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In this paper, we introduce k-Young tableaux and their g-indices.

We first present certain expansions of (c(x)D) n in terms of inversion sequences as well as k-Young tableaux, where c(x) is a smooth function in the indeterminate x and D is the derivative with respect to x. By studying the connections between k-Young tableaux and standard Young tableaux, we then present combinatorial interpretations of Eulerian polynomials, second-order Eulerian polynomials, and André polynomials in terms of standard Young tableaux.

Introduction

Notation and preliminaries.

The Eulerian polynomials A n (x) can be defined by the summation formula (1.1)

x d dx n 1 1 -x = ∞ k=0 k n x k = A n (x) (1 -x) n+1 .
It is well known (see [START_REF] Hwang | An asymptotic distribution theory for Eulerian recurrences with applications[END_REF][START_REF] Ma | Stirling permutation codes[END_REF] and references therein) that

A n (x) = n i=0 n i x i = π∈Sn x des (π) ,
where n i is called Eulerian number and S n is the set of all permutations of the set [n] = {1, 2, . . . , n}. For π = π(1)π(2) • • • π(n) ∈ S n , the number of descents of π is defined by des (π) = #{i ∈ [n] | π(i) > π(i + 1)}, where we set π(n + 1) = 0.

Let [n] k = {1 k , 2 k , . . . , n k } be a multiset, where each i ∈ [n] appears k times. A k-Stirling permutation of order n is a permutation of the multiset [n] k such that for each i, 1 ⩽ i ⩽ n, all entries between any two occurrences of i are at least i. Let Q n (k) be the set of all k-Stirling permutations of order n. When k = 2, the set Q n (k) reduces to Q n , which is the set of ordinary Stirling permutations of the multiset

[n] 2 . For σ = σ 1 σ 2 • • • σ kn ∈ Q n (k), an index i ∈ [kn] is a descent of σ if σ i > σ i+1 or i = kn.
Let des (σ) be the number of descents of σ. The k-order Eulerian polynomials are defined by

C n (x; k) = σ∈Qn(k)
x des (π) .

Following [10, Lemma 1], the polynomials C n (x; k) satisfy the recurrence relation

(1.2) C n+1 (x; k) = (kn + 1)xC n (x; k) + x(1 -x) d dx C n (x; k), C 0 (x; k) = 1.
In particular, C n (x; 1) = A n (x). When k = 2, the polynomials C n (x; k) reduce to the second-order Eulerian polynomials C n (x) (see [START_REF] Chen | Context-free grammars for permutations and increasing trees[END_REF][START_REF] Ma | Stirling permutation codes[END_REF]). In [START_REF] Carlitz | The coefficients in an asymptotic expansion[END_REF], Carlitz found that

∞ k=0 n + k k x k = C n (x) (1 -x) 2n+1 ,
where n k are the Stirling numbers of the second kind, i.e., the number of set partitions of [n] with k blocks.

Consider the polynomials F n := F n (x; α, β, a, b, c) defined as follows:

a + bx + cx 2 (1 -x) α d dx n 1 (1 -x) β = F n (1 -x) n+nα+β .
It is routine to verify that F 0 = 1 and for n ⩾ 0, one has (1.3)

F n+1 = (n + nα + β)(a + bx + cx 2 )F n + (a + bx + cx 2 )(1 -x) d dx F n .
Comparing (1.2) with (1.3), we get the following result.

Proposition 1.1. Let k be a nonnegative integer. For n ⩾ 1, we have

(1.4) x (1 -x) k d dx n 1 1 -x = C n (x; k + 1) (1 -x) n+kn+1 .
In this paper, we always let c := c(x) and f := f (x) be two smooth functions in the indeterminate x, and set D = d dx . The expansions of (cD) n f have been studied as early as 1823 by Scherk [1, Appendix A]. He found that

