λ(α) is a convex function of the trait architecture α.208

This theorem is a consequence of the convexity properties of the spectral radius with respect to the209

diagonal coefficients (see e.g. Kingman 1961; Cohen 1981). A proof can be found in Appendix B for210

the sake of completeness. An immediate consequence of this theorem is that optimal values of the trait211

architecture are reached at some extremal point of the simplex set {α = (αi) : (∀i)αi ≥ 0, and
∑

i αi = 1}.212

Alternatively speaking, composite trait architectures should always be selected against when the selection213

function is linear.214

Another implication of this theorem is the occurrence of sharp transitions, at specific threshold periods,215

corresponding to switches between optimal trait architectures α∗. In the case I = 2, there is one such216

switch at a critical value T = Tc, quantitatively separating unstable environments (T < Tc) where the217

Lyapunov exponent λ(α) is maximal at αF = 1 (full contribution of the fast inheritance system), from218

stable ones (T > Tc) where the Lyapunov exponent λ(α) is maximal at αF = 0 (full contribution of the219

slow inheritance medium), see Figure 3(b). The value of Tc can be computed analytically in the regime220

µS ≪ µF , by seeking the value of T such that λ(0) = λ(1). This was performed, and lead to the following221
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expression (after some further simplifications, see Appendix C for details):222

Tc

2
≈ 1

µF
log

(
µF

µS

)(
1 +

µF

s

)
(5)

This approximation is valid in the regime µS ≪ µF ≪ s, that is, when the mutation rates are far223

apart, and much below the maximal fitness defect s. It could be further simplified by neglecting µF
s ,224

because selection is assumed to be strong enough so that it has limited influence on the threshold period225

Tc.226

As mentioned above, non-trivial outcomes are expected in the intermediate regime, when the rate227

of environmental change falls in the range of mutation rates. Formula (5) makes this expectation more228

precise as the switch occurs when the duration of one stasis (the half-period T
2 ) echoes the fast mutation229

rate, up to a logarithmic correction. The latter correction is essential as it contains the ratio between230

the two mutation rates (fast versus slow). Interestingly, although selection is obviously essential for this231

process, its strength s only weakly influences the value of the switching period (no dependency at the232

leading order in formula (5)). With more than two determinants (differing in their mutation rates), several233

switching periods are expected, as exemplified in the case I = 3 (see Appendix D, Figure 7).234

3.1.2 Epistasis and contingency in the evolution of trait architectures235

A mutant genetic architecture may be more or less successful at invading particular (epi)genetic back-236

grounds. For example, putting more weight on the fast inheritance system may be deleterious if this237

system is not in the appropriate state in a certain environment (see Section 2). This creates an evolution-238

ary interaction between a resident genetic architecture and the mutant architecture. Importantly, this is239

ignored in the Lyapunov exponent approach, where the fitnesses of different architectures are compared240

after each has reached its own (epi)genetic equilibrium frequencies. In contrast, this is well captured by241

the adaptive dynamics framework. In this framework, the mutant invasion dynamics is approximated242

through its growth rate at low frequency within a resident population under deterministic dynamics (infi-243

nite population size approximation), that is when it is so rare that it does not itself impact the resident’s244

dynamics. This growth rate, calculated as detailed in Section 2, is represented in Figure 4(a) for 4225245

(652) pairs of mutant and resident strategies.246

Based on this approach, we identified two types of singular strategies, as represented in Figure 4(a):247

evolutionary repellors from which evolutionary trajectories tend to move away, and convergent stable248

strategies (CSS) that represent possible long-term evolutionary attractors. Evolutionary trajectories249
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Figure 4: Adaptive dynamics of trait architectures. (a) A pairwise invasibility plot showing how evolutionary trajecto-
ries of the genetic architecture may depend on historical contingency. Black squares represent mutant/resident pairs where
the relative growth rate of the mutant λ(αFm, αFr) is close to 1 (±10−9), while grey and white squares represent pairs where
λ(αFm, αFr) > 1 and < 1, respectively. A first example evolutionary trajectory is shown in orange: a mutant with a lower
contribution of the ‘fast’ component αFm appears in a population with αFr close to 0.6. The mutant increases in frequency
(i.e. it invades; grey square). It is expected to reach fixation (i.e. replace the resident) because the latter cannot invade
back when it is rare (white square at the opposite coordinate, red cross). The evolutionary trajectory continues downwards
until the architecture αF = 0 is fixed. Starting from a slightly different architecture (αFr ≈ 0.7, in green), the evolutionary
trajectory goes in the opposite direction towards αF = 1, showing how the evolution of the genetic architecture may be
contingent on the ancestral architecture of a population. Mutants increasing αF in the orange trajectory or decreasing αF in
the blue one, not represented, may have appeared and failed to invade. The evolutionary repellor at αF ≈ 0.65 is represented
by an empty dot and the two CSS attractors at αF = 0 and 1 by plain dots. Parameter values: γ = 1, T = 2048, s = 0.1.
(b) Singular strategies observed under a linear trade-off (γ = 1) and different frequencies of environmental change (x-axis in
log scale). Singular strategies are either repellors (empty dots) or CSS attractors of the evolutionary dynamics (plain dots).

starting below or above the repellor will be markedly different. If the initial genotype has an architecture250

αF below the repellor, e.g. αrepellor
F ≈ 0.6 in Figure 4(a), mutants with lower αF will tend to invade and251

reach fixation. Because residents with higher αF consistently fail to invade on average, these evolutionary252

dynamics will thus lead αF downwards until αF = 0 is reached. The reverse occurs for starting points253

above the repellor. Thus, the existence of a repellor creates a contingency of the evolutionary dynamics254

on the initial genotype; whether, or rather how frequently it can be overcome by drift will depend on255

population features (but see Section 3.3) and the distribution of mutation effects on the trait’s architecture.256

