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ABSTRACT: Oxidative carbene organocatalysis, which proceeds via single electron transfer 

(SET) pathways, has been limited by the moderately reducing properties of deprotonated Breslow 

intermediates BI−s derived from thiazol-2-ylidene 1 and 1,2,4-triazolylidene 2. Using 
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computational methods, we assess the redox potentials of BI−s based on ten different types of 

known stable carbenes and report our findings concerning the key parameters influencing the steps 

of the catalytic cycle. From the calculated values of the first oxidation potential of BI−s derived 

from carbenes 1 to 10, it appears that apart from the diamidocarbene 7, all the others are more 

reducing than thiazol-2-ylidene 1 and the 1,2,4-triazolylidene 2. We observed that while the 

reducing power of BI−s significantly decreases with increasing solvent polarity, the redox potential 

of the oxidant can increase at a greater rate, thus facilitating the reaction. The cation, associated 

with the base, also plays an important role when a non-polar solvent is used; large and weakly 

coordinating cations such as Cs+ are beneficial. The radical-radical coupling 

step is probably the most challenging step due to both electronic and steric 

constraints. Based on our results, we predict that mesoionic carbene 3 and 

abnormal NHC 4 are the most promising candidates for oxidative carbene 

organocatalysis. 

 

While stable singlet carbenes have found numerous applications when associated with metals, 1 

they also display a rich chemical reactivity on their own merits. Thiazol-2-ylidenes 12 and 1,2,4-

triazolylidenes 23 have been long known to induce umpolung reactivity of carbonyl compounds, 

giving rise to the formation of nucleophilic Breslow intermediates (BIs).4,5 The latter allow for a 

variety of chemical transformations, which proceed in a well understood ionic mode, via electron-

pair-transfer mechanisms. Several decades ago, it was shown that BIs are also involved in single-

electron transfer (SET)-based catalysis during the oxidative decarboxylation of pyruvate to form 

acetyl‐CoA.6 However, it is only in 2008 that Studer and coworkers7 developed a TEMPO-

mediated biomimetic oxidation of aldehydes to TEMPO-esters. Since that time, other oxidants, 
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such as nitroarenes, nitroalkenes, CX4, C2Cl6, sulfonic carbamate, redox-active esters, the Togni’s 

reagent, polyfluoroalkyl halides, Katritzky pyridinium salts, oxime ester, and recently aryl iodides 

(vide infra) were also employed to achieve oxidative reactions with aldehydes.8  

It was initially postulated that the catalytic cycle proceeded through a SET from the BIs leading 

to the radical cations BI●+ which was regarded as the key intermediates. However, mechanistic 

and electrochemical investigations of standard enols,9 as well as recent studies, showed that the 

active paramagnetic species is rather the corresponding neutral radical BI●.10 Moreover, we 

showed that the SET does not occur from the BI, but from their deprotonated form, BI−.10 

Consequently, the catalytic cycle of the oxidative reactions of aldehydes involves six steps, which 

are described in Figure 1. 

 

Figure 1. Catalytic cycle for carbene oxidative organocatalytic reactions. 

So far, with the exception of our work11 employing mesoionic carbene (MICs) 3,12 thiazol-2-

ylidenes12 and 1,2,4-triazolylidenes 23 have been the only carbenes efficiently used in the catalytic 

oxidative reactions of aldehydes. Due to the moderately reducing properties of BI−s derived from 

1 and 2, the reported SET catalyzed reactions require a relatively strong oxidant (vide supra), 

which dramatically limits their synthetic applications. Motivated by the availability of a library of 

stable singlet carbenes with varying electronic and steric properties, we wondered if we could 
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predict the best candidates to promote these reactions. Obviously, one of the key factors is the 

reducing power of the BI−. Since electrochemical studies can be difficult to implement and adjust 

to specific reaction conditions for highly reactive intermediates, we used computational methods 

to assess the redox potentials of BI−s based on a variety of known stable carbenes. We also report 

our findings concerning each step of the catalytic cycle, including the possible pitfalls. 