(xD) n = n k=0 n k x k D k .
In the sequel, we adopt the convention that

f k = D k f and c k = D k c. Note that f 0 = f , c 0 = c, (cD)f = (c)f 1 , (cD) 2 f = (cc 1 )f 1 + (c 2 )f 2 . For n ⩾ 1, we define (1.5) (cD) n f = n k=1 A n,k f k . Note that A n,k = A n,k (c, c 1 , . . . , c n-k ) is a function of c, c 1 , . . . , c n-k . In particular, A 1,1 = c, A 2,1 = cc 1 and A 2,2 = c 2 . By induction, it is easy to verify that A n+1,1 = cDA n,1 , A n,n = c n and for 2 ⩽ k ⩽ n, we have (1.6) A n+1,k = cA n,k-1 + cDA n,k .
The numbers appearing in A n,k as coefficients can be found in [16, A139605]. We refer the reader to [START_REF] Briand | Normally ordered forms of powers of differential operators and their combinatorics[END_REF][START_REF] Mijajlović | Some recurrence formulas related to the differential operator θD[END_REF] for various examples on the expansions of (cD) n .

Motivation and the organization of the paper.

In 1973, Comtet obtained the following result by induction.

Proposition 1.2 ([8]

). Let A n,k be defined by (1.5). For 1 ⩽ k ⩽ n, we have

(1.7) A n,k = c k! (2 -k 1 )(3 -k 1 -k 2 ) • • • (n -k 1 -k 2 -• • • -k n-1 ) c k1 k 1 ! • • • c kn-1 k n-1 ! ,
where the summation is over all sequences (k 1 , k 2 , . . . , k n-1 ) of nonnegative integers such that

k 1 + k 2 + • • • + k n-1 = n -k and k 1 + • • • + k j ⩽ j for any 1 ⩽ j ⩽ n -1.
The initial motivation of this paper is give a combinatorial proof of (1.7). In order to state some combinatorial interpretations for A n,k , we need to introduce several notations on partitions of integers.

A partition λ = (λ 1 , λ 2 , . . . , λ ℓ ) is a weakly decreasing sequence of nonnegative integers. Each λ i is called a part of λ. The sum of the parts of a partition λ is denoted by |λ|. If |λ| = n, then we say that λ is a partition of n, also written as λ ⊢ n. We denote by m i the number of parts equals i. By using the multiplicities, we also denote λ by (1 m1 2 m2 • • • n mn ). The partition with all parts equal to 0 is the empty partition. The length of λ, denoted ℓ(λ), is the maximum subscript j such that λ j > 0. The Ferrers diagram of λ is a graphical representation of λ with λ i boxes in its ith row and the boxes are left-justified. For a Ferrers diagram λ ⊢ n (we will often identify a partition with its Ferrers diagram), a standard Young tableau (SYT, for short) of shape λ is a filling of the n boxes of λ with the integers 1, 2, . . . , n such that each number is used, and all rows and columns are increasing (from left to right, and from bottom to top, respectively). Given a Young tableau, we number its rows starting from the bottom and going above. Let SYT (n) be the set of SYT of size n. For a partition λ = (λ 1 , . . . , λ ℓ ), we define c λ = ℓ i=1 c λi , c ∅ = 1. Let n k be the Stirling numbers of the first kind, which count permutations in S n with k cycles. We can now recall a recent result.

Proposition 1.3 ([3]

). Let A n,k be defined by (1.5). For n ⩾ 1, there exist positive integers a(n, λ) such that

A n,k = λ⊢n-k a(n, λ)c n-ℓ(λ) c λ ,
where λ runs over all partitions of n -k. The Stirling numbers of the first and second kinds, and the Eulerian numbers can be respectively expressed as follows:

n k = λ⊢n-k a(n, λ), n k = a(n, 1 n-k ), n k = ℓ(λ)=n-k a(n, λ).
Motivated by Propositions 1.2 and 1.3, we first express (cD) n f in terms of inversion sequences as well as k-Young tableaux in Section 2, and then we present the other main results. In the rest sections, we prove some of the main results.

2. The g-index of Young tableau and main results

Inversion sequences and a combinatorial proof of Proposition 1.2.

