
HAL Id: hal-04286895
https://cnrs.hal.science/hal-04286895v1

Submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lower bounds on the state complexity of population
protocols

Philipp Czerner, Javier Esparza, Jérôme Leroux

To cite this version:
Philipp Czerner, Javier Esparza, Jérôme Leroux. Lower bounds on the state complexity of population
protocols. Distributed Computing, 2023, 36 (3), pp.209-218. �10.1007/s00446-023-00450-4�. �hal-
04286895�

https://cnrs.hal.science/hal-04286895v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Distributed Computing (2023) 36:209–218
https://doi.org/10.1007/s00446-023-00450-4

Lower bounds on the state complexity of population protocols

Philipp Czerner1 · Javier Esparza1 · Jérôme Leroux2

Received: 29 November 2021 / Accepted: 25 April 2023 / Published online: 15 June 2023
© The Author(s) 2023

Abstract
Population protocols are a model of computation in which an arbitrary number of indistinguishable finite-state agents interact
in pairs. The goal of the agents is to decide by stable consensus whether their initial global configuration satisfies a given
property, specified as a predicate on the set of configurations. The state complexity of a predicate is the number of states of a
smallest protocol that computes it. Previous work by Blondin et al. has shown that the counting predicates x ≥ η have state
complexityO(log η) for leaderless protocols andO(log log η) for protocols with leaders. We obtain the first non-trivial lower
bounds: the state complexity of x ≥ η is �(log log η) for leaderless protocols, and the inverse of a non-elementary function
for protocols with leaders.

Keywords Population protocols · State complexity

1 Introduction

Population protocols are a model of computation in which
an arbitrary number of indistinguishable finite-state agents
interact in pairs to decide if their initial global configuration
satisfies a given property. Population protocols were intro-
duced in [5, 6] to study the theoretical properties networks
ofmobile sensors with very limited computational resources,
but they are also very strongly related to chemical reaction
networks, a discrete model of chemistry in which agents are
molecules that change their states due to collisions.

Population protocols decide a property by stable con-
sensus. Each state of an agent is assigned a binary output
(yes/no). In a correct protocol, all agents eventually reach
the set of states whose output is the correct answer to the
question “did our initial configuration satisfy the property?”,
and stay in it forever. An example of a property decidable by
population protocols is majority: initially agents are in one of
two initial states, say A and B, and the property to be decided

B Philipp Czerner
czerner@in.tum.de

Javier Esparza
esparza@in.tum.de

Jérôme Leroux
jerome.leroux@labri.fr

1 Department of Computer Science, CIT School, Technical
University of Munich, Munich, Germany

2 LaBRI, University of Bordeaux, CNRS, Bordeaux, France

is whether the number of agents in A is larger than the num-
ber of agents in B. In a seminal paper, Angluin et al. showed
that population protocols can decide exactly the properties
expressible in Presburger arithmetic, the first-order theory of
addition [8].

Assume that at each step a pair of agents is selected
uniformly at random and allowed to interact. The parallel
runtime is defined as the expected number of interactions
until a stable consensus is reached (i.e. until the property is
decided), divided by the number of agents. Even though the
parallel runtime is computed using a discrete model, under
reasonable and commonly accepted assumptions the result
coincides with the runtime of a continuous-time stochastic
model.Many papers have investigated the parallel runtime of
population protocols, and several landmark results have been
obtained. In [6] it was shown that every Presburger property
can be decided in O(n log n) parallel time, where n is the
number of agents, and [7] showed that population protocols
with a fixed number of leaders can compute all Presburger
predicates in polylogarithmic parallel time. (Loosely speak-
ing, leaders are auxiliary agents that do not form part of the
population of “normal” agents, but can interact with them
to help them decide the property.) More recent results have
studied protocols for majority and leader election in which
the number of states grows with the number of agents, and
shown that polylogarithmic time is achievable by protocols
without leaders, even for very slow growth functions, see e.g.
[2–4, 16, 19].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-023-00450-4&domain=pdf
http://orcid.org/0000-0002-1786-9592
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0002-7214-9467


210 P. Czerner et al.

However, many protocols have a high number of states.
For example, a quick estimate shows that the fast protocol
for majority implicitly described in [7] has tens of thou-
sands of states. This is an obstacle to implementations of
protocols in chemistry, where the number of states corre-
sponds to the number of chemical species participating in
the reactions. The number of states is also important because
it plays the role of memory in sequential computational mod-
els; indeed, the total memory available to a protocol is the
logarithm of the number of states multiplied by the number
of agents. Despite these facts, the state complexity of a Pres-
burger property, defined as the minimal number of states of
any protocol deciding the property, has received compara-
tively little attention1. In [11, 12] Blondin et al. have shown
that every predicate representable by a boolean combina-
tion of threshold and modulo constraints (every Presburger
formula can be put into this form), with numbers encoded
in binary, can be decided by a protocol with polynomially
many states in the length of the formula. In particular, it is
not difficult to see that every property of the form x ≥ η,
stating that the number of agents is at least η, can be decided
by a leaderless protocol with O(log η) states. A theorem of
[11] also proves the existence of an infinite family of thresh-
olds η such that x ≥ η can be decided by a protocol (with
leaders) having O(log log η) states. However, to the best of
our knowledge there exist no lower bounds on the state com-
plexity, i.e. bounds showing that a protocol for x ≥ η needs
�( f (η)) states for some function f . This question, which
was left open in [12], is notoriously hard due to its relation
to fundamental questions in the theory of Vector Addition
Systems.

In this paper we first show that every protocol, with or
without leaders, needs a number of states that, roughly speak-
ing, grows like the inverse Ackermann function, and then
prove our main result: every leaderless protocol for x ≥ η

needs �(log log η) states. The proof of the first bound relies
on results on the maximal length of controlled antichains of
N
d , a topic in combinatorics with a long tradition in the study

of Vector Addition Systems and other models, see e.g. [1, 9,
18, 23, 26]. The double logarithmic bound follows from Pot-
tier’s small basis theorem, a useful result of the theory of
Diophantine equations [24].

The paper is organised as follows. Section2 introduces
population protocols, the state complexity function, and its
inverse, the busy beaver function, which assigns to a number
of states n the largest η such that a protocol with n states

1 Notice that the time-space trade-off results of [2–4, 16, 19] refer to a
more general model in which the number of states of a protocol grows
with the number n of agents; in other words, a property is decided by
a family of protocols, one for each value of n. Trade-off results bound
the growth rate needed to compute a predicate within a given time. We
study the minimal number of states of a single protocol that decides the
property for all n.

decides x ≥ η. Instead of lower bounds on state complex-
ity, we present upper bounds on the busy beaver function for
convenience. Section3 presents some results on the math-
ematical structure of stable sets of configurations that are
used throughout the paper. Section4 shows anAckermannian
upper bound on the busy beaver function, valid for protocols
with or without leaders, and explains why this very large
bound might be optimal. Section5 gives a triple exponen-
tial upper bound on the busy beaver function for leaderless
protocols.