DFT calculations13 (in Jaguar 9.1)14 at the PBE/6-31G**//cc-pVTZ15 level of theory with the 

Poisson-Boltzmann solvation model were used for carbenes 1–10 (Fig. 2) and their related 

catalytic intermediates. All redox potentials are referenced to the computed ferrocene/ferrocenium 

couple16 and values are given in acetonitrile unless noted otherwise. A basis set and functional 

benchmark as well as the reproduction of experimental values, generally within experimental 

accuracy, validates our computational methodology (see SI). 

 

Figure 2. Carbenes considered in this manuscript. 

First and second oxidation of BI−s. We found that the first (E1) and second (E2) oxidation 

potentials of BI−s based on carbenes 1–10 and benzaldehyde spans over a large range from −1.50 

(2) to −2.27 V (5), and −0.31 (7) to −2.43 V (10), respectively (Table 1 and Fig. 3 

Because of the rather high computational expense of modeling redox potentials, we also looked 

into simpler predictive indicators connecting the carbenes’ electronic properties and the redox 
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potential of their BI−s. The HOMO orbital energies of carbenes 1-10 (and further derivatives 

detailed in the SI) gives a rough indication of the redox potential ranking of BI−s (Pearson-r: 

−0.666), but notable outliers exist. For example, the computed redox potentials for the BI−s derived 

from MIC 3 (−2.22 V) and imidazol-2-ylidene 5 (−2.27 V) are predicted to be comparable, while 

their HOMO levels are significantly different (−4.65 and −4.94 eV, respectively). Just as for 

organometallic complexes, the -accepting ability of carbenes plays a significant role. Thus, a 

better predictor can easily be obtained using 
1

2
(𝜀3

𝐻𝑂𝑀𝑂 + 𝜀3
𝐿𝑈𝑀𝑂) which is closely related to 

Mulliken’s electronegativity (Pearson-r: −0.74, R2: 0.55, Fig. 4). 23 Indeed, 3-BI− exhibits a lower 

LUMO than 5-BI− (LUMO: −2.14 and −1.23 eV, respectively) which readily explains that despite 

its higher HOMO, the reduction power of its BI−is comparable to that of 5. 

 

Figure 3. First and second oxidation of BI− (top); reduction and oxidation of BI (bottom). 

From these data, it clearly appears that MICs 312 and aNHCs 4,17 which lead to highly reducing 

BI−s, are very promising candidates than thiazol-2-ylidenes 12 and the 1,2,4-triazolylidenes3 that 

have widely been used for SET catalysis. Their strongly negative redox potential indicates that 

they have potential for the activating of weak oxidants. 
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Table 1. HOMO and LUMO energies of carbenes 1–10 and redox potentials of the corresponding 

BI−s and BIs. 

 HOMOa LUMOa E1 b E2 b 𝐸BI
red b EBI

ox b 

1 −5.05 −1.51 −1.58 −0.72 −1.57 −0.57 

2 −5.22 −2.12 −1.50 −0.93 −1.65 −0.61 

3 −4.65 −2.14 −2.22 −1.12 −1.94 −0.95 

4 −4.29 −2.18 −2.16 −1.59 −2.00 −1.40 

5 −4.94 −1.23 −2.27 −1.10 −2.10 −0.88 

6 −4.78 −1.12 −1.94 −1.05 −1.97 −0.57 

7 −4.99 −2.81 −1.05 −0.31 −1.65 +0.37 

8 −4.20 −0.15 −2.26 −1.43 −2.47 −1.06 

9 −3.63 +0.15 −1.89 −1.14 −2.16 −0.58 

10 −3.59 −0.87 −2.25 c −2.43 c −2.34 −1.91 

a: in eV. b: in V. c: See SI for more details. 
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Figure 4. Distribution plot showing the correlation between E1 and 
1

2
(𝜀3

𝐻𝑂𝑀𝑂 + 𝜀3
𝐿𝑈𝑀𝑂) for all 

computed carbene/BI− pairs, see SI for a full list. 