An integer sequence e = (e 1 , e 2 , . . . , e n ) is an inversion sequence of length n if 0 ⩽ e i < i for all 1 ⩽ i ⩽ n. Let I n be the set of all inversion sequences of length n. There is a natural bijection ψ between I n and the symmetric group S n defined by ψ(π) = e, where e i = #{j | 1 ⩽ j < i and π(j) > π(i)}. Definition 2.1. For any inversion sequence e ∈ I n , let

|e| j = #{i ∈ [n] | e i = j}. We now define ϕ(e) = c • c |e|1 c |e|2 • • • c |e|n-1 • f |e|0 .
For example, take n = 9 and e = (0, 0, 1, 0, 4, 2, 4, 0, 1), then

|e| 0 = 4, |e| 1 = 2, |e| 2 = 1, |e| 3 = 0, |e| 4 = 2 and |e| j = 0 for 5 ⩽ j ⩽ 8. So that ϕ(e) = c • c 2 c 1 cc 2 cccc • f 4 = c 6 c 1 c 2 2 • f 4 .
The following lemma is fundamental. Lemma 2.2. For n ⩾ 1, we have

(2.1) (cD) n f = e∈In ϕ(e).
Proof. Note that I 1 = {0} and

I 2 = {00, 01}. Since ϕ(0) = cf 1 , ϕ(00) = c • c • f 2 , ϕ(01) = c • c 1 • f 1 , then (2.1) is valid for n = 1, 2. Assume that (2.1) holds for a given n. Let I n,k = {e ∈ I n : |e| 0 = k}. Then for any e ∈ I n,k , we have ϕ(e) = c • c |e|1 • c |e|2 • • • c |e|n-1 • f k .
Let e ′ be obtained from e = (e 1 , e 2 , . . . , e n ) by appending e n+1 . We distinguish three cases:

(i) If e n+1 = 0, then ϕ(e ′ ) = c • c |e|1 • c |e|2 • • • c |e|n-1 • c • f k+1 ; (ii) If e n+1 = i and 1 ⩽ i ⩽ n -1, then ϕ(e ′ ) = c • c |e|1 • • • c |e|i+1 • • • c |e|n-1 • c • f k ; (iii) If e n+1 = n, then ϕ(e ′ ) = c • c |e|1 • c |e|2 • • • c |e|n-1 • c 1 • f k .
It is routine to check that the first case accounts for the term cA n,k-1 and the last two cases account for the term cDA n,k . Then

e∈I n+1,k ϕ(e) = (cA n,k-1 + cDA n,k )f k = A n+1,k f k , which follows from (1.

6). This completes the proof. □

A combinatorial proof of Proposition 1.2:

Proof. For e ∈ I n , let k = |e| 0 and k i = |e| n-i for 1 ⩽ i ⩽ n -1. Note that n-1 i=1 k i = n -k and k 1 + • • • + k j ⩽ j for each j. The number of such e is equal to 1 k 1 2 -k 1 k 2 3 -k 1 -k 2 k 3 • • • n -k 1 -k 2 -• • • -k n-1 k = (2 -k 1 )(3 -k 1 -k 2 ) • • • (n -k 1 -k 2 -• • • -k n-1 ) k!k 1 !k 2 ! • • • k n-1 ! .
Then by using Lemma 2.2, we obtain Proposition 1.2. □ 2.2. k-Young tableaux and their g-indexes.

Since the c k1 , c k2 , . . . , c kn-1 are commutative, we have to group the terms in (1.7) which produce the same product c k1 c k2 • • • c kn-1 . We say that a type of n is a pair (k, µ), denoted by (k, µ) ⊢ n, where k ∈ [n] and µ = (µ 1 , . . . , µ n-1 ) is a partition of n -k, i.e., µ is written up to n -1 terms by appending 0's at the end. Let (k, µ) be a type of n. We define

Set (µ) = {µ j | 1 ⩽ j ⩽ n -1}, |µ| j = #{i | µ i = j, 1 ⩽ i ⩽ n -1}.
Let (|e| 0 , µ(e)) be the type of e ∈ I n , where µ(e) is the decreasing order of the numbers |e| 1 , . . . , |e| n-1 . For each type (k, µ) of n, let p k,µ be the number of inversion sequences of type (k, µ). It follows from Lemma 2.2 that

(2.2) (cD) n f = (k,µ)⊢n p k,µ cc µ1 c µ2 • • • c µn-1 f k ,
where the summation is taken over all types (k, µ) of n.

Lemma 2.3. By convention, set p 0,µ = 0. When (k, µ) = (1, (1, 1, . . . , 1)), it is clear that p k,µ = 1. For the other types (k, µ) of n, we have

(2.3) p k,µ = j∈Set (µ)\{0} (|µ| j-1 + 1)p k,µ (j) + p k-1,µ (0) ,
where µ (j) is obtained from µ by replacing the last occurrence of the part j by j -1 and by deleting the last 0 and µ (0) is obtained from µ by deleting the last 0. Thus we have (k, µ (j) ) ⊢ (n -1) and (k -1, µ (0) ) ⊢ (n -1).