2 Population protocols and state complexity

2.1 Mathematical preliminaries

For sets A, B we write AB to denote the set of functions
f : B → A. If B is finitewe call the elements ofNB multisets
over B.We sometimeswritemultisets using set-like notation,
e.g. �a, b, b� and �a, 2 · b� denote the multiset m such that
m(a) = 1, m(b) = 2 and m(c) = 0 for every c ∈ B\{a, b}.
Given a multiset m ∈ N

B and B ′ ⊆ B, we define m(B ′) :=∑
b∈B′ m(b). The size of m is |m| := m(B); in other words,

the total number of elements ofm. The support ofm is the set
�m� = {b ∈ B | mb) > 0}. Abusing language we identify
an element b ∈ B with the one-element multiset containing
it, i.e. with the multiset m ∈ N

B given by m(b) = 1 and
m(b′) = 0 for b′ �= b.

We call the elements of Z
B vectors over B of dimension

|B|. Observe that every multiset is also a vector. Arithmetic
operations on vectors in Z

B are defined as usual, extending
the vectors with zeroes if necessary. For example, if B ′ ⊆ B,
u ∈ Z

B , and v ∈ Z
B′
, then u + v ∈ Z

B is defined by
(u + v)(b) = u(b) + v(b), where v(b) = 0 for every b ∈
B \B ′. For u, v ∈ Z

B wewrite u ≤ v if ui ≤ vi for all i ∈ B,
and u � v if u ≤ v and u �= v. Given a vector v ∈ Z

k , we
define ‖v‖1 = ∑k

i=1|vi | and ‖v‖∞ = maxki=1|vi |.

2.2 Population protocols

We recall the population protocol model of [6], with explicit
mention of leader agents. A population protocol is a tuple
P = (Q, T , L, X , I , O) where

• Q is a finite set of states;
• T ⊆ Q2 × Q2 is a set of transitions, where Q2 denotes

the set of multisets over q of size 2;
• L ∈ N

Q is the leader multiset;
• X is a finite set of input variables;
• I : X → Q is the input mapping; and
• O : Q → {0, 1} is the output mapping.

123



Lower bounds on the state complexity of population protocols 211

Wewrite p, q �→ p′, q ′ to denote that the pair (�p, q�, �p′, q ′�)
is a transition.We assume that for every multiset �p, q� there
is at least one transition of the form p, q �→ p′, q ′.
Inputs and configurations An input to P is a multiset m ∈
N

X such that |m| ≥ 2. A configuration is a multiset C ∈
N

Q such that |C | ≥ 2. Intuitively, a configuration represents
a population of agents where C(q) denotes the number of
agents in state q. The initial configuration for input m is
defined as

IC(m) := L +
∑

x∈X
m(x) · I (x).

When P has a unique input x , i.e. X = {x}, we abuse lan-
guage andwrite IC(i) instead of IC(i · x) to denote the initial
configuration for input i ∈ N.

The output O(C) of a configuration C is b if C(q) ≥ 1
implies O(q) = b for all q ∈ Q, and undefined otherwise.
So a population has output b if all agents have output b.
Executions A transition t = p, q �→ p′, q ′ is enabled at a
configuration C if C ≥ p + q, and disabled otherwise. As
|C | ≥ 2 by the definition of configuration, every configura-
tion enables at least one transition. If t is enabled atC , then it
can befired leading to configurationC ′ := C−p−q+p′+q ′,
which we denote C t−→ C ′. We write C −→ C ′ if C t−→ C ′
for some t ∈ T . Given a sequence σ = t1t2 . . . tn of tran-
sitions, we write C σ−→ C ′ if there exist configurations
C1,C2, . . . ,Cn such that C

t1−→ C1
t2−→ C2 · · ·Cn

tn−→ C ′, and
C ∗−→ C ′ if C σ−→ C ′ for some sequence σ ∈ T ∗. For every
set of transitions T ′ ⊆ T , we write C T ′−→ C ′ if C t−→ C ′ for
some t ∈ T ′; we write C T ′∗−−→ C ′, and say that C ′ is reach-
able from C , if C σ−→ C ′ for some sequence σ ∈ T ′∗. Given
a set C of configurations, C ∗−→ C denotes that C ∗−→ C ′ for
some C ′ ∈ C.

An execution is a sequence of configurations σ =
C0 C1 . . . such that Ci −→ Ci+1 for every i ∈ N. The
output O(σ ) of σ is b if there exist i ∈ N such that
O(Ci ) = O(Ci+1) = ... = b, otherwise O(σ ) is undefined.

Executions have themonotonicity property: IfC0 C1 C2 . . .

is an execution, then for every configuration D the sequence
(C0+C) (C1+C) (C2+C) . . . is an execution too.We often
say that a statement holds “by monotonicity”, meaning that
it is a consequence of the monotonicity property.
Computations An execution σ = C0 C1 . . . is fair if for
every configuration C the following holds: if C is reach-
able from Ci for infinitely many i ∈ N, then C j = C
for infinitely many j ∈ N. In other words, fairness ensures
that an execution cannot avoid a reachable configuration for-
ever. We say that a population protocol computes a predicate
ϕ : N

X → {0, 1} (or decides the property represented by the
predicate) if for every v ∈ N

X every fair execution σ start-
ing from IC(v) satisfies O(σ ) = ϕ(v). Two protocols are
equivalent if they compute the same predicate. It is known

that population protocols compute precisely the Presburger-
definable predicates [8].

Example 2.1 Let Pk = (Q, T , 0, {x}, I , O) be the protocol
where Q := {0, 1, 2, 3, ..., 2k}, I (x) := 1, O(a) = 1 iff
a = 2k , and the set T of transitions contains a, b �→ 0, a+b
if a + b < 2k , and a, b �→ 2k, 2k if a + b ≥ 2k for every
a, b ∈ Q. It is readily seen that Pk computes x ≥ 2k with
2k +1 states. Intuitively, each agent stores a number, initially
1. When two agents meet, one of them stores the sum of their
values and the other one stores 0, with sums capping at 2k .
Once an agent reaches 2k , all agents eventually get converted
to 2k .