But it should be noted that selection will consistently act against such crossing of the repellor, as shown257

by the large white areas in Figure 4(a) for which the probability of fixation is lower than that of a neutral258

mutant.259

We next investigate how the types of singular strategies and their distribution change as a function of260

environmental instability, see Figure 4(b). When the environment is scarcely changing (up to T ≈ 256),261
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two CSS attractors (at αF = 0 and αF = 1) and one repellor are present and only the position of the262

repellor changes. In environments that change very rarely, the repellor is very close to αF = 1, such263

that one may expect the evolution of architectures towards αF = 0, that is, with the lowest possible264

contribution of the most unstable inheritance system. This conclusion is similar to that reached through265

the Lyapunov exponent approach, and in line with the results of (Rajon and Charlat 2019). Under higher266

environmental instability, the repellor moves to intermediate values of αF such that the outcome will267

depend on the initial genotype. This is again compatible with the results of (Rajon and Charlat 2019)268

reporting an increase of the average αF in similar contexts, especially since the initial (epi)genotypes were269

uniformly distributed between 0 and 1 in their study. Decreasing further the period of environmental270

change below a threshold of T ≈ 256, only the CSS attractor at αF equal or close to 1 remains.271

The aforementioned conclusions derived from the adaptive dynamics were supported by Monte-Carlo272

numerical simulations initialized with monomorphic populations, that is, where all individuals initially273

have the same trait architecture: either αF = 0.2 as in Figure 5(a), or αF = 0.8 as in Figure 5(b). For274

sufficiently large population size, K = 4096, we observed evolution towards one or the other of the two275

extreme, non-composite trait architectures (blue trajectories), in agreement with results of Figure 4(a).276

Individual trajectories are depicted respectively in Figure 5(e) and Figure 5(h), showing a clear selection of277

the extreme values, with only few trajectories crossing the repellor in Figure 5(e), and none in Figure 5(h)278

among 256 replicates. The other panels (smaller population sizes) will be discussed below in Section 3.3.279

3.2 Sensitivity to the fitness function shape280

3.2.1 Composite architectures are selected against when the fitness function is convex281

The results of Section 3.1.1 can be extended to the case of a convex fitness function, in the sense of282

Figure 1 (γ < 1). Indeed, the trait architecture fitness inherits convexity from the trait fitness function,283

as stated in the following theorem.284

Assume that the trait fitness function is convex, and I ≥ 2. Then, the Lyapunov exponent285

λ(α) is a convex function of the trait architecture α.286

As a by-product of convexity, we deduce that, in the case I = 2, the critical time T = Tc does287

not depend on the shape parameter γ, provided that γ ≤ 1 (convex selection), simply because it is288

characterized by the Lyapunov exponents of the extreme trait architectures through the equality λ(0) =289
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Figure 5: Temporal dynamics of the trait architecture with monomorphic initial configuration. (a-b) Median
of the mean value αF over the population for 256 simulation replicates starting respectively from: αF = 0.2 (a), and
αF = 0.8 (b), associated with various population size. The (epi)genotypes are initialized with the monomorphic equilibrium
distribution, depending on the value of αF . The figure legend indicates the typical population size for each of the three
numerical experiments (resp. K = 32, 512, 4096). The case of small population size (K = 32) exhibits a pattern of neutral
evolution, dominated by genetic drift. The cases of intermediate population size (K = 512) and large population size
(K = 4096) exhibit the same trend when starting from αF = 0.8 (above the repellor value ≈ 0.65), but opposite trends
when starting from αF = 0.2 (below the repellor value). (c-h) Sample of the simulation replicates (N = 64): trajectories
of the mean value αF in each simulation out of the sample is plotted in dark line, and the final distribution is plotted as
a side histogram. Values are as follows (typical population size K, and initial value of the monomorphic trait architecture
αF ) : K = 32, αF = 0.2 (c); K = 512, αF = 0.2 (d); K = 4096;αF = 0.2 (e); K = 32, αF = 0.8 (f); K = 512, αF = 0.8 (g);
K = 4096;αF = 0.8 (h). Parameter values: period T = 2048, s = 0.1 (same as Figure 4).
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Figure 6: Main outcomes for concave fitness functions. (a) Temporal dynamics for the deterministic PDE models
of infinite population size for three values of the time period T = 100, T = 900, and T = 1200, and γ = 3 (analogous to
Figure 2(a)). The mean value of αF in the population is plotted over time. In contrast with the linear case, we observed
the selection for non-composite architectures, especially when the environment is very unstable (T = 100). (b) The optimal
value α∗

F is represented as a function of the shape parameter γ > 1 (analogous to Figure 3(b)). In contrast with the linear
case, non-composite architectures can result in a higher relative fitness ω, especially when the environment is very unstable,
or when γ is large. (c) Singular strategies observed under a concave selection function (γ > 1) and different periods of
environmental change). Singular strategies are either repellors (empty dots) or CSS attractors of the evolutionary dynamics
(plain dots or triangles).

λ(1). Since the intensity of selection does not depend on γ at the extremal architectures (either 1 or 1−s,290

and vice-versa), the balance λ(0) = λ(1) does not involve the parameter γ.291

It is important to notice that there is no corresponding statement regarding concavity, that is, the292

trait architecture fitness does not inherit concavity from the trait fitness function in general. For instance,293

the selection function in the case γ = 1 (Section 3.1.1) is both convex and concave because it is linear.294

However, the trait fitness architecture is strictly convex in this case. It is the transition between several295

(epi)genetic states by mutation, and the environmental variation which generates such strict convexity.296

Since the convexity property is a strong feature, which holds true even in the case of a linear selection297

function, we expect that convexity of the Lyapunov exponent persists beyond the linear regime, even if the298

trait fitness function is not convex anymore, say slightly concave. Robustness of the previous conclusions299

with respect to the shape of the fitness function is the purpose of the next section.300