Proof. Take an element e ∈ I n of type (k, µ). Let e ′ = (e 1 , e 2 , . . . , e n-1 ) ∈ I n-1 be obtained from e by deleting the last e n . If e n = 0, then the type of e ′ is (k -1, µ (0) ). This operation is reversible.

If e n = i (1 ⩽ i ⩽ n -1) and |e| i = j ∈ Set (µ) \ {0}, then the type of e ′ is (k, µ (j)
). In this case, the operation is not reversible. We have exactly (|µ| j-1 + 1) ways to generate the inverses. In fact we can append e n = i ′ ̸ = i at the end of e ′ with the condition of |e| i -1 = j -1 = |e| i ′ to obtain an inversion sequence in I n of type (k, µ). □

For convenience, we now give an illustration of (2.3), in order to get inversion sequences of type (k, µ) = (3, (2, 1, 1, 0, 0, 0)), we distinguish three cases: The g-index of v, denoted by gZ (v), is the number of boxes (i -1, j ′ ) such that j ′ ⩾ j and the letter in this box is less than or equal to v (see Figures 2 and3). If v is in the bottom row, then set gZ (v) = 1. The g-index of Z is given by GZ = gZ (1)gZ (2) • • • gZ (n). 

k = 3 G = 6 G = 1•1•1•3 4 3 2 1 4 1 2 3 G = 1•1•2•1 4 3 2 1 3 1 2 4 G = 1•1•1•1 4 3 2 1 2 1 3 4
(2.4) p k,µ = Z GZ ,
where the summation is taken over all k-Young tableaux of shape (k, µ).

Proof. The identity (2.4) is obtained from Lemma 2.3 by induction on n. The maximum letter n in a k-Young tableau Z may be at the end of the bottom row, or a corner in the top Young tableau. In the first case, gZ (n) = 1, and removing the letter n yields a (k -1)-Young tableau of shape (k -1, µ). In the second case, gZ (n) = |µ|j-1 + 1, where j is the length of the row containing n, and removing the letter n yields a k-Young tableaux of shape (k, µ (j) ). We recover all terms in (2.3). This completes the proof. □

In the sequel, we give two applications of Theorem 2.6. When n ⩾ 1, the Stirling numbers of the first kind n k can be defined by 

n k=1 n k x k = x(x + 1) • • • (x + n -1). According to [1, Proposition A.
(k,µ)⊢n Z GZ x k = x(x + 1)(x + 2) • • • (x + n -1),
where the first summation is taken over all type (k, µ) of n, and the second summation is taken over all k-Young tableaux of shape (k, µ). Proposition 2.8. Let n k be the Stirling numbers of the second kind. We have

n k = Z GZ ,
where the summation is taken over all k-Young tableaux of shape k, (1 n-k 0 k-1 ) .

Proof. Let c = x and f = 1/(1 -x). Then c1 = 1 and cj = 0 for j ⩾ 2, and

f k = k!/(1 -x) k+1 . It follows from (2.2) that (xD) n 1 1 -x = (k,µ)⊢n p k,µ ccµ 1 cµ 2 • • • cµ n-1 f k = (k,µ=(1 n-k 0 k-1 ))⊢n p k,µ • k!x k (1 -x) k+1 = 1 (1 -x) n+1 (k,µ=(1 n-k 0 k-1 ))⊢n p k,µ • k!x k (1 -x) n-k .
By Theorem 2.6, we have

(2.5) An(x) = n k=0 p k,(1 n-k 0 k-1 ) • k!x k (1 -x) n-k = n k=0 Z GZ • k!x k (1 -x) n-k ,
where the second summation is taken over all k-Young tableaux of shape (k, (1 n-k 0 k-1 )).

The classical Frobenius formula for Eulerian polynomials says that

An(x) = n k=0 k! n k x k (1 -x) n-k .
Comparing the above formula with (2.5), we get the desired result. □

The g-indices of Young tableaux.

