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Abstract The beta rhythm (13–30 Hz) is a prominent brain rhythm. Recordings in primates during 
instructed-delay reaching tasks have shown that different types of traveling waves of oscillatory 
activity are associated with episodes of beta oscillations in motor cortex during movement prepara-
tion. We propose here a simple model of motor cortex based on local excitatory-inhibitory neuronal 
populations coupled by long-range excitation, where additionally inputs to the motor cortex from 
other neural structures are represented by stochastic inputs on the different model populations. 
We show that the model accurately reproduces the statistics of recording data when these external 
inputs are correlated on a short time scale (25 ms) and have two different components, one that 
targets the motor cortex locally and another one that targets it in a global and synchronized way. 
The model reproduces the distribution of beta burst durations, the proportion of the different 
observed wave types, and wave speeds, which we show not to be linked to axonal propagation 
speed. When the long-range connectivity or the local input targets are anisotropic, traveling waves 
are found to preferentially propagate along the axis where connectivity decays the fastest. Different 
from previously proposed mechanistic explanations, the model suggests that traveling waves in 
motor cortex are the reflection of the dephasing by external inputs, putatively of thalamic origin, of 
an oscillatory activity that would otherwise be spatially synchronized by recurrent connectivity.

Editor's evaluation
This article makes a valuable contribution to the field. Here the authors have developed a convincing 
model to characterize the generation of motor cortex β oscillations. Using the model, the authors 
are able to recapitulate several properties observed experimentally. Given the long-standing interest 
in motor cortical β oscillations and current interest in traveling waves, this article will be of significant 
interest to the neuroscience community.

Introduction
Neural rhythms are one of the most obvious feature of neural dynamics (Buzsáki, 2006). They have 
been recorded for more than 90 years in human (Berger, 1929) and they are a daily tool for the diag-
nosis of neurological dysfunction. Classic studies have shown that neural rhythms depend on neural 
structures and the behavioral state of the animal (Adrian, 1935). Examples include the theta rhythm, 
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the gamma rhythm in the visual cortex, or the fast 160–200 Hz cerebellar rhythm. However, in spite of 
their ubiquity and common diagnostic use, neural rhythms remain a somewhat mysterious feature of 
the brain dynamics. It remains to better understand how they are created and what they are a reflec-
tion of (Wang, 2010).

The beta rhythm consists of oscillations in the 13–30 Hz range. The motor cortex was found to be 
one of its main locations in early recordings in human subjects (Jasper and Penfield, 1949; Penfield, 
1954). It was recorded in cats during motionless focused attention, when fixating a mouse behind 
a transparent screen (Bouyer et al., 1987). Subsequent studies in monkeys trained to perform an 
instructed-delay-task (Murthy and Fetz, 1992; Sanes and Donoghue, 1993) showed that beta oscil-
lations develop in the motor and premotor cortex during the movement preparatory period and wane 
during the movement itself, in agreement with earlier observations in human (Jasper and Penfield, 
1949; Penfield, 1954). It was also noted that beta oscillations did not have a constant amplitude in 
time but rather appeared as synchronized bursts of a few cycles of oscillations, often synchronized 
on electrodes 1–2 mm apart. More recently, it was observed using multi-electrode arrays that beta 
oscillations can come as planar (Rubino et al., 2006) or more complex (Rule et al., 2018; Denker 
et al., 2018) waves propagating horizontally on the motor cortex. Our aim in this paper is to develop 
a mechanistic framework for these observations and to compare it to available recordings in monkeys 
performing an instructed delayed reach-to-grasp task (Denker et al., 2018; Brochier et al., 2018). 
The model is based on recurrent interaction between local populations of excitatory (E) and inhibitory 
(I) populations of neurons coupled by longer range excitation. The local E-I module is well-known 
to exhibit oscillatory dynamics when the recurrent interaction within the E population is sufficiently 
strong. Long-range excitation between these local modules has been shown in previous works to 
synchronize the oscillatory dynamics of local E-I modules (Ermentrout and Kopell, 1991; Kulkarni 
et al., 2020). Comparison with recordings leads us to propose that the whole network is close to the 
oscillation threshold and that fluctuating inputs from other cortical areas or other structures, such as 
the thalamus, power the burst of beta oscillations. We show that such a spatially extended network 
submitted to both local and global external inputs exhibits waves of different types that closely 
resemble those recorded in monkey motor cortex. Our analysis makes testable, specific predictions 
on the structure of external inputs. More generally, it highlights the dynamical interplay between fluc-
tuating inputs and intrinsic dynamics shaped by spatially structured connectivity, which is worthy of 
further experimental investigation.