Oxidation and reduction of BIs. Because of the earlier assumption that BIs were the active 

reducing agent, we also calculated their oxidation and reduction potentials. We found that the 

oxidation of BIs also covers a large range [+0.37 (7) to −1.91 V (10)], and roughly follows the 

order observed for BI−s. Importantly, they are on average 1.1 V less reducing than the 

corresponding BI−s. The resulting BI●+s are strongly acidic as shown by the predicted very low 

pKa values (see SI), which readily explain the involvement of the neutral radicals BI● instead of 

the radical cations BI●+ in catalysis.10  

A reduction process was also experimentally observed by cyclic voltammetry for a Breslow 

homoenol derived from 6, in the form of an irreversible peak at −1.90 V. The outcome of this 

process was unclear.10 Our calculations show that the reduction of the BI derived from 6, computed 

at −1.97 V, is coupled with a fast or concerted hydrogen evolution resulting in the formation of 

the corresponding BI− (see SI). Interestingly, with some carbenes (1, 3–5), the BI− can readily 

reduce the corresponding BI giving BI●, half an equivalent of H2, and regenerating the BI−. The 

overall process is the electrocatalytic reduction of BIs into BI●s and H2. In these cases, this 

competing pathway could prevent efficient oxidative catalytic processes. 

Influence of the solvent and cation on the reducing properties of BI−s. After examining the 

role of the carbene, we turned our attention to the influence of the solvent and cation on the 

reducing properties of BI−s. We modelled solvation with a self-consistent reaction field approach 

(SCRF) and calculated the solvation with 25 distinct dielectric constants in the range of 1 (vacuum) 

to 100 (Fig. 5). Note that this model does not capture dispersion effects or explicit coordination 

which implies that apolar solvents may not be captured accurately. We observed that the reductant 
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strength power of the BI− significantly decreases with increasing polarity of the solvent, which is 

a stabilizing factor for charged molecules. For example, the redox potential of the couples BI−/BI● 

derived from 1 and 3 shifts from −2.42 and −2.92 V in tBuOMe (ε = 4.5) to −1.48 and −2.15 V in 

water (ε = 78.4). Therefore, at first glance, we could assume that oxidative catalysis involving BI−s 

should be favored by non-polar solvents, but this is not necessarily the case, as evidenced by recent 

work by Ohmiya and coworkers.24 They reported the arylacylation of styrene in DMSO/H2O, with 

phenyl iodide as an oxidant (Epa = −2.69 V in CH3CN), and thiazol-2-ylidene 1 as a catalyst, the 

BI− of which has a reported E1/2 = -1.43 V in CH3CN. To rationalize this thermodynamically 

unfavorable reduction, they cite the previous work by Saveant and coworkers25 and wrote “the 

small reorganization energy of the enolate form of the Breslow intermediate and the fast mesolytic 

cleavage of the C(sp2)–I bond makes the pathway kinetically feasible”. Interestingly, our 

calculations show that although the redox potentials of BI−s increase with solvent polarity, the 

redox potential of PhI (PhI -> Ph● + I-) increases at a higher rate. This is mainly due to the larger 

ion size of the BI− compared to I-; the latter being better stabilized by polar solvents. Consequently, 

the reaction becomes thermodynamically favorable, as shown by G which decreases from −0.71 

in tBuOMe to −12.63 kcal∙mol−1 in water for 1 (Fig. 5, top). In the case of carbene 3, the G 

changes from −3.81 in tBuOMe to −19.35 kcal∙mol−1 in water (Fig. 5, bottom). Due to the higher 

reducing power of MIC 3 compared to thiazol-2-ylidene 1, it is not surprising that the former is 

able to promote the arylacylation of styrene in tBuOMe under milder conditions11 than those 

reported for thiazol-2-ylidene 1 in water.24 
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Figure 5. The thermodynamic feasibility of PhI reduction by BI− responds differently with 

different carbenes which is illustrated for 1 (left) and 3 (right) with the corresponding redox 

potentials and the redox reaction’s G. 