Now, consider the protocol P ′
k = (Q′, T ′, 0, {x}, I ′, O ′),

where Q′ := {0, 20, 21, ..., 2k}, I ′(x) := 20, O ′(a) = 1 iff
a = 2k , and T ′ contains 2i , 2i �→ 0, 2i+1 for each 0 ≤ i < k,
and a, 2k �→ 2k, 2k for each a ∈ Q′. It is easy to see that
P ′
k also computes x ≥ 2k , but more succinctly; while Pk has

2k + 1 states, P ′
k has only k + 1 states.

Leaderless protocols A protocol P = (Q, T , L, X , I , O)

has a multiset L of leaders. If L = 0, then the protocol is
leaderless. Protocols with leaders and leaderless protocols
compute the same predicates [8]. For L = 0 we have

IC(λv + λ′v′) = λIC(v) + λ′IC(v′)

for all inputs v, v′ ∈ N
X and λ, λ′ ∈ N. In other words,

any linear combination of initial configurations with natural
coefficients is also an initial configuration.

2.3 State complexity of population protocols

Informally, the state complexity of a predicate is the minimal
number of states of the protocols that compute it. We would
like to define the state complexity function as the function
that assigns to a number � the maximum state complexity of
the predicates of size at most �. However, defining the size of
a predicate requires to fix a representation. Population proto-
cols compute exactly the predicates expressible in Presburger
arithmetic [8], and so there are at least three natural rep-
resentations: formulas of Presburger arithmetic, existential
formulas of Presburger arithmetic, and semilinear sets [20].
Since the translations between these representations involve
superexponential blow-ups, we focus on threshold predicates
of the form x ≥ η, for which the size of the predicate is the
size of η, independently of the representation. We choose to
encode numbers in unary, and so we define STATE(η) as the
number of states of the smallest protocol computing x ≥ η.

The inverse of STATE(η) is the function that assigns to
a number n the largest η such that a protocol with n states
computes x ≥ η. Recall that the busy beaver function assigns
to a number n the largest η such that a Turing machine with n
states started on a blank tape writes η consecutive ones on the

123



212 P. Czerner et al.

tape and terminates. Due to this analogy, we call the inverse
of the state complexity function the busy beaver function,
and call protocols computing predicates of the form x ≥ η

busy beaver protocols, or just busy beavers.

Definition 1 The busy beaver function BB : N → N is
defined as follows: BB(n) is the largest η ∈ N such that
the predicate x ≥ η is computed by some leaderless pro-
tocol with at most n states. The function BBL(n) is defined
analogously, but for general protocols, possibly with leaders.

In [12] Blondin et al. give lower bounds on the busy beaver
function:

Theorem 2.2 ([12]) For every number of states n: BB(n) ∈
�(2n) and BBL(n) ∈ �(22

n
).

However, to the best of our knowledge no upper bounds
have been given.

3 Mathematical structure of stable sets

We define the stable configurations of a protocol:

Definition 2 Let b ∈ {0, 1}. A configuration C óf a protocol
is b-stable if O(C ′) = b for every configurationC ′ reachable
from C . The set of b-stable configurations is denoted SCb,
and we let SC = SC0 ∪ SC1.

It follows easily from the definitions that a population
protocol computes a predicate ϕ : N

X → {0, 1} iff for every
input v and configuration C with IC(v)

∗−→ C the condition
C ∗−→ SCϕ(v) holds.

Moreover, given a protocol computing ϕ, ϕ(v) = b for an
input v iff IC(v)

∗−→ SCb.
A set C of configurations is downward closed if C ∈ C

and C ′ ≤ C implies C ′ ∈ C. The sets SC0, SC1, and SC are
downward closed:

Lemma 3.1 Let P be a protocol with n states. For every b ∈
{0, 1} the set SCb is downward closed.

Proof Assume C ∈ SCb and C ′ ≤ C . We prove C ′ ∈ SCb

by contradiction, so assume that C ′ ∗−→ C ′′ for some C ′′
such that O(C ′′) �= b. By monotonicity, C = C ′ + (C −
C ′) ∗−→ C ′′ + (C − C ′), and since O(C ′′) �= b we have
O(C ′′ + (C − C ′)) �= b. So C ′ ∈ SCb. ��

Given a downward closed set C, a pair (B, S), where B
is a configuration and S ⊆ Q, is a basis element of C if
B + N

S ⊆ C. A base of C is a finite set B of basis elements
such that C = ⋃

(B,S)∈B(B + N
S). We define the norm of a

basis element (B, S) as ‖(B, S)‖∞ := ‖B‖∞, and the norm
of a basis as the maximal norm of its elements.

It is well-known that every downward-closed set of con-
figurations has a base. We prove a stronger result: the sets
SC0, SC1, and SC have bases of small norm.

Lemma 3.2 Let P be a protocol with n states. Every C ∈
{SC0, SC1, SC} has a basis of norm at most 22(2n+1)!+1 with
at most ϑ(n) := 2(2n+2)! elements.

Proof For the bound on the norm, let β := 22(2n+1)! and fix
a b-stable configuration C . Let S := {q ∈ Q | C(q) > 2β},
and define B ≤ C as follows: B(i) := C(i) for i /∈ S and
B(i) := 2β for i ∈ S. Since B ≤ C andC is b-stable, so is B.
We show that (B, S) is a basis element of SCb, which proves
the result for SC0 and SC1. Assume the contrary. Then some
configuration C ′ ∈ B + N

S is not b-stable. So C ′ ∗−→ C ′′ for
some C ′′ satisfying C ′′(q) ≥ 1 for some state q ∈ Q with
O(q) �= b; we say that C ′′ covers q.

By Rackoff’s Theorem [25], C ′′ can be chosen so that
C ′ σ−→ C ′′ for a sequence σ of length 22

O(n)
; a more precise

bound is |σ | ≤ β (see Theorem 3.12.11 in [17]). Since a
transition moves at most two agents out of a given state, σ

moves at most 2β agents out of a state. So, by the definition
of B, the sequence σ is also executable from B, and also
leads to a configuration that covers q. But this contradicts
that B is b-stable. This concludes the proof for SC0 and SC1.
For SC, just observe that the union of the bases of SC0 and
SC1 is a basis of SC.

To prove the boundon the number of elements of the bases,
observe that the number of pairs (B, S) such that B has norm
at most k and S ⊆ Q is at most (k + 2)n . Indeed, for each
state q there are at most k + 2 possibilities: q ∈ S, or q /∈ S
and 0 ≤ B(q) ≤ k. So ϑ ≤ (22(2n+1)!+1 + 2)n ≤ 2(2n+2)!. ��

From now on we use the following terminology:

Definition 3 We call β := 22(2n+1)!+1 the small basis con-
stant for the protocolP . A small basis of SCb or SC is a basis
of norm at most β (guaranteed to exist by Lemma 3.2). Its
elements are called small basis elements.