Data and modelling assumptions
We ground our modeling by comparing it to recordings obtained during a delayed reach-to-grasp 
task in two macaque monkeys (Denker et al., 2018) that have been made publicly available (Brochier 
et al., 2018). As in other recordings in similar tasks (Murthy and Fetz, 1992; Sanes and Donoghue, 
1993; Rubino et al., 2006), beta oscillations are prominent during the 1 s waiting time, the movement 
preparatory period, and wane during the movement itself, as shown in Figure 1—figure supplement 
1a and c. We thus focus on the recordings during the preparatory period in the following.

In order to develop a model of beta oscillations, assumptions have to be made on the source and 
mechanism of their generation. We explicitly list below our main ones and their rationale, since they 
differ from those made in some previous works.

Debate exists regarding the origin of beta oscillations in cortex. On the one hand, the basal 
ganglia display prominent beta oscillations during different phases of movement (Leventhal et al., 
2012). Therefore, one view is that beta oscillations in the motor cortex are simply conveyed to the 
motor cortex from other structures such as the basal ganglia. On the other hand, sources of beta 
oscillations have been identified in the cortex (Jensen et al., 2005; Sherman et al., 2016). That 
different cortical regions have intrinsic oscillation frequencies matching those of their prominent 
rhythms is also supported by transcranial magnetic stimulation (TMS) perturbation studies. Specif-
ically, the premotor area/supplementary motor area 6 has been found to resonate at ∼30 Hz after 
stimulation by a short TMS pulse (Rosanova et al., 2009). This seems difficult to explain if the rhythm 
frequency originates from a distant structure. We thus adopt the intermediate view, previously advo-
cated by Sherman et al., 2016, that beta oscillations are generated by recurrent interactions in the 
motor cortex but are strongly modulated by inputs from other cortical areas or other structures, 
notably thalamic ones.

https://doi.org/10.7554/eLife.81446
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Assuming that beta oscillations originate within M1, the question arises of the main neuronal popu-
lations and the recurrent interactions underlying rhythm generation. Two natural candidates are recur-
rent interactions between interneurons, or recurrent interactions between excitatory and inhibitory 
populations. Here, one important observation is that during the preparatory period of movement 
when beta oscillations are prominent, neurons do not fire periodically. As shown in Figure 1—figure 
supplement 1b, isolated units from the recordings of Brochier et al., 2018 display large CVs. Beta 
oscillations thus appear to be a collective phenomenon arising from sparse synchronization (Brunel 
and Hakim, 2008) of different non-oscillating units. In such a regime, oscillations can emerge from 
recurrent interaction between interneurons, when inhibition is sufficiently strong. However, their 
frequencies are mainly controlled by the kinetics of synaptic transmission and tend to be in the upper 
gamma range or higher (Brunel and Wang, 2003; Geisler et al., 2005; de Solages et al., 2008). 
Lower frequencies arise in networks of E-I units, in which each of the two populations inhibits itself via 
a slower disynaptic loop. This leads us to assume that beta oscillations are sparsely synchronized oscil-
lations arising from recurrent interaction between excitatory and inhibitory populations. Our aim is to 
account for recordings obtained from 4 mm × 4 mm multi-electrode arrays with 10 × 10 electrodes. 
Therefore, the spatial structure of the connectivity needs to be taken into account. We assume that 
each electrode records the activity of a local neuronal population. For computational tractability, we 
describe this population activity in a classic way by its firing rate (Wilson and Cowan, 1972; Dayan and 
Abbott, 2005), but we choose a particular firing rate formulation (see ‘Methods’) that was shown to 
agree well with direct simulations of spiking network models in previous works (Kulkarni et al., 2020; 
Ostojic and Brunel, 2011; Augustin et al., 2017). We assume that neurons under different electrodes 
are mainly connected by excitatory connections and that the connection probability decreases with 
distance (Huntley and Jones, 1991; Capaday et al., 2009; Hao et al., 2016).

Results
E-I modules connected by long-range excitatory connections exhibit 
oscillatory activity at beta frequency
The previous considerations lead us to study the model schematically depicted in Figure 1a, which 
generalizes one previously analyzed (Kulkarni et al., 2020). It consists of multiple recurrently coupled 
modules of excitatory (E) and inhibitory (I) neuron populations. These local modules are further 
coupled by long-range excitatory connections. The different modules are placed on a square 24 × 24 
grid with the central 10 × 10 ones corresponding to the recording electrodes (see Figure 1—figure 
supplement 2). The decrease in synaptic connection probability with distance is described by the 
function ‍C(x)‍, chosen in the numerical simulations to be Gaussian with range ‍l ∼ 1‍ mm, based on 
anatomical data and microstimulation studies (Huntley and Jones, 1991; Capaday et al., 2009; Hao 
et al., 2016). Notably, Capaday et al., 2009 report a uniform distribution of