Regarding the role of the cation, we limited our study to alkali metals (Li, Na, K and Cs) because 

of their predominant use as countercation of the base in oxidative organocatalysis. The salts were 

modelled, and a Boltzmann two-state distribution was used to predict the respective equilibrium 

position of the association/dissociation (BI−M+ ⇄ BI− + M+). We used the 1/ dependency of the 

employed solvation model to inter- and extrapolate from three explicitly computed solvation 

energies (in CH3CN  = 37.5, THF  = 7.6, and tBuOMe  = 4.5). Unsurprisingly, we found that 

in polar solvents, the role of the cation is minimal due to the solvent-induced BI−/M+ separation. 

In contrast, in non-polar solvents, the smaller cations significantly increase the redox potential of 

BI−M+ (Fig. 6). Therefore, large and weakly coordinating cations are beneficial in a non-polar 

medium. 
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Figure 6. Influence of the cation (Li, N, K, Cs) on the first reduction potential of BI−M+ salts 

derived from carbenes 1 (left) and 3 (right) with the solvent polarity. 

Formation of the deprotonated Breslow Intermediate (BI−). The initial step of the catalytic 

cycle in carbene oxidative organocatalysis is the deprotonation of the carbene-conjugate acid. Our 

results, combined with those found in the literature, suggest that even carbonates are basic enough 

for all carbene precursors, provided that an aldehyde is present to shift the equilibrium.24 

The carbene must be nucleophilic enough to react with benzaldehyde in order to obtain the 

primary form zwitterionic adduct BIZWIT. We found this step to be endergonic with all carbenes 

1–10 (Gs ranging from +3.7 to +18.2 kcal∙mol−1), but if we combine this process with the 

tautomerization into BI or BIKETO, the free enthalpies range from -15.0 (7) to +11.6 kcal∙mol−1 

(10), suggesting that this chemical transformation should be achievable at room temperature with 

all carbenes 1–10. Note that the BIKETO tautomer is rarely considered, although it has been 

observed experimentally. Berkessel and coworkers 26 have reported the rearrangement of BI to 

BIKETO
 with NHCs of types 5 and 6, and our group has shown that the BIKETO tautomer was the 

thermodynamic product when cyclic (alkyl)(amino)carbenes27 were reacted with benzaldehyde. 28 
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We calculated the G for the deprotonation of any tautomer of Breslow intermediates using 

tBuOK as a base and acetonitrile as the solvent. This process is exergonic for carbenes 1-10 (up to 

G = -24.7 kcal∙mol−1 for thiazol-2-ylidene 1).  

Coupling of BI• with organic radicals. It is well understood that radical coupling is 

thermodynamically favorable when both radicals have similar singly occupied molecular orbital 

(SOMO) energies. We found that the SOMO levels of BI●s generated from carbenes 1–10 lie 

between −4.06 (7) and −2.65 eV (8), and therefore they are electron-rich radicals (Fig. 7). The 

BI●s derived from the most exploited thiazol-2-ylidene 1 and 1,2,4-triazolylidene 2 are among the 

least electron-rich of the series (−3.43 and −3.29 eV, respectively). Those derived from carbenes 

3–5, 8 and 9 are the most electron-rich examples (> −2.96 eV). The SOMO energy level of BI●s 

readily explains the type of coupling partners which have been successfully and unsuccessfully 

used experimentally thus far. Tertiary alkyl radicals (tBu : −3.66 eV) work very well, but phenyl 

radicals are far too electron-poor (−5.53 eV) to directly couple with BI●s. However, Ph● can add 

to carbon-carbon double bonds, such as in styrene, generating a rich benzylic 1,2-diphenylethyl 

radical (−4.12 eV), which can couple with BI●s. This is the concept of radical relay, which has 

been successfully used experimentally.11, 24, 8g Based on the calculated SOMO energy levels, 

further promising candidates are iPr• (−3.99 eV), benzyl• (−4.35 eV), and radicals in -position of 

an heteroatom lone pair such as EtOCH•CH3 (−3.31 eV). Note also that it is easy to tune the redox 

potential of some of the BI●s, especially those for which an electron-withdrawing group can be 

placed in -position of the carbene center. A good example are the MIC-derived BI●s. When 

replacing the phenyl group on the carbon atom of 3 by COOMe, the SOMO energy level decreases 

from -2.85 eV to -3.23 eV. 
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Figure 7. SOMO energy levels of BI• derived from carbenes 1-10. 