4 A general upper bound on the busy beaver
function

We obtain a bound on the busy-beaver function BBL(n).
Fix a protocol Pn = (Q, T , L, {x}, I , O) with n states

computing a predicate x ≥ η. Observe that the unique input
state is x , and so IC(a) = a · x + L for every input a.

Observe that for every input i we have IC(i) ∗−→ Ci for
some configuration Ci ∈ SC, and so Ci ∈ Bi +N

Si for some
basis element (Bi , Si ) of SC. If i < η, then Ci ∈ SC0, and if
i ≥ η thenCi ∈ SC1. Lemma 4.1 below uses this observation
to provide a sufficient condition for an input a to lie above η.
The rest of the section shows that for a protocol with n states
some number a < f (n) satisfies the condition, where f (n) is
a function from the Fast Growing Hierarchy [18]. While the
function f (n) grows very fast, it is a recursive function. So,
contrary to Turing machines, the busy-beaver function for

123



Lower bounds on the state complexity of population protocols 213

population protocols does not grow faster than any recursive
function.

Lemma 4.1 If there exist a, b ∈ N, a basis element (B, S) of
SC, and configurations Da, Db ∈ N

S satisfying

1. IC(a)
∗−→ B + Da, and

2. b · x ∗−→ Db,

then η ≤ a.

Proof We first claim that IC(a + λb) ∗−→ B + Da + λDb

holds for every λ ≥ 0. Observe that

IC(a + λb) = (a + λb) · x + L = IC(a) + λb · x .

We have:

IC(a) + λb · x ∗−→ B + Da + λb · x by (1)
∗−→ B + Da + λDb by (2)

and the claim is proved.
Assume now that η > a, i.e.Pn rejects a. Since Da ∈ N

S ,
we have B + Da ∈ SC, and so B + Da ∈ SC0 because Pn

rejects a. Since Db ∈ N
S , we have B+Da +λDb ∈ B+N

S ,
and so B + Da + λDb ∈ SC0 for every λ ≥ 0. So Pn rejects
a+λb for every λ ≥ 0, contradicting thatP computes x ≥ η.

��
We now start our search for a number a satisfying the

conditions of Lemma4.1. Firstwe identify a sequence of con-
figurations C2,C3,C4 . . . of SC satisfying conditions close
to 1. and 2. in Lemma 4.1.

Lemma 4.2 There exists a sequence C2,C3,C4 . . . of config-
urations of SC satisfying:

1. IC(i) ∗−→ Ci for every i ≥ 2, and
2. Ci + j · x ∗−→ Ci+ j for every j ≥ 0.

Proof Since Pn computes x ≥ η, for every i ≥ 2 every
fair run ofP starting at IC(i) eventually reaches SC0 or SC1,
depending onwhether i < η or i ≥ η, and stays there forever.
We define C2,C3,C4, . . . as follows. First, we let C2 be any
configuration of SC reachable from IC(2). Then, for every
i ≥ 2, assume that Ci has already been defined and satisfies
IC(i) ∗−→ Ci . Observe that IC(i + 1) = IC(i) + x . Since
IC(i) ∗−→ Ci , we also have IC(i + 1) = IC(i)+x ∗−→ Ci +x .
This execution can be extended to a fair run,which eventually
reaches SC.We letCi+1 be any configuration of SC reachable
from Ci + x .

Let us show that C2,C3,C4 . . . satisfies1.and 2.. Prop-
erty 1. holds for C2 by definition, and for i ≥ 2 because
IC(i + 1) = IC(i) + x ∗−→ Ci + I (x) ∗−→ Ci+1. For property

2., bymonotonicity and the definition ofCi we have for every
2 ≤ i ≤ k:

Ci + j · x ∗−→ Ci+1 + ( j − 1) · x
∗−→ · · · ∗−→ Ci+ j−1 + x ∗−→ Ci+ j

��

We can now easily prove the existence of a number a
satisfying the conditions of Lemma 4.1.We start by recalling
Dickson’s Lemma:

Lemma 4.3 (Dickson’s lemma) For every infinite sequence
v1, v2, . . . of vectors of the same dimension there is an infinite
sequence i1 < i2 < . . . of indices such that vi1 ≤ vi2 ≤ . . ..

ByDickson’s lemma, the sequenceC2,C3,C4 . . .of configu-
rations of SC constructed in Lemma 4.2 contains an ordered
subsequence Ci1 ≤ Ci2 ≤ Ci3 · · · . Since SC has a finite
basis, by the pigeonhole principle there exist numbers k < �

and a basis element (B, S) such that Cik ,Ci� ∈ B + N
S .

Since Ck ≤ C�, we have Ck −C� ∈ N
S , and so we can take:

a := k; b := � − k; Da := Ck − B; Db := C� − Ck .

However, the proof of Dickson’s lemma is non-constructive,
and gives no bound on the size of a. To solve this problem
we observe that, in the terminology of [18], the sequence
C2 C3 · · · is linearly controlled: there is a linear control
function f : N → N satisfying |Ci | ≤ f (i). Indeed, since
I nCi ∗−→ Ci , we have |Ci | = |IC(i)| = |L| + i , and so we
can take f (n) = |L|+n. This allows us to use a result on lin-
early controlled sequences from [18]. Say a finite sequence
v0, v1, · · · , vs of vectors of the same dimension is good if
there are two indices 0 ≤ i1 < i2 ≤ s such that vi1 ≤ vi2 .
The maximal length of good linearly controlled sequences
has been studied in [9, 18, 23]. In particular, this lemma fol-
lows easily from results of [18]:

Lemma 4.4 [18] For every δ ∈ N and for every elementary
function g : N → N, there exists a function Fδ,g : N → N

at level Fω of the Fast Growing Hierarchy satisfying the
following property: For every infinite sequence v0, v1, v2 . . .

of vectors of N
n satisfying |vi | ≤ i + δ, there exist i0 < i1 <

. . . < ig(n) ≤ Fδ,g(n) such that vi0 ≤ vi1 ≤ · · · ≤ vg(n).

We do not need the exact definition of the Fast Growing
Hierarchy (see [18]); for our purposes it suffices to know that
the level Fω contains functions that, crudely speaking, grow
like the Ackermann function. From this lemma we obtain:

Theorem 4.5 Let Pn be a population protocol with n states
and � leaders computing a predicate x ≥ η for some η ≥ 2.
Then η < F�,ϑ (n), where ϑ(n) is the function of Lemma 3.2.