Let T be a SYT of shape λ and size n. We define the g-index of T very similarly. We always put a special column of n boxes at the left of T , labelled by 1, 2, 3, . . . , n from bottom to top. The rows of T are counted from bottom to top, and the columns are counted from left to right. For each v ∈ [n], suppose that v is in the box (i, j). The gindex of v, denoted by gT (v), counts boxes (i -1, j ′ ) such that j ′ ⩾ j and the letter in this box is less than or equal to v. The g-index of T is defined by

GT = gT (1)gT (2) • • • gT (n).
For the Young tableau given in Figure 2 (left diagram), we have gT

(1) = 1, gT (2) = 1, gT (3) = 2, gT (4) = 1, gT (5) = 1.
Example 2.9. The elements in SYT ( 4) and their g-indices are listed in Figure 4.

Let λ(T ) be the partition of T . If λ(T ) = (λ1, λ2, . . . , λ ℓ ), then let λ(T )! = ℓ i=1 (λi!). Theorem 2.10. Let Cn(x) be the second-order Eulerian polynomials. Then we have

Cn(x) = T ∈SYT (n) GT λ(T )! x n+1-ℓ(λ(T )) . (2.6)
Theorem 2.11. Let An(x) be the Eulerian polynomials. Then we have

An(x) = T ∈SYT (n) GT x n+1-ℓ(λ(T )) . (2.7)
We end this section be giving a characterization for the gamma coefficient polynomial of An+1(x). For T ∈ SYT (n), if λ(T ) = (1 n-2i+2 2 i-1 ), then n + 1 -ℓ(λ(T )) = i, where 1 ⩽ i ⩽ ⌊(n + 2)/2⌋. Using (2.8), we immediately get the following corollary.

Corollary 2.14. For n ⩾ 2, we have

⌊(n+2)/2⌋ i=1 2 i-1 S(n, i)x i = T GT λ(T )! x n+1-ℓ(λ(T )) ,
where the summation is taken over all tableaux in SYT (n) with at most two columns.

Proof of Theorem 2.10

Setting k = 1 in (1.4), we obtain that

(3.1) x 1 -x d dx n 1 1 -x = Cn(x) (1 -x) 2n+1 . Setting c = x/(1 -x) and f = 1/(1 -x), then we have cj = j! (1 -x) j+1 (j ⩾ 1); f k = k! (1 -x) k+1 (k ⩾ 0).
By using (2.2), we obtain

x 1 -x D n 1 1 -x = (k,µ)⊢n p k,µ • x |µ| 0 +1 1 -x µ1! (1 -x) µ 1 +1 • • • µn-1! (1 -x) µ n-1 +1 k! (1 -x) k+1 = 1 (1 -x) 2n+1 (k,µ)⊢n p k,µ • k!µ1! • • • µn-1!x |µ| 0 +1 .
It follows from (3.1) and Theorem 2.6 that

Cn(x) = (k,µ)⊢n p k,µ • k!µ1! • • • µn-1!x |µ| 0 +1 = (k,µ)⊢n Z GZ • k!µ1! • • • µn-1!x |µ| 0 +1 . (3.2)
In view of (2.6) and (3.2), we need to establish some relations between k-Young tableaux and standard Young tableaux. Let Z be a k-Young tableau of shape (k, µ). We define T = ρ(Z) to be the unique SYT such that the sets of the letters in the j-th column in Z and T are the same for all j. Let us list some basic facts of this map Z → T = ρ(Z):

(i) We can obtain T from Z by ordering the letters in each column in increasing order. One can easily check that if T is obtained in this way, then T is a SYT; (ii) The partition λ(T ) is the decreasing ordering of the sequence (k, µ1, . . . , µn-1), removing the 0's at the end. Hence, λ(T

)! = k! n-1 i=1 µi! ; (iii) We have n -ℓ(λ(T )) = |µ|0; (iv) In general GZ ̸ = GT .
For example, take the k-Young tableau given in Figure 1, we obtain the SYT given in Figure 5. However ρ is not bijective. Let ρ -1 (T ) = {(k, µ, Z) | ρ(Z) = T }. By the above properties of ρ and (3.2), we have 

Cn(x) = T ∈SYT (n) (k,µ,Z)∈ρ -1 (T ) GZ • k!µ1! • • • µn-1!x |µ| 0 +1 = T ∈SYT (n) λ(T )!x n+1-ℓ(λ(T )) (k,µ,Z)∈ρ -1 (T ) GZ . (3.3)
Z∈ρ -1 (T ) GZ = GT ,
where we write Z ∈ ρ -1 (T ) instead of (k, µ, Z) ∈ ρ -1 (T ), as we can recover (k, µ) from Z.