The radical-radical coupling step is also probably the most challenging step in carbene oxidative 

organocatalysis from a steric standpoint. We saw this e.g. in the MIC-catalyzed arylacylation of 

styrenes, where a Ph-substituent next to the carbene-site almost entirely suppressed the reaction.11 

Outside of their early discovery and affordable production, a major reason for the success of NHCs 

like 5 and 6 as ligands in transition metal catalysis is their large steric bulk which improves the 

reductive elimination step. In contrast, in carbene oxidative organocatalysis, steric bulk hampers 

the efficiency of the radical-radical coupling step, which can explain the superiority of 1 and 3. To 

evaluate the steric demands associated with the BI●s, we computed their buried volumes (Vbur),
 29 

a technique usually applied to NHC transition metal complexes.30 The Vbur was measured within a 

sphere of a 3.5 Å radius centered at the carbonyl carbon. Topographic steric maps show the large 

difference between BI●s derived from thiazol-2-ylidene 1 (1-BI●) and imidazolylidene 5 (5-BI●) 

in the amount of steric protection (Fig. 8). Carbenes known to promote oxidative organocatalytic 
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reactions lead to BI● with buried volumes below 70%. In the case of 3, substituting the Dipp groups 

on N atoms with Ph groups and the Ph on the carbon atom with an H atom decreases the Vbur from 

66 to 52 %. In this context, aNHC 4, which is also stable with a hydrogen on the alpha-carbon 

seems particularly promising, yielding Vbur of 54% with Ph groups in all the other positions. 

 

Figure 8. A: Steric maps of 1-BI● and 5-BI●; B: Buried volumes of BI• derived from carbenes 1-

10. 

All carbenes 1-10 are nucleophilic enough to react with benzaldehyde to give the corresponding 

BIs. However, according to the HOMO energies, the typically used carbenes 1 and 2 are the least 

nucleophilic of the series, and thus the other carbenes could possibly allow for the use of less 

electrophilic partners than aryl aldehydes. The deprotonation of the BIs is exergonic in all cases, 

and thus is not a hurdle. From the calculated values of the first oxidation potential of BI− derived 

from carbenes 1-10, it clearly appears that, apart from the diamidocarbene 7, all the others are 

more reducing than thiazol-2-ylidene 1 and the 1,2,4-triazolylidene 2. We observed that the 

reducing power of BI− significantly decreases with increasing polarity of the solvent. At first 

glance, this could imply that oxidative catalysis should be favored by non-polar solvents, but we 

found, with PhI as an example, that the redox potential of the oxidant can increase at a higher rate, 
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and thus can facilitate the reaction. The cation, associated with the base used to deprotonate the 

conjugate acid of the carbenes, also plays an important role when a non-polar solvent is used; large 

and weakly coordinating cations such as Cs+ are beneficial. The radical-radical coupling step is 

probably the most challenging step in carbene oxidative organocatalysis due to both electronic and 

steric constraints. According to the calculated SOMO energy level, all the BI●s derived from 

carbenes 1-10 are electron-rich, which readily explains the type of coupling partners which have 

been successfully and unsuccessfully used so far experimentally. Among radicals which have not 

yet been used, we found iPr●, tolyl●, and radicals in -position of a heteroatom lone pair should 

work. Importantly, the range of the promising radical candidates could be expanded by tuning the 

redox potential of BI●s. This can be readily accomplished for carbenes in which an electron-

withdrawing group can be placed in -position of the carbene center; MIC 3 and aNHC 4 are 

excellent candidates. Steric bulk can also hamper the efficiency of the radical-radical coupling 

step, which can explain the superiority of 1 and 3 over imidazol-2-ylidenes 5 and imidazolin-2-

ylidenes 6, which require bulky substituents on both nitrogen atoms for their stability. In this 

context, MIC 3 and aNHC 4, which are stable with a hydrogen on the carbon  to the carbene 

center, appear particularly promising. 
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