3.2.2 Concave fitness functions may select for composite architectures301

Contrary to convexity, concave fitness functions may result in positive selection for a balanced contribution302

of various determinants – that is 0 < αF < 1 – compare Figure 6(a) with Figure 2(a). Thus, in order303

to assess the robustness of our main conclusions from Section 3.1.1, we investigated the optimal trait304

architecture maximizing the Lyapunov exponent λ(α) in the case of a concave selection function (γ ≥ 1),305

see Figure 6(b). Interestingly, the concept of a critical switching value Tc still exists when composite306
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trait architectures are selected for, even for large values of γ. Fast inheritance systems have more weight307

in the selected architecture (α∗
F > 0.5) when T < Tc. In contrast, slow inheritance systems have more308

weight in the selected architecture (α∗
F < 0.5), when T > Tc. Moreover, the transition is sharp at T = Tc309

(switch between a clear balance on the side of fast inheritance towards a clear balance on the opposite310

side), a feature shared with the convex case, compare Figure 6(b) with Figure 3(b). Although we lack a311

formula for the critical value Tc in the concave case, we see clearly that it does not depend on the shape312

parameter (γ). Although this may appear surprising at first glance, it might be expected from the fact313

that the critical value does not depend on the shape parameter (γ), nor on the intensity of selection (s)314

at the leading order in the convex case, see Equation (5).315

Notably, non-composite architectures can still be selected for, for moderate shape parameter (γ ≲ 1.5)316

and period T close enough to the switching period Tc. For large γ, the fastest inheritance system (α∗
F = 1)317

is never selected for, and the slowest one is selected for only in very stable environments (T ≫ Tc).318

Regarding the adaptive dynamics, the results in Figure 6(c) are consistent with the previous results.319

When the selection function is moderately concave (here, γ = 1.5), and the environment changes in-320

frequently (T > 8192), a single CSS attractor is present at αF close to 0. For intermediate regimes of321

environmental variation, a repellor and the two attractors at respectively low and high αF are present,322

similar to the case where γ = 1 (compare with Figure 6(b)). As environmental variations become more323

frequent, at T < 1024 a single CSS remains and the expected selected architecture tends to intermediate324

values of αF , ending up at αF = 0.5 for very frequent changes. As concavity increases to γ = 3, the325

transition between an architecture with a large contribution of the determinant with the lowest mutation326

rate (low αF ) in scarcely varying environments to an architecture with a higher αF no longer includes327

a repellor, nor a very large contribution of the least stable determinant – i.e. αF does not reach values328

close to 1.329

3.3 Sensitivity to population size: a new case of sign inversion330

We used simulations to assess the predictions of the adaptive dynamics approach under more or less331

effective selective regimes, that is, under various populations sizes. Simulations behave as expected when332

the population size is sufficiently large (K = 4096), that is αF goes to 0 when the population is initiated333

with αF below the repellor and to 1 otherwise. In very small populations, selection is overall inefficient334

and αF tends to become uniformly distributed, independently of its initial value (K = 32 in Figure 5).335

This is also expected since genetic drift tends to dominate over selection in these conditions. But in336
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populations of intermediate sizes (K = 512 in Figure 5), simulations reveal a complex pattern. When337

the initial value αF = 0.8 is above the repellor, it evolves toward 1, as expected. Yet, surprisingly, αF338

also evolves toward 1 when it is initiated below the repellor, at initial value αF = 0.2. In other words,339

we found that not only the efficiency of selection, but also its direction, depends on the population size340

(compare panels (d) and (e) of Figure 5, where the only parameter that differs is K).341

We reached the following interpretation for this surprising pattern. The evolution of αF in fluctu-342

ating environments is dynamically driven by two opposite selective pressures: (1) upon shifts to a new343

environment, high values of αF are selected for, because these give more weight to the ”fast” inheritance344

system, that has a higher chance of being in a state that matches the new environment, or to reach this345

state through an (epi)mutation; (2) during periods of environmental stasis, low values of αF are selected346

for, because these reduce the cost of frequent deleterious (epi)mutations. Depending on the frequency347

of environmental change, one of these processes tends to dominate, provided that populations are large348

enough. A plausible interpretation for the observed pattern (that is, for a deterministic evolution of αF349

toward high values in populations of ”intermediate size”) relies on noting that the strength and duration350

of the selection associated with the two processes differ. As a result, one process, subject to stronger351

selection than the other, may become effective in populations where the other is not. More specifically,352

what we see here is in our view stemming for a strong (but infrequent) selection toward high αF values353

upon environmental change and a weak (but durable) selection toward low αF values during periods of354

environmental stasis. Both are effective in large populations, but weak and durable selection toward low355

αF dominates. In contrast, in populations of intermediate size, only the strong albeit infrequent selection356

toward high αF operates.357

With this explanation in mind, we realized that other authors have recently shed light on a very similar358

process that they coined ‘sign inversion’ (Raynes, Wylie, et al. 2018; Raynes, Burch, and Weinreich 2021).359

This expression appropriately emphasizes the main point of the explanation: changes in population size360

can not only make selection more or less efficient, but may also inverse its direction in systems where361

two opposing pressures are at play and differ in their intensity and duration. In large populations, both362

pressures are effective, but weak and long lasting selection may dominate; under a certain threshold363

population size, only the strong but infrequent selection is effective. Following the discovery of this364

process in a study focusing on the evolution of mutation rates, Raynes, Wylie, et al. 2018 have noted that365

this process may be far more than anecdotal, because many traits can be subject to opposing selective366

pressures, for example because of temporal variations in the environment. Our study provides one more367
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example of situations where this process would take place.368