123



214 P. Czerner et al.

Proof By Lemma 4.4 there exist ϑ(n) + 1 indices i0 < i1 <

. . . < iϑ(n) ≤ F�,ϑ (n) such that Ci0 ≤ Ci1 ≤ · · · ≤ Ciϑ(n)
.

By the definition of ϑ and the pigeonhole principle, there
are indices k < � and a basis element (B, S) of SC0 such
that Cik ,Ci� ∈ B + N

S and Cik ≤ Ci� . By Lemma 4.1,
η ≤ ik ≤ F�,ϑ (n). ��

4.1 Is the bound optimal?

The function F�,ϑ (n) grows so fast that one can doubt that
the bound is even remotely close to optimal. However, recent
results show that this would be less strange than it seems. If
a protocol P computes a predicate x ≥ η, then η is the
smallest number such that IC(η)

∗−→ SC1. Therefore, letting
BBP(n) denote the busy beaver protocols with at most n
states, and letting SCP

1 and ICP denote the set SC1 and the
initial mapping of the protocol P , we obtain:

BBL(n) = max
P∈BBP(n)

min{i ∈ N | ∃C ∈ SCP
1 : ICP(i) ∗−→ C}

Consider now a deceptively similar function. Let All1 be the
set of configurations C such that O(C) = 1, i.e. all agents
are in states with ouput 1. Further, let PP(n) denote the set of
all protocols with alphabet X = {x}, possibly with leaders,
and n states. Notice that we include also the protocols that
do not compute any predicate. Define

f (n) = max
P∈PP(n)

min{i ∈ N | ∃C ∈ AllP1 : ICP(i) ∗−→ C}

Using recent results in Petri nets and Vector Addition Sys-
tems [14, 15, 21, 22] it is easy to prove that f (n) grows faster
than any primitive recursive function.2 However, a recent
result [10] by Balasubramanian et al. shows f (n) ∈ 2O(n)

for leaderless protocols.
These results suggest that a non-elementary bound on

BBL(n) might well be optimal. However, in the rest of the
paper we prove that this can only hold for population proto-
cols with leaders. We show BB(n) ∈ 22

O(n)
, i.e. leaderless

busy beaverswith n states can only compute predicates x ≥ η

for numbers η at most double exponential in n.

2 The paper [21] considers protocols with one leader, and studies the
problem of moving from a configuration with the leader in a state qin
and all other agents in another state rin , to a configuration with the
leader in a state q f and all other agents in state r f . Combined with [14,
15, 22], this shows that the smallest number of agents for which this
is possible grows faster than any elementary function in the number of
states of the protocol.

5 An upper bound for leaderless protocols

Fix a leaderless protocol Pn = (Q, T ,∅, {x}, I , O) with
|Q| = n states computing a predicate x ≥ η. Observe that
the unique input state is x , and so IC(a) = a·x for every input
a. We prove that η ≤ 2(2n+2)! ∈ 22

O(n)
. We first introduce

some well-known notions from the theory of Petri nets and
Vector Addition Systems.

5.1 Potentially realisable multisets of transitions

The displacement of a transition t = p, q �→ p′, q ′ is the
vector�t ∈ {−2,−1, 0, 1, 2}Q given by�t := p′+q ′− p−
q. Intuitively, �t (q) is the change in the number of agents
populating q caused by the execution of t . For example, if
Q = {p, q, r} and t = p, q �→ p, r we have �t (p) = 0,
�t (q) = −1, and�t (r) = 1. The displacement of a multiset
π ∈ N

T is defined as �π := ∑
t∈T π(t) · �t . We use the

following notation:

C π�⇒ C ′ denotes that C ′ = C + �π.

Intuitively, C π�⇒ C ′ states that if C enables some sequence
t1 t2 . . . tk ∈ T ∗ such that �t1, . . . , tk� = π , then the exe-
cution of σ leads to C ′. However, such a sequence may not
exist. We call the multiset �t1, . . . , tk� the Parikh mapping
of t1 t2 . . . tk .

Say a configurationC is j-saturated ifC(q) ≥ j for every
q ∈ Q, i.e. if it populates all states with at least j agents. We
have the following relations between σ−→ and π�⇒:

Lemma 5.1 (i) If C σ−→ C ′ then C π�⇒ C ′, where π is the
Parikh mapping of σ

(ii) If C π�⇒ C ′ and C is 2|π |-saturated, then C σ−→ C ′ for
any σ with Parikh mapping π .

Proof (i): Easy induction on |σ |.
(ii): By induction on |π |. The basis case π = ∅ is trivial.
Otherwise, let σ be any sequence with Parikh mapping π .
Since this sequence is non empty, it can be decomposed as
tσ ′ where t is a transition and σ ′ is a sequence with Parikh
mapping π ′ defined by π ′(t) = π(t) − 1 and π ′(t ′) = π(t ′)
for every t ′ �= t . As C is 2|π |-saturated, we have C t−→ C ′′
for some configurationC ′′. Further,C ′′ is 2|π ′|-saturated and
C ′′ π ′�⇒ C ′. By induction hypothesisC ′′ σ ′−→ C ′. It follows that
C σ−→ C ′, and we are done. ��
We introduce the set of potentially realisable multisets of
transitions of a protocol:

Definition 4 Amultiset π of transitions is potentially realis-
able if there are i ∈ N and C ∈ N

Q such that IC(i) π�⇒ C .

The reason for the name is as follows. If π is not potentially
realisable, then by Lemma 5.1(i) no sequence σ ∈ T ∗ with

123



Lower bounds on the state complexity of population protocols 215

Parikhmappingπ can be executed from any initial configura-
tion, and so π cannot be “realised”. In other words, potential
realisability is a necessary but not sufficient condition for the
existence of an execution that “realises” π .

5.2 Structure of the proof

We can now give a high-level view of the proof of the bound
η ≤ 2(2n+2)!. The starting point is a version of Lemma 4.1 in
which, crucially, the condition IC(b) ∗−→ Db is replaced by
the weaker IC(b) ∗�⇒ Db.

Lemma 5.2 If there exist a, b ∈ N, a basis element (B, S)

of SC, configurations Da, Db ∈ N
S, and a configuration D

satisfying

(i) IC(a)
∗−→ D ∗−→ B + Da, and

(ii) IC(b) π�⇒ Db for some π ∈ N
T such that D is 2|π |-

saturated,

then η ≤ a.