Proof. We will prove (3.4) by induction on the size of T . Suppose that (3.4) is true for all standard Young tableaux of size n -1. Given a T ∈ SYT (n). Let T ′ is a SYT of size n -1 obtained from T by removing the letter n. This operation is reversible if λ(T ) is known. By the hypothesis of induction, we have (3.5)

Z ′ ∈ρ -1 (T ′ ) G Z ′ = G T ′ ,
Clearly, GT = G T ′ × gT (n). On the other hand, for a k-Young tableau Z ∈ ρ -1 (T ), if we remove the letter n, we obtain a k ′ -Young tableau Z ′ ∈ ρ -1 (T ′ ) of size n-1. However, this operation is not always reversible. Let us analyse in detail. Let β be the length of the row containing n in the k-Young tableau Z ∈ ρ -1 (T ) with shape (k, µ) if n is in the top Young tableau of Z. The set ρ -1 (T ) can be divided into four subsets: ρ -1 (T ) = Γ1 +Γ2 +Γ3 +Γ4, where Γ1, Γ2, Γ3 and Γ4 are respectively defined as follows: See Figure 6 for two examples. Some of the Γi may be empty according to T . We claim that the set Γ1 and Γ2 have the same carnality. For each Z1 ∈ Γ1, there exists Z2 ∈ Γ2 in a unique manner, such that Z ′ 1 = Z ′ 2 ∈ ρ -1 (T ′ ), see Figure 7. Moreover, we have the

Γ1 = {Z ∈ ρ -1 (T ) : n is
n Z1 n Z2 Z ′ n T T ′ ρ ρ del n del n Figure 7. Z 1 , Z 2 ∈ ρ -1 (T ) are mapped to the same Z ′ ∈ ρ -1 (T ′ )
by removing the letter n relations (see Figure 7): gZ 1 (n) = gT (n) -1 and gZ 2 (n) = 1. For Z3 ∈ Γ3 and Z4 ∈ Γ4, we have gZ 3 (n) = gT (n) and gZ 4 (n) = gT (n). By all these observations, we obtain

Z∈ρ -1 (T ) GZ = Z 1 ∈Γ 1 ,Z 2 ∈Γ 2 (GZ 1 + GZ 2 ) + Z 3 ∈Γ 3 GZ 3 + Z 4 ∈Γ 4 GZ 4 = Z 1 ∈Γ 1 ,Z 2 ∈Γ 2 (gZ 1 (n)G Z ′ + gZ 2 (n)G Z ′ ) + Z 3 ∈Γ 3 gT (n)G Z ′ 3 + Z 4 ∈Γ 4 gT (n)G Z ′ 4 = gT (n) Z ′ ∈ρ -1 (T ′ ) G Z ′ = gT (n)G T ′ = GT .
Hence (3.4) holds. This completes the proof. □

Proof of Theorem 2.10. Combining (3.3) and Lemma 3.1, we get that

Cn(x) = T ∈SYT (n) λ(T )!x n+1-ℓ(λ(T )) (k,µ,Z)∈ρ -1 (T ) GZ = T ∈SYT (n) GT λ(T )!x n+1-ℓ(λ(T )) .
This completes the proof. □

Proof of Theorem 2.11

For an alphabet V , let Q[[V ]] be the rational commutative ring of formal power series in monomials formed from letters in V . Following Chen [START_REF] Chen | Context-free grammars, differential operators and formal power series[END_REF], a context-free grammar over V is a function G : V → Q[[V ]] that replaces each letter in V by a formal function over V . The formal derivative DG with respect to G satisfies the derivation rules:

DG(u + v) = DG(u) + DG(v), DG(uv) = DG(u)v + uDG(v).
Thus DG can be understood as a formal differential operator. The reader is referred to [START_REF] Chen | Context-free grammars for permutations and increasing trees[END_REF][START_REF] Ma | Stirling permutation codes[END_REF] for recent progress on this subject.