4 Conclusion369

Our analysis was aimed at assessing the hypothesis that heterogeneity in the mutation rates of a trait’s370

determinants (of whatever nature) may affect the evolution of its architecture, that is, of the respective371

contributions of the different determinants. Our main conclusion is that in a variety of conditions, in both372

stable and unstable environments, non-composite architectures are effectively selected for, meaning that373

trait values would tend to depend upon a single determinant, or several determinants characterized by374

similar mutation rates. This sheds light on prior simulation results (Rajon and Charlat 2019) as we now375

understand how the degree of environmental variation conditions which determinant, rather than which376

mixture of determinants, takes part to the trait architecture. This focus on the mutational portfolio of377

traits contributes to the general understanding of the evolution of a trait’s architecture, as a complement378

to the more common focus on the number of contributing genes, their epistatic and pleiotropic properties,379

and the distribution of their respective effects.380

Let us emphasize that a non-composite trait architecture may still be ”complex” in the sense of381

involving many determinants (e.g. Ungerer et al. 2002; Flint and Mackay 2009; Kemper, Visscher, and382

Goddard 2012; Yengo et al. 2022). For example, Rajon and Plotkin 2013, in a model assuming a single383

mutation rate, have shown that many genes should contribute to traits subject to a stabilizing selection384

of mild intensity. In such a context, where the environment is kept stable, our model predicts that the385

architecture should be non-composite. Overall, a complex yet non composite architecture would then be386

expected, involving the most stable determinants.387

The impact of environmental heterogeneity on the evolution of trait architecture has also been the388

subject of previous studies. Yeaman and Whitlock 2011 have shown that spatial differences in traits389

optima leads the evolution of recombination landscapes toward simplified architecture where clusters of390

genes have large impact of the phenotype. Using yet another framework, the results of (Hansen et al.391

2006) suggest that directional selection, producing an ever going requirement for adaptation should result392

in an increase in mutational effects through changes in epistatic interactions, provided that mutations are393

rare enough.394

In our study, we focused on temporal environmental fluctuations on the evolution of the trait archi-395

tecture. More specifically, we assumed that environmental changes reverse the direction of selection, with396
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fitness gains modeled as concave, linear, or strictly convex functions. These shapes were found critical:397

only a concave fitness function resulted in composite architectures, provided that the degree of instability398

overcomes a threshold. The same conclusion holds for a mixture of concave and convex fitness shapes,399

like the typical case of a Gaussian function centered on a moving optimum, see Appendix D, Figure 8(a).400

In such a case, the amplitude of the fluctuations may be critical because Gaussian functions are concave401

close to the center, but convex at the border, as can be seen in Appendix D, Figure 8(b).402

While the shape of fitness functions acting on the trait is a key parameter, it will only be relevant if403

selection on the architecture is effective, which ultimately depends on its strength, in relation with popu-404

lation size. We developed complementary approaches to investigate the strength of selection on the trait405

architecture. The Lyapunov exponent approach revealed conditions where composite architecture are not406

optimal, but it missed the notion that the evolution of trait architecture is driven by the background407

variations, accumulated by different determinants through their distinct mutation rates and across envi-408

ronmental fluctuations. The adaptive dynamics approach captured this effect, by assessing the average409

strength of selection over an environmental fluctuation period. But Monte Carlo simulations in popula-410

tions of finite size revealed a singular aspect of these dynamics, related to the effect of drift. Simulations411

in large populations were in agreement with the adaptive dynamics predictions, and those in very small412

populations were as expected driven by drift only. Yet, in populations of intermediate sizes, we found413

that the trait architecture evolves deterministically in the opposite direction as in large populations. We414

interpret this result as a new occurrence of ‘sign inversion’ (Raynes, Wylie, et al. 2018; Raynes, Burch, and415

Weinreich 2021), stemming from the periodic alternation between long time windows of weak selection for416

a heavy contribution of stable inheritance systems (inefficient in populations of intermediate sizes) and417

short time windows of strong selection for a heavy contribution of unstable systems. This result further418

complexifies our understanding of the evolution of genetic architectures, arguing in favor of a systematic419

use of population genetics models and, as an aside, for further mathematical analyses that would clarify420

and generalize the conditions for the occurrence of sign inversion.421
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Geritz, S., E. Kisdi, G. Meszéna, and J. Metz. “Evolutionarily singular strategies and the adaptive growth437

and branching of the evolutionary tree”. Evol Ecol 12 (1998).438

Graaf, A. van der, R. Wardenaar, D. A. Neumann, et al. “Rate, spectrum, and evolutionary dynamics of439

spontaneous epimutations”. Proceedings of the National Academy of Sciences 112 (2015).440

Hansen, T. F., J. M. Alvarez-Castro, A. J. R. Carter, and J. Hermiss. “Evolution of Genetic Architecture441

under Directional Selection”. Evolution 60 (2006).442

Hodgkinson, A. and A. Eyre-Walker. “Variation in the mutation rate across mammalian genomes”. Nature443

Reviews Genetics 12 (2011).444

Ishii, K., H. Matsuda, Y. Iwasa, and A. Sasaki. “Evolutionarily stable mutation rate in a periodically445

changing environment”. Genetics 121 (1989).446

Johannes, F., E. Porcher, F. K. Teixeira, et al. “Assessing the impact of transgenerational epigenetic447

variation on complex traits”. PLoS Genet 5 (2009).448

Johnson, T. “Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations”.449

Genetics 151 (1999).450

Kemper, K. E., P. M. Visscher, and M. E. Goddard. “Genetic architecture of body size in mammals”.451

Genome Biol. 13 (2012).452

Kingman, J. F. C. “A convexity property of positive matrices”. The Quarterly Journal of Mathematics453

12 (1961).454

21



Metz, J., R. Nisbet, and S. Geritz. “How should we define ’fitness’ for general ecological scenarios?” Trends455

Ecol Evol 7 (1992).456

Oman, M., A. Alam, and R. W. Ness. “How Sequence Context-Dependent Mutability Drives Mutation457

Rate Variation in the Genome”. Genome Biology and Evolution 14 (2022).458

Rajon, E. and J. B. Plotkin. “The evolution of genetic architectures underlying quantitative traits”. Proc.459

R. Soc. Lond. B (2013).460

Rajon, E. and S. Charlat. “(In)exhaustible Suppliers for Evolution? Epistatic Selection Tunes the Adaptive461