Proof We first claim that

IC(a + λb) ∗−→ B + Da + λDb

holds for every λ ≥ 0. To prove this, observe first that
IC(b) π�⇒ Db implies D + IC(b) π�⇒ D + Db. Since D is
2|π |-saturated so is D + IC(b), and, by Lemma 5.1(ii), we
have D + IC(b) σ−→ D + Db where σ is any sequence with
Parikh mapping π . With an induction on λ, we immediately
derive

D + λIC(b) σλ−→ D + λDb. (∗)

Since Pn is leaderless, IC(a + λb) = IC(a) + λIC(b)
holds, and:

IC(a) + λIC(b) ∗−→ D + λIC(b) by(i)
∗−→ D + λDb by(∗)
∗−→ B + Da + λDb by(i).

This proves the claim.
Assume now that η > a, i.e.Pn rejects a. Since Da, Db ∈

N
S ,wehave B+Da+λDb ∈ SC, and so B+Da+λDb ∈ SC0

for every λ ≥ 0. So, by the claim,Pn rejects a+λb for every
λ ≥ 0, contradicting that it computes x ≥ η. ��

In the next sections we show that a := 2(2n+2)! satisfies
the conditions of Lemma 5.2. We proceed in three steps:

(a) Section 5.3 proves that for every j ∈ N and inputa ≥ j3n

the initial configuration IC(a) can reach a j-saturated
configuration D. We remark that this result is only true
for leaderless protocols.

(b) Let S ⊆ Q. Section5.4 proves that IC(a)
∗�⇒ B + Da ,

for a ∈ N, Da ∈ N
S and a configuration B, implies

IC(b) ∗�⇒ Db for some b ∈ N, Db ∈ N
S , provided that a

is “large” relative to |B|.
(c) Section5.5 puts everything together, and gives the final

bound.

5.3 Reaching j-saturated configurations

Recall our assumption that for every state q ∈ Q there exists
an input iq such that IC(iq)

∗−→ Cq for some configurationCq

such that Cq(q) > 0. By monotonicity, we have IC(i) ∗−→ C
for the input i := ∑

q∈q iq and the 1-saturated configuration
C := ∑

q∈Q Cq . We show that we can choose i < 3n and

that IC(i) σ−→ C for some σ such that |σ | ≤ 3n . It follows
that for every j ∈ N the input j3n can reach a j-saturated
configuration by executing j times σ .

Lemma 5.3 Let C be a configuration satisfying x ∈ �C� ⊂
Q. There exists a transition p, q �→ p′, q ′ such that {p, q} ⊆
�C� and {p′, q ′} � �C�.

Proof Since �C� is strictly included in Q, there exist i ∈
N, a word σ ∈ T ∗, a configuration C ′ such that IC(i) σ−→
C ′ and �C ′� � �C�. Assume w.l.o.g. that σ has minimal
length. If σ = ε then �C ′� ⊆ {x} contradicting �C ′� � �C�.
So σ = σ ′t for some transition t = p, q �→ p′, q ′, and
IC(i) σ ′−→ C ′′ t−→ C ′ for some configurationC ′′. FromC ′′ t−→
C ′ we derive {p, q} ⊆ �C ′′� and �C ′� ⊆ �C ′′� ∪ {p′, q ′}. By
minimality of σ and |σ ′| < |σ |, we deduce that �C ′′� ⊆ �C�.
In particular {p, q} ⊆ �C�, and �C ′� ⊆ �C� ∪ {p′, q ′}. As
�C ′� � �C�, we deduce that {p′, q ′} � �C�. ��
Lemma 5.4 There exists a word σ ∈ T ∗, a 1-saturated con-
figuration C and a sequence σ of length at most 3n such that
IC(3n)

σ−→ C.

Proof We build a sequence σ0, σ1 . . . of words in T ∗ and a
non decreasing sequence C0,C1 . . . of configurations such
that for every j ≥ 0 we have (with the convention C−1 = 0)

• IC(3 j )
σ j−→ C j ;

• �C j−1� is saturated, or �C j−1� ⊂ �C j �, and
• |σ j | = (3 j − 1)/2.

Since Pn has n states, some C j with 0 ≤ j ≤ n is saturated.
The sequence is built inductively. ChooseC0 = IC(1) and

σ0 = ε. Assume that σ0, . . . , σk has been built. If Ck is satu-
rated, then chooseCk+1 := 3Ck and σk+1 := σ 3

k . AssumeCk

is not saturated. Since x ∈ �C1� we have x ∈ �Ck� ⊂ Q. By
Lemma 5.3 there exists a transition t = p, q �→ p′, q ′ such
that p, q ∈ �Ck� and {p′, q ′} � �Ck�. Since IC(3k) σk−→ Ck

and Pn is leaderless, we have IC(3k+1)
σ 3
k−→ 3Ck . Since

p, q ∈ �Ck�, transition t is enabled at 2Ck . We choose

123



216 P. Czerner et al.

Ck+1 := Ck + C ′
k where C ′

k is the configuration satisfying

2Ck
t−→ C ′

k . Now, just set σk+1 := σ 3
k t . ��

5.4 Reaching�-concentrated stable configurations

This section contains the core of the proof. We want to find
some b ∈ N and a configuration Db ∈ N

S with IC(b) ∗�⇒ Db,
where S ⊆ Q is given by a basis element (B, S). We start by
noting that any sequence IC(a)

∗−→ B+Da , againwith a ∈ N

and Da ∈ N
S , already fulfils this condition approximately if

a is large and (B, S) is a small basis element, i.e. B is “small”
relative to Da . The next lemma formalises this notion.

Definition 5 Let 0 < ε ≤ 1 and S ⊆ Q. A configuration C
is ε-concentrated in S if C(S) ≥ (1− ε)|C | or, equivalently,
C(Q\S) ≤ ε|C |.

Lemma 5.5 Let k ≥ 1, let a := knβ, where β is the con-
stant of Definition 3, and let D denote a configuration with
IC(a)

∗−→ D. There exists a small basis element (B, S) of
SC, and a Da ∈ N

S s.t.

1. IC(a)
∗−→ D ∗−→ B + Da, and

2. B + Da is
1
k -concentrated in S.

Proof As D is reachable from an input configuration, it can
reach a configuration B + Da , where Da ∈ N

S and (B, S) is
a small basis element of SC. The latter implies ‖B‖∞ ≤ β,
so we have |B| ≤ nβ = a/k = |B + Da |/k, and B + Da is
1
k -concentrated in S. ��

In the remainder of this section we use another small
basis theorem, Pottier’s small basis theorem for Diophantine
equations, to extend the above result: not only can we reach
ε-concentrated configurations for arbitrarily small ε > 0, we
can also potentially reach a 0-concentrated configuration, i.e.
a configuration in which all agents populate S.

For this, we observe that the potentially realisable mul-
tisets π (see Definition 4) are precisely the solutions of the
system of |Q| − 1 Diophantine equations over the variables
{π(t)}t∈T given by

∑

t∈T
π(t)�t (q) ≥ 0 for q ∈ Q \ {x}.

Let A · y ≥ 0 be a homogeneous system of linear Dio-
phantine inequalities, i.e. a solution is a vector m over the
natural numbers such that A ·m ≥ 0. A set B of solutions is a
basis if every solution is the sum of a multiset of solutions of
B. Formally, B is a basis if for every solution m, there exists
a multiset M ∈ N

B such that m = ∑
b∈B M(b) · b. It is easy

to see that every system has a finite basis. Pottier’s theorem
shows that it has a small basis:

Theorem 5.6 ([24]) Let A · y ≥ 0 be a system of e linear
Diophantine equations on v variables. There exists a basis
B ⊆ N

v of solutions such that for every m ∈ B:

‖m‖1 ≤
⎛

⎝1 + e
max
i=1

v∑

j=1

|ai j |
⎞

⎠

e

.

Since the potentially realisable multisets are the solutions
of a system of Diophantine equations, by applying Pottier’s
theorem we obtain:

Corollary 5.7 Let ξ := 2(2|T | + 1)|Q|. There exists a basis
of potentially realisable multisets such that every element π
of the basis satisfies |π | ≤ ξ/2. Moreover, IC(i) π�⇒ C for
some i ≤ ξ and some C such that C(Q) ≤ ξ and C(x) = 0.

Proof The potentially realisable multisets are precisely the
solutions of a system of |Q| − 1 Diophantine equations on
|T | variables. The matrix A of the system satisfies |ai j | =
|� j (qi )|, and so |ai j | ≤ 2 for every 1 ≤ i < |Q| and every
1 ≤ j ≤ |T |. The result follows from Theorem 5.6.

ForC(x) = 0, note that IC(i) π�⇒ C implies IC(i − C(x)) π�⇒
C − x · C(x). ��

Recall thatDefinition3 introduced the small basis constant
β. Analogously, we now introduce the Pottier constant:

Definition 6 We call ξ := 2(2|T |+1)|Q| thePottier constant
for the protocol P .

Remark 1 For a deterministic population protocol (i.e. a pro-
tocol such that for every pair of states there is at most one
transition) we could instead use ξ = 2(|Q| + 2)|Q|.

The following lemma is at the core of our result. Intu-
itively, it states that if some potentially realisable multiset
leads to a (1/ξ)-concentrated configuration in S, then some
small potentially realisablemultiset leads to a 0-concentrated
configuration in S.

Lemma 5.8 Let IC(i) ∗�⇒ C and S ⊆ Q. If C is (1/ξ)-
concentrated in S, then IC( j) θ�⇒ C ′ for some number j ,
potentially realisable multiset θ ∈ N

T , and configuration C ′
such that |θ | ≤ ξ/2, j ≤ ξ and C ′ is 0-concentrated on S,
i.e. C ′ ∈ N

S.

Proof If x /∈ S then we take θ as the empty multiset and are
done. Otherwise let l := C(x) and set i∗ := i − l and C∗ :=
C−l ·x . Clearly,C∗(S) < i∗/ξ follows fromC(S) < i/ξ . It
therefore suffices to prove the lemma in the case of C∗ = C
and i∗ = i , i.e. l = 0.

Since IC(i) ∗�⇒ C , we have IC(i) π�⇒ C for some poten-
tially realisable multiset π . By Corollary 5.7 there exist
potentially realisable multisets π1, . . . , πk ∈ N

T s.t. π =
π1 + · · · + πk , numbers i1, . . . , ik ∈ N and configurations
C1, . . . ,Ck (not necessarily distinct) such that

123



Lower bounds on the state complexity of population protocols 217

• i = ∑k
j=1 i j , π = ∑k

j=1 π j , and C = ∑k
j=1 C j .

• IC(i j )
π j�⇒ C j .

• i j ≤ ξ and C j (Q) ≤ ξ for j ∈ {1, .., k}.

Let J = { j ∈ {1, . . . , k} | i j > 0}. We have

i =
k∑

j=1

i j =
∑

j∈J

i j ≤ ξ · |J |.

Since i > ξ ·C(S) by hypothesis, we deduce that |J | > C(S).
Assume that C j (S) > 0 for every j ∈ J . Then C(S) =∑

j∈J C j (S) ≥ |J |, a contradiction. So C j (S) = 0 for some
j ∈ J , and we take θ := π j . ��

5.5 The upper bound

We have now obtained all the results needed for our final
theorem.

Theorem 5.9 LetPn be a leaderless population protocolwith
n states, and let β and ξ be the constants of Definition 3 and
Definition 6. If Pn computes a predicate x ≥ η, then

η ≤ ξnβ3n ≤ 2(2n+2)!.

Proof AssumePn computes x ≥ η.We first prove that η ≤ a
holds for a := ξnβ3n . It suffices to show that a satisfies the
conditions of Lemma 5.2 for a suitable choice of b, (B, S),
Da , Db, D, and π .

Lemma 5.4 shows that a 1-saturated configuration C with
IC(3n) → C exists. Choose D := ξnβ · C . Observe that D
is (ξnβ)-saturated and reachable from IC(a).

Now choose (B, S) and Da as the configurations and basis
element of Lemma 5.5, where k := ξ3n and D is chosen as
above. With this choice of k Lemma 5.5 yields:

1 IC(a)
∗−→ D ∗−→ B + Da ; and

2 B + Da is (1/ξ)-concentrated in S.

(Regarding 2., note that (1/ξ3n)-concentrated implies (1/ξ)-
concentrated.) Property 1. coincides with condition (i) of
Lemma 5.2. Finally, we choose b, Db ∈ N

S , and π so that
condition (ii) of Lemma 5.2 holds as well. In particular, b,
Db, and π must satisfy:

IC(b) π�⇒ Dbfor someπs.t.Dis2|π |-saturated.

By 1. we have IC(a)
∗�⇒ B + Da . Applying Lemma 5.8 with

i := a and C := B + Da , we conclude that IC( j) θ�⇒ C ′
for some 0 < j ≤ ξ , some multiset θ such that |θ | ≤ ξ/2,
and some configurationC ′ 0-concentrated in S, i.e. satisfying
C ′(Q \ S) = 0.

Using b := j , π := θ , and Db := C ′, we have IC(b) π�⇒
Db, which fulfils condition (ii) of Lemma5.2 aswell. Further,
since D is (nβξ)-saturated and nβξ ≥ 2(ξ/2) ≥ 2|π |, the
configuration D is 2|π |-saturated. Applying the lemma we
get η ≤ a, concluding the first part of our proof.

We now show that ξnβ3n ≤ 2(2n+2)!. Since ξ = 2(2|T |+
1)|Q| and β = 22(2n+1)!+1, we deduce (for n ≥ 2):

η ≤ 2 (2|T | + 1)n n 22(2n+1)!+1 3n

≤ 4 (2n4 + 1)n n 22(2n+1)! 22n

≤ 4 · 3nn4nn22(2n+1)! 22n

≤ 4 · 3nn4n+122(2n+1)! 22n

and so

2η ≤ 2 + 2n + (4n + 1) log2 n + 2(2n + 1)! + 2n

≤ 2(2n + 1)! + (2n + 1)(2 + 2 log2 n)

≤ (2n + 2)!

Therefore η ≤ 2(2n+2)!. ��

6 Conclusion

We have obtained the first non-trivial lower bounds on the
state complexity of population protocols computing count-
ing predicates of the form x ≥ η, a fundamental question
about the model. The obvious open problems are to close the
gap between the �(log log η) lower bound and the O(log η)

upper bound for the leaderless case, and the even larger gap
between O(log log η) and (roughly speaking), the �(α(η))

lower bound for protocols with leaders, where α(η) is the
inverse of the Ackermann function.

Acknowledgements This work was supported by an ERC Advanced
Grant (787367: PaVeS), by the Research Training Network of the
Deutsche Forschungsgemeinschaft (DFG) (378803395: ConVeY), and
by the grant ANR-17-CE40-0028 of the French National Research
Agency ANR (project BRAVAS).A previous version of this paper
appeared in the proceedings of PODC 2021 [13].

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

123



218 P. Czerner et al.

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abriola, S., Figueira, S., Senno, G.: Linearizing well quasi-orders
and bounding the length of bad sequences. Theor. Comput. Sci.
603, 3–22 (2015)

2. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.:
Time-space trade-offs in population protocols. In: SODA, pp.
2560–2579. SIAM, Philadelphia (2017)

3. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal majority in
population protocols. In: SODA, pp. 2221–2239. SIAM, Philadel-
phia (2018)

4. Alistarh, D., Gelashvili, R.: Recent algorithmic advances in popu-
lation protocols. SIGACT News 49(3), 63–73 (2018)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
In: PODC, pp 290–299. ACM (2004)

6. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
Distrib. Comput. 18(4), 235–253 (2006)

7. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by pop-
ulation protocols with a leader. Distrib. Comput. 21(3), 183–199
(2008)

8. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The compu-
tational power of population protocols. Distrib. Comput. 20(4),
279–304 (2007)

9. Balasubramanian, A.R.: Complexity of controlled bad sequences
over finite sets of N

d . In: LICS, pp. 130–140. ACM (2020)
10. Balasubramanian,A.R., Esparza, J., Raskin,M.A.: Finding cut-offs

in leaderless rendez-vous protocols is easy. In: FoSSaCS. Lecture
Notes inComputer Science, vol. 12650. Springer, NewYork (2021)

11. Blondin,M.,Esparza, J.,Genest,B.,Helfrich,M., Jaax, S.: Succinct
population protocols for Presburger arithmetic. In: STACS, vol.
154, pp. 40:1–40:15. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020)

12. Blondin, M., Esparza, J., Jaax, S.: Large flocks of small birds:
On the minimal size of population protocols. In STACS, vol. 96,
pp. 16:1–16:14, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2018)

13. Czerner, P., Esparza, J.: Lower bounds on the state complexity of
population protocols. In: PODC, pp. 45–54. ACM (2021)

14. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.:
The reachability problem for Petri nets is not elementary. J. ACM
68(1), 7:1-7:28 (2021)

15. Czerwinski, W., Orlikowski, L.: Reachability in vector addition
systems is Ackermann-complete. CoRR, arxiv:2104.13866 (2021)

16. Elsässer, R., Radzik, T.: Recent results in population protocols for
exact majority and leader election. Bull. EATCS 126 (2018)

17. Esparza, J.: Petri nets lecture notes (2019). https://archive.model.
in.tum.de/um/courses/petri/SS2019/PNSkript.pdf

18. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Acker-
mannian and primitive-recursive bounds with Dickson’s lemma.
In: LICS, pp. 269–278. IEEE Computer Society (2011)

19. Gąsieniec, L., Stachowiak, G.: Enhanced phase clocks, population
protocols, and fast space optimal leader election. J. ACM 68(1),
1–12 (2020)

20. Haase, C.: A survival guide to Presburger arithmetic. ACM
SIGLOG News 5(3), 67–82 (2018)

21. Horn, F., Sangnier, A.: Deciding the existence of cut-off in
parameterized rendez-vous networks. In: CONCUR, vol. 171, pp.
46:1–46:16. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2020)

22. Leroux, J.: The reachability problem for Petri nets is not primitive
recursive. CoRR arxiv:2104.12695 (2021)

23. McAloon, K.: Petri nets and large finite sets. Theor. Comput. Sci.
32, 173–183 (1984)

24. Pottier, L.: Minimal solutions of linear diophantine systems:
bounds and algorithms. In: RTA. Lecture Notes in Computer Sci-
ence, vol. 488, pp. 162–173. New York, Springer (1991)

25. Rackoff, C.: The covering and boundedness problems for vector
addition systems. Theor. Comput. Sci. 6, 223–231 (1978)

26. Schmitz, S.: Complexity hierarchies beyond elementary. ACM
Trans. Comput. Theory 8(1), 3;1-3:36 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.13866
https://archive.model.in.tum.de/um/courses/petri/SS2019/PNSkript.pdf
https://archive.model.in.tum.de/um/courses/petri/SS2019/PNSkript.pdf
http://arxiv.org/abs/2104.12695

	Lower bounds on the state complexity of population protocols
	Abstract
	1 Introduction
	2 Population protocols and state complexity
	2.1 Mathematical preliminaries
	2.2 Population protocols
	2.3 State complexity of population protocols

	3 Mathematical structure of stable sets
	4 A general upper bound on the busy beaver function
	4.1 Is the bound optimal?

	5 An upper bound for leaderless protocols
	5.1 Potentially realisable multisets of transitions
	5.2 Structure of the proof
	5.3 Reaching j-saturated configurations
	5.4 Reaching ε-concentrated stable configurations
	5.5 The upper bound

	6 Conclusion
	Acknowledgements
	References