Setting ui = D i G (u), it follows from (2.2) and (2.4) that (4.1) (uDG

) n = (k,µ)⊢n Z GZ uuµ 1 uµ 2 • • • uµ n-1 D k G ,
where the first summation is taken over all types (k, µ) of n and the second summation is taken over all k-Young tableaux of shape (k, µ). Recall that the Eulerian polynomials An(x) are symmetric, i.e.,

An(x) = n i=1 n i x i = n i=1 n i x n+1-i for n ⩾ 1.
In [START_REF] Dumont | Grammaires de William Chen et dérivations dans les arbres et arborescences[END_REF], Dumont found a grammatical interpretation of Eulerian numbers. where the first summation is taken over all types (k, µ) of n and the second summation is taken over all k-Young tableaux of shape (k, µ). By using Lemma 3.1, along the same lines as in the proof of Theorem 2.10, one can derive (2.7). □

Proof of Theorem 2.12

We now recall a grammatical interpretation of André polynomials. where m1 and m2 are nonnegative integers. Assume that Z is a k-Young tableau of shape (k, µ), where µ is given by (5.2). As in the proof of Theorem 2.10, we define T = ρ(Z) to be the unique SYT such that the sets of the letters in the j-th column in Z and T are the same for all j. Then Z has at most two columns. Using Proposition 5.1, we get where the first summation is taken over all types (k, µ) of n, the second summation is taken over all k-Young tableaux of shape (k, µ) and the partitions µ have the form (5.2).

Along the same lines as in the proof of Theorem 2.10, we get the desired formula (2.8). □

  (i) For each e ∈ I 6 that counted by p 2,(2,1,1,0,0) , we can get one inversion sequence of type (k, µ) by appending e 7 = 0 at the end of e; (ii) Let e ∈ I 6 be an inversion sequence counted by p 3,(1,1,1,0,0) . If |e| i = 1 then we can append e 7 = i at the end of e. As we have three choices for i, we get the term 3p 3,(1,1,1,0,0) ; (iii) Let e ∈ I 6 be an inversion sequence counted by p 3,(2,1,0,0,0) . If |e| i = 0, then we can append e 7 = i at the end of e. As we have four choices for i, we get the term 4p 3,(2,1,0,0,0) .Each type (k, µ) of n can be represented by a picture which contains k boxes in the bottom row, and the Young diagram of µ in the top. Such picture is called a (k, µ)-diagram. Definition 2.4. Let (k, µ) be a type of n. A k-Young tableau Z of shape (k, µ) is a filling of the n boxes of the (k, µ)-diagram by the integers 1, 2, . . . , n such that (i) each number is used, (ii) all rows and columns in the top Young diagram are increasing (from left to right, and from bottom to top, respectively), (iii) the bottom row is an increasing sequence of length k, starting with 1.The filling of the top Young diagram of the partition µ is called the top Young tableau of the k-Young tableau. There is no condition between the bottom row and the top Young tableau. The rows of the top Young tableau are counted from bottom to top, and the columns are counted from left to right. We always put a special column of n boxes at the left of a k-Young tableau, labelled by the integers 1, 2, . . . , n from bottom to top. See Figure1(right diagram) for an example.

Definition 2 . 5 .

 25 Let Z be a k-Young tableau of shape (k, µ), where k + |µ| = n. For each v ∈ [n], suppose that v is in the box (i, j) of the top Young diagram, where the first coordinate i means the column index, and the second coordinate j means the row index.

Figure 1 .Figure 2 .

 12 Figure 1. (k = 2, µ = (3, 2, 0, 0, 0, 0))-diagram and a k-Young tableau of shape (k, µ)

Figure 3 .

 3 Figure 3. All 3-Young tableaux of size 4 and their g-indices

  2], we have (e x D) n f = e nx n k=1 n k f k . Setting c = e x and cj = e x in (2.2), it follows from Theorem 2.6 that (e x D) n f = e nx (k,µ)⊢n Z GZ f k , So we get the following result.

Proposition 2 . 7 .

 27 For n ⩾ 1, we have

Figure 5 .

 5 Figure5. T = ρ(Z) for Z given in Figure1

4 Γ3Figure 6 . 4 Lemma 3 . 1 .