Potential of Nongenetic Inheritance”. The American Naturalist 194 (2019).462

Rando, O. J. and K. J. Verstrepen. “Timescales of genetic and epigenetic inheritance”. Cell 128 (2007).463

Raynes, Y., C. L. Burch, and D. M. Weinreich. When good mutations go bad: how population size can464

change the direction of natural selection. preprint. Evolutionary Biology, 2021.465

Raynes, Y., C. S. Wylie, P. D. Sniegowski, and D. M. Weinreich. “Sign of selection on mutation rate466

modifiers depends on population size”. Proceedings of the National Academy of Sciences 115 (2018).467

Rechavi, O., G. Minevich, and O. Hobert. “Transgenerational Inheritance of an Acquired Small RNA-468

Based Antiviral Response in C. elegans”. Cell 147 (2011).469

Ungerer, M. C., S. S. Halldorsdottir, J. L. Modliszewski, T. F. C. Mackay, and M. D. Purugganan.470

“Quantitative trait loci for inflorescence development in Arabidopsis thaliana”. Genetics 160 (2002).471

Yeaman, S. and M. C. Whitlock. “The genetic architecture of adaptation under migration-selection bal-472

ance”. Evolution 65 (2011).473

Yengo, L., S. Vedantam, E. Marouli, et al. “A saturated map of common genetic variants associated with474

human height”. Nature (2022).475

22



Appendices476

A Model reduction for Lyapunov exponent computation477

In this section, we aim to detail the links between the continuous model presented in Section 2.4 and478

formalized by Equation (4) and the Lyapunov exponent computation. Indeed, the dynamic is driven by479

the leading eigenvalues in a linear ordinary differential equation system. The presence of the integral480

term for the trait architecture mutation and the logistic growth rate to model the density dependent481

saturation make our model non-linear. However, in the case of a monomorphic population, when the482

trait architecture mutations are neglected, we demonstrate a correspondance with the Floquet spectral483

theory of periodic linear systems, such that the average of the density over one period, 1
T

∫ T
0 ρ(t)dt, and484

the Lyapunov exponent defined in Equation (1), coincide.485

Assume that mutations on the trait architecture α are negligible. For a given trait architecture α and486

group X ∈
{
(0, 0), (1, 0), (0, 1), (1, 1)

}
the equation (4) becomes487

∂tgX(t, α) =
(
1− s|ΦX(α)− Φ∗(t)|γ − ρ(t)

)
gX(t, α) + (MG)X(t, α). (6)

Depending on the optimal phenotype Φ∗, the system gathering equations (6) writes488


∂tG(t, α) = (A− ρ(t)I)G(t, α), if Φ∗(t) = 0,

∂tG(t, α) = (B − ρ(t)I)G(t, α), if Φ∗(t) = 1.

(7)

Assume that both matrix A and B can be diagonalised. Thus, there exist a constant invertible matrix489

PA (resp. PB) and a diagonal matrix DA (resp. DB) such that A = PADAP
−1
A (resp. B = PBDBP

−1
B ).490

So the systems (7) becomes491


∂t
(
P−1
A G(t, α)

)
=
(
DA − ρ(t)I

)
P−1
A G(t, α), if Φ∗(t) = 0,

∂t
(
P−1
B G(t, α)

)
=
(
DB − ρ(t)I

)
P−1
B G(t, α), if Φ∗(t) = 1.

(8)
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With the notations HA(t, α) = P−1
A G(t, α) and HB(t, α) = P−1

B G(t, α) this systems writes492


∂t(HA(t, α)) =

(
DA − ρ(t)I

)
HA(t, α), if Φ∗(t) = 0,

∂t(HB(t, α)) =
(
DB − ρ(t)I

)
HB(t, α), if Φ∗(t) = 1.

(9)

Relations between H components: Let HA,i denotes the ith components of HA and dA,i the ith493

diagonal term of DA. Assume that the HA,i never vanishes, then494

∂tHA,i(t, α)

HA,i(t, α)
− dA,i = ρ(t). (10)

Thus, for any pair (i, j)495

∂tHA,i(t, α)

HA,i(t, α)
− dA,i =

∂tHA,j(t, α)

HA,j(t, α)
− dA,j (11)

=⇒ HA,i(t, α) = HA,j(t, α)
H0

A,i

H0
A,j

e(dA,i−dA,j)(t−t0). (12)

with H0
A = HA(t0, α). Therefore, the relative dynamics of the components of the vector H depend on496

the difference between the eigenvalues of A. By the same reasoning and using similar notations it also497

comes498

HB,i(t, α) = HB,j(t, α)
H0

B,i

H0
B,j

e(dB,i−dB,j)(t−t0). (13)

Solution characterization using total population size: According to systems (9), as long as Φ∗(t)499

remains constant on the time interval [t0, t] with t > t0 the solutions are500


HA(t, α) = exp

(
DA(t− t0)−

∫ t
t0
ρ(s)ds

)
H0

A, if Φ∗(t) = 0,

HB(t, α) = exp
(
DB(t− t0)−

∫ t
t0
ρ(s)ds

)
H0

B, if Φ∗(t) = 1

(14)
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with H0
A = HA(t0, α) and H0

B = HB(t0, α). Note that these formulas rely on
∫ t
t0
ρ(s)ds which is not501

explicitly known. Using the relation G(t, α) = PAHA(t, α) and G(t, α) = PBHB(t, α) it comes502


G(t, α) = PA exp

(
DA(t− t0)−

∫ t
t0
ρ(s)ds

)
P−1
A G0, if Φ∗(t) = 0,

G(t, α) = PB exp
(
DB(t− t0)−

∫ t
t0
ρ(s)ds

)
P−1
B G0, if Φ∗(t) = 1.

(15)

where G0 = (t0, α). These formulas simply into503


G(t, α) = exp

(
−
∫ t
t0
ρ(s)ds

)
eA(t−t0)G0, if Φ∗(t) = 0,

G(t, α) = exp
(
−
∫ t
t0
ρ(s)ds

)
eB(t−t0)G0, if Φ∗(t) = 1.

(16)

A.1 Groups dynamic in stable environment504

Without loss of generality, let’s consider the case of Φ∗(t) = 0 and drop the subscript A to shorten505

notations. Using G(t, α) = PH(t, α) one can deduce that the expression of Gi the ith components of G is506

Gi(t, α) =
n∑

j=1

Pi,jHj(t, α) =
Hℓ(t, α)

H0
ℓ

n∑
j=1

Pi,jH
0
j e

(dj−dℓ)(t−t0). (17)

where ℓ is an arbitrary index to be fixed later. Thus, the total population size is507

ρ(t) =
n∑

i=1

Gi(t, α) =
Hℓ(t, α)

H0
ℓ

n∑
i=1

n∑
j=1

Pi,jH
0
j e

(dj−dℓ)(t−t0). (18)

Therefore, the relative group size within the total population size is508

Gi(t, α)

ρ(t)
=

∑n
j=1 Pi,jH

0
j e

(dj−dℓ)(t−t0)∑n
i=1

∑n
j=1 Pi,jH0

j e
(dj−dℓ)(t−t0)

(19)

=

∑n
j=1 Pi,jH

0
j e

dj(t−t0)∑n
i=1

∑n
j=1 Pi,jH0

j e
dj(t−t0)

(20)

Thus, the relative group size dynamic is fully determined by the eigenvalues of matrix A. Moreover,509
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this shows that the whole dynamic is driven by the A matrix leading eigenvalue:510

Gi(t, α)

ρ(t)
≃

Pi,ℓH
0
ℓ e

dℓ(t−t0)∑n
i=1 Pi,ℓH

0
ℓ e

dℓ(t−t0)
=

Pi,ℓ∑n
i=1 Pi,ℓ

(21)

assuming that dℓ is the leading eigenvalue. Note that
Pi,ℓ∑n
i=1 Pi,ℓ

correspond to the normalised value of511

the ith component of the eigenvector associated to dℓ. That is, the normalised eigenvector associated with512

the largest eigenvalue of A approximates the relative group sizes.513

A.2 Groups dynamic in periodic environment514

Let’s consider a periodic environment of period T . Without loose of generality let assume that Φ∗(t) = 0515

for t ∈
[
0, T2

]
and Φ∗(t) = 1 for t ∈

[
T
2 , T

]
. Thus, starting from G0 = G(0, α) and using formulas (16) the516

solution at t = T is517

G(T, α) = exp

(
−
∫ T

T
2

ρ(s)ds

)
e

BT
2 exp

(
−
∫ T

2

0
ρ(s)ds

)
e

AT
2 G0

= exp

(
−
∫ T

0
ρ(s)ds

)
e

BT
2 e

AT
2 G0

Assume that the solution becomes periodic, namely G(T, α) = G0 then the previous formula lead to518

e
BT
2 e

AT
2 G0 = exp

(∫ T

0
ρ(s)ds

)
G0.

So G0 is the eigenvector associated to the leading eigenvalue exp
(∫ T

0 ρ(s)ds
)
of e

BT
2 e

AT
2 . Moreover,519

this demonstrates that the leading eigenvalue is real.520

Up to renormalization, the eigenvector G0 can be interpreted as the relative group sizes within the521

whole population. Indeed, the relative size of a group ℓ is simply
(G0)ℓ∑
i(G0)i

.522
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B Proof of convexity523

This section is devoted to the mathematical proof of our main convexity result, that is the convexity524

of the Lyapunov exponent λ(α) in the case of a convex selection function (γ ≤ 1). This result can be525

recast in the framework of convexity of dominant eigenvalues of non-negativity matrices. To apply such526

theory, one should be careful about the convex combination of coefficients during convex interpolation.527

Indeed, the diagonal coefficients and the off-diagonal coefficients do not play the same role, for as they are528

not subject to the same constraints (non-negativity constraints off the diagonal). More precisely, convex529

combinations are arithmetical on the diagonal, but geometrical off the diagonal (see the θ−interpolation530

below). The situation is facilitated in our model as the selection acts only on the diagonal terms via a531

trait-dependent mortality rate. Nevertheless, we shall present a more general result to emphasize this532

discrepancy between diagonal and off-diagonal coefficients.533

We claim that the following Theorem encompasses our main convexity result:534

Let A,B two matrices with positive entries off the diagonal1, that is ∀(i, j) aij > 0, bij > 0.535

Let θ ∈ (0, 1). Consider the matrix Cθ defined by the following term-by-term interpolation:536


cii = (1− θ)aii + θbii

cij = a1−θ
ij bθij (i ̸= j)

Then the dominant (Perron) eigenvalues λ(A), λ(B), λ(Cθ) satisfy the following convex in-537

equality:538

λ(Cθ) ≤ (1− θ)λ(A) + θλ(B) (22)

We make the following comments:539

• This result is classically credited to (Kingman 1961).540

• The result can be extended straightforwardly to irreducible matrices by a limiting argument.541

• We are interested in the particular case where A and B differ only by their diagonal entries, that542

is, aij = bij if i ̸= j. In this case, the interpolation cij = a1−θ
ij bθij is trivial, and the convex inequality543

1usually referred to as a Metzler matrix
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(22) can be reformulated as: λ((1− θ)A+ θB) ≤ (1− θ)λ(A) + θλ(B). Alternatively speaking, the544

dominant eigenvalue is convex with respect to its diagonal.545

• In fact, the proof can be extended to the Floquet eigenvalues in the periodic setting, which is546

precisely our focus:547

Let A(t), B(t) a pair of time-dependent, periodic, matrices with positive entries off the548

diagonal. Let θ ∈ (0, 1). Consider the matrix Cθ(t) defined pointwise as follows:549


cii(t) = (1− θ)aii(t) + θbii(t)

cij(t) = a1−θ
ij (t)bθij(t) (i ̸= j)

Then the dominant (Floquet) eigenvalues λ(A), λ(B), λ(Cθ) satisfy the following convex550

inequality:551

λ(Cθ) ≤ (1− θ)λ(A) + θλ(B) (23)

We present first the proof of the static case (Perron eigenvalues), then we extend the method to the552

time-periodic setting (Floquet eigenvalues).553

Our approach is based on (Clairambault, Gaubert, and Lepoutre 2011), see also (Cohen 1981).554

The static case555

We need the following eigen-elements: X (resp. Y ) the positive (right) eigenvector of A (resp. B), and Φ556

the positive (left) eigenvector of C. We have accordingly:557


AX = λ(A)X

BY = λ(B)Y

, ΦTC = λ(C)ΦT (24)

We define Z by the pointwise interpolation: zi = x1−θ
i yθi . Then, we evaluate the Collatz-Wielandt558

ratio:559
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∑
j

cij
zj
zi

= (1− θ)aii + θbii +
∑
j ̸=i

a1−θ
ij bθij

x1−θ
j yθj

x1−θ
i yθi

≤ (1− θ)aii + θbii + (1− θ)

∑
j ̸=i

aij
xj
xi

+ θ

∑
j ̸=i

bij
yj
yi


= (1− θ)λ(A) + θλ(B)

where we have used the Hölder inequality in the second line, and the fact thatX and Y are eigenvectors560

in the last line. We deduce that561

CZ ≤ ((1− θ)λ(A) + θλ(B))Z

Finally, multiplying by ΦT , we find:562

λ(C)ΦTZ ≤ ((1− θ)λ(A) + θλ(B))ΦTZ, (25)

hence, λ(C) ≤ (1− θ)λ(A) + θλ(B).563

The time-periodic case564

The proof is almost identical, but the fact that we have to consider time-periodic eigenvectors X(t) (resp.565

Y (t)) and Φ(t) such that:566


−Ẋ(t) +A(t)X(t) = λ(A)X(t)

−Ẏ (t) +B(t)Y (t) = λ(B)Y (t)

, Φ̇T (t) + ΦT (t)C(t) = λ(C)ΦT (t) (26)

We define again Z(t) pointwise: zi(t) = x1−θ
i (t)yθi (t). Then, we evaluate the Collatz-Wielandt ratio:567
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− żi
zi

+
∑
j

cij
zj
zi

= −(1− θ)
ẋi
xi

− θ
ẏi
yi

+ (1− θ)aii + θbii +
∑
j ̸=i

a1−θ
ij bθij

x1−θ
j yθj

x1−θ
i yθi

≤ (1− θ)

λ(A)−
∑
j

aij
xj
xi

+ θ

λ(B)−
∑
j

bij
yj
yi


+ (1− θ)aii + θbii + (1− θ)

∑
j ̸=i

aij
xj
xi

+ θ

∑
j ̸=i

bij
yj
yi


= (1− θ)λ(A) + θλ(B)

We deduce that568

−Ż(t) + C(t)Z(t) ≤ ((1− θ)λ(A) + θλ(B))Z(t)

To conclude, we multiply by ϕT and integrate other one period:569

−
∫ T

0
−ΦT (t)Ż(t) dt+

∫ T

0
ΦT (t)C(t)Z(t) dt ≤ ((1− θ)λ(A) + θλ(B))

∫ T

0
ΦT (t)Z(t) dt

Integrating by parts the first term (using periodicity), we find570

∫ T

0
(Φ̇T (t) + ΦT (t)C(t))Z(t) dt ≤ ((1− θ)λ(A) + θλ(B))

∫ T

0
ΦT (t)Z(t) dt∫ T

0
λ(C)ΦT (t)Z(t) dt ≤ ((1− θ)λ(A) + θλ(B))

∫ T

0
ΦT (t)Z(t) dt

Hence, λ(C) ≤ (1− θ)λ(A) + θλ(B).571
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C Computation of the critical time Tc572

This section presents the analytical computation of the critical time Tc of the transition between ‘unstable’573

and ‘stable’. According to our main results, see Section 3.1.1: when the trait fitness function is linear574

(γ = 1), then the Lyapunov exponent λ(α) is a convex function of the trait architecture α. Consequently,575

for the two determinant case the optimal trait architecture is either2 αF = 0, or αF = 1 and the transition576

occurs when the Lyapunov exponents satisfy λ(0) = λ(1). Thus, the critical time Tc can be computed577

by solving this equation. However, according to Equation (1), the Lyapunov exponent is the largest578

eigenvalue of a product of matrix exponential. Thus, its computation is very tedious so we relied on579

Maple (2022) to perform the preliminary steps of the calculation.580

As mentioned above, the goal is to solve λ(0) = λ(1) thus the first step consists in determining the581

Lyapunov exponent for αF = 0 and αF = 1. To shorten the notation, we abbreviate αF to α. According582

to Maple, the eigenvalues of exp
(
AT
2

)
exp
(
BT
2

)
when α = 0 are583

Λ(0) =
exp
(
T
2 (2− 2µS − s) + τS

2

)
4µ2

S + s2



2µ2
Se

−τS + s2e−
τS
2 + 2µ2

S + 2ξS

2µ2
Se

−τS + s2e−
τS
2 + 2µ2

S − 2ξS(
2µ2

Se
−τS + s2e−

τS
2 + 2µ2

S + 2ξS

)
e−4µF(

2µ2
Se

−τS + s2e−
τS
2 + 2µ2

S − 2ξS

)
e−4µF


with584

τS = T
√

4µ2
S + s2,

ξS =

√
µ2
S

(
e−2τSµ2

S − 2 e−τSµ2
S − 2 e−τSs2 + e−

τS
2 s2 + e−

3τS
2 s2 + µ2

S

)
.

The mutation rate µF is strictly positive so e−4µF < 1 and thus the largest eigenvalue is either Λ(0)1585

or Λ(0)2. Besides, ξS simplifies into586

ξS = µS

∣∣∣e− τS
2 − 1

∣∣∣√(e− τS
2 + 1

)2
µ2
S + s2e−

τS
2 > 0.

2We recall that in the two determinant case α = (αF , αS) with αS = 1− αF .
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Thus, when α = 0 the largest eigenvalue is587

λ(0)T = Λ(0)1 =
exp
(
T
2 (2− 2µS − s) + τS

2

)
4µ2

S + s2

(
2µ2

Se
−τS + s2e−

τS
2 + 2µ2

S + 2ξS

)
.

Similarly, using Maple, we found that the eigenvalues of exp
(
AT
2

)
exp
(
BT
2

)
when α = 1 are588

Λ(1) =
exp
(
T
2 (2− 2µF − s) + τF

2

)
4µ2

F + s2



2µ2
F e

−τF + s2e−
τF
2 + 2µ2

F + 2ξF

2µ2
F e

−τF + s2e−
τF
2 + 2µ2

F − 2ξF(
2µ2

F e
−τF + s2e−

τF
2 + 2µ2

F + 2ξF

)
e−4µF(

2µ2
F e

−τF + s2e−
τF
2 + 2µ2

F − 2ξF

)
e−4µF


with589

τF = T
√
4µ2

F + s2,

ξF =

√
µ2
F

(
e−2τSµ2

F − 2 e−τSµ2
F − 2 e−τSs2 + e−

τS
2 s2 + e−

3τS
2 s2 + µ2

F

)
.

As previously ξF simplifies into590

ξF = µF

∣∣∣e− τS
2 − 1

∣∣∣√(e− τS
2 + 1

)2
µ2
F + s2e−

τS
2 > 0

and using the same arguments we found that when α = 1 the largest eigenvalue is591

λ(1)T = Λ(1)1 =
exp
(
T
2 (2− 2µF − s) + τF

2

)
4µ2

F + s2

(
2µ2

F e
−τF + s2e−

τF
2 + 2µ2

F + 2ξF

)
.

Therefore, the critical time Tc can be computed by solving Λ(0)1 = Λ(1)1. In practice, we were unable592

to solve this equation. Even the numerical approximation of the solution requires particular care due to593

the presence of large terms in the exponentials. Nevertheless, the terms of the form e−cτi with c > 0 a594

constant and i ∈ {F, S} are negligible in the regime µF ≪ s. Thus, for α = 0 it comes ξS ≈ µ2
S and then595
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Λ(0)1 ≈
4µ2

S

4µ2
S + s2

exp

(
T

2

(
2− 2µS − s

)
+

τS
2

)
.

Similarly, for α = 0 it comes ξS ≈ µ2
F and then596

Λ(1)1 ≈
4µ2

F

4µ2
F + s2

exp

(
T

2

(
2− 2µF − s

)
+

τF
2

)
.

So, the approximated critical time Tc is the solution of the equation:597

4µ2
S

4µ2
S + s2

exp

(
Tc

2

(
2− 2µS − s

)
+

τS
2

)
=

4µ2
F

4µ2
F + s2

exp

(
Tc

2

(
2− 2µF − s

)
+

τF
2

)
⇐⇒ exp

(
Tc

2

(
2− 2µS − s

)
+

τS
2

− Tc

2

(
2− 2µF − s

)
− τF

2

)
=

4µ2
F

(
4µ2

S + s2
)

4µ2
S

(
4µ2

F + s2
)

⇐⇒ exp

(
1

2
(τS − τF ) + Tc(µF − µS)

)
=

4µ2
F

(
4µ2

S + s2
)

4µ2
S

(
4µ2

F + s2
)

⇐⇒ 1

2

(
Tc

√
4µ2

S + s2 − Tc

√
4µ2

F + s2
)
+ Tc(µF − µS) = log

(
4µ2

F

(
4µ2

S + s2
)

4µ2
S

(
4µ2

F + s2
)).

Thus, the critical time is approximately598

Tc ≈
2 log

(
4µ2

F (4µ
2
S+s2)

4µ2
S(4µ

2
F+s2)

)
(√

4µ2
S + s2 −

√
4µ2

F + s2
)
+ 2(µF − µS)

.

However, as it stands, the contribution of each parameter to the critical time remains complex. Thus,599

according to Taylor expansions in the regime µS ≪ µF ≪ s, this formula simplifies into600

Tc

2
≈ 1

µF
log

(
µF

µS

)(
1 +

µF

s

)
.
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Figure 7: Results for three media I = 3 and a linear selection function γ = 1. (a-b-c) Temporal dynamics for the
Monte-Carlo simulations with three determinants (I = 3) associated with mutation rates µi = 10−2, 10−3, 10−4 (analogous to
Figure 2(b-c)). We observed the selection towards full contribution of one of the three determinant for each value of the time
period among T = 128 (a: fast switching environment, selection of the largest mutation rate), T = 2048 (b: intermediate
switching environment, selection of the intermediate mutation rate), T = 16384 (c: slow switching environment, selection

of the slowest mutation rate) (d) Relative fitness W (α)
maxW

as a function of the period T , for different values of the trait
architecture α (analogous to Figure 3(a)). The maximal fitness is always attained at extremal values of the trait architecture
(full contribution of a single determinant).
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Figure 8: Gaussian fitness function and associated optimal trait architecture: (a) Shape of the fitness function for

Gaussian selection (ie. mixed concave and convex shape): 1− s
(
1− exp

(
|Φ−Φ∗|2

2σ2

))
, for σ2 = 0.1 (plain blue) and σ2 = 0.4

(plain red). (b) The optimal value α∗
F is represented as a function of the shape parameter σ2 (analogous to Figure 3(b) and

Figure 6(b)). Only the nearly concave fitness function (σ2 ≳ 0.20) resulted in composite architectures, provided that the
degree of instability overcomes the usual threshold (T < Tc).
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