 46431 Figure 6. Decomposition of ρ -1 (T ) into Γ 1 , Γ 2 , Γ 3 , Γ 4

  in the top Young tableau and k = β -1}, Γ2 = {Z ∈ ρ -1 (T ) : n is in the bottom row and k -1 ∈ µ}, Γ3 = {Z ∈ ρ -1 (T ) : n is in the top Young tableau and k ̸ = β -1}, Γ4 = {Z ∈ ρ -1 (T ) : n is in the bottom row and k -1 ̸ ∈ µ}.
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 414 If G = {x → y, y → y}, then (xDG) n (y) = i⩾1 n i x n+1-i y i .Proof of Theorem 2.11. Let G = {x → y, y → y}. From (4.1), we have(xDG) n (y) = (k,µ)⊢n Z GZ xxµ 1 xµ 2 • • • xµ n-1 D k G (y), where x0 = x and xi = D i G (x) = y for i ⩾ 1 and D k G (y) = y for k ⩾ 0. Hence (xDG) n (y) = (k,µ)⊢n Z GZ y n-|µ| 0 x |µ| 0 +1 .Comparing this with Proposition 4.1, we get(i = (xDG) n (y)| y=1 = (k,µ)⊢n Z GZ x |µ| 0 +1 ,

Proposition 5 . 1 (

 51 [START_REF] Dumont | Grammaires de William Chen et dérivations dans les arbres et arborescences[END_REF]). If G1 = {x → xy, y → x}, thenD n G 1 (x) = i⩾1 S(n, i)x i y n+2-2i .Equivalently, we see that if G2 = {x → y, y → 1}, then(xDG 2 ) n (x) = i⩾1 S(n, i)x i y n+2-2i .Proof of Theorem 2.12. Let G2 = {x → y, y → 1}. From (4.1), we have(5.1) (xDG 2 ) n (x) = (k,µ)⊢n Z GZ xxµ 1 xµ 2 • • • xµ n-1 D k G 2 (x). Note that x0 = D 0 G 2 (x) = x, x1 = DG 2 (x) = y, x2 = D 2 G 2 (x) = 1 and xi = D i G 2 (x) = 0 for i ⩾ 3. Recall that for (k, µ) ⊢ n, we have k ∈ [n]. Then xµ 1 xµ 2 • • • xµ n-1 D k G 2 (x) ̸ = 0 if and only if 0 ⩽ µj ⩽ 2 for all j ∈ [n -1] and 1 ⩽ k ⩽ 2. Thus (5.2) µ = (1 m 1 2 m 2 0 n-1-m 1 -m 2 ),

(5. 3 )

 3 Sn(x) = (xDG 2 ) n (x)| y=1 = (k,µ)⊢n Z GZ x |µ| 0 +1 ,
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x GT = 1 λ(T )! = 1 Let π ∈ Sn. We say that π has no double descents if there is no index i ∈ [n -2] such that π(i) > π(i + 1) > π(i + 2). Then π is called a simsun permutation if for each k ∈ [n], the subword of π restricted to [k] (in the order they appear in π) contains no double descents. Simsun permutations are useful in describing the action of the symmetric group on the maximal chains of the partition lattice (see [START_REF] Sundaram | The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice[END_REF]). We define

where RSn is the set of simsun permutations in Sn. Set S1(x) = x. It follows from [7, Theorem 1] that Sn(x) = (n + 1)xSn-1(x) + x(1 -2x)S ′ n-1 (x) for n ⩾ 2. The polynomial Sn(x) is known as André polynomial (see [START_REF] Chen | Context-free grammars for permutations and increasing trees[END_REF][START_REF] Foata | Arbres minimax et polynômes d'André[END_REF]). Theorem 2.12. Let Sn(x) be the André polynomials. For n ⩾ 1, we have

where the summation is taken over all tableaux in SYT (n) with at most two columns.

We say that π ∈ Sn is alternating if π(i) < π(i + 1) if i is even and π(i) > π(i + 1) if i is odd. Let En denote the number of alternating permutations in Sn. A remarkable property of simsun permutations is that #RSn = En+1 (see [17, p. 267]).

Corollary 2.13. We have En+1 = T GT , where the summation is taken over all Young tableaux in SYT (n) with at most two columns.

Combining [2, Corollary 3.2] and [13, Proposition 1], the gamma expansion of Eulerian polynomial is given as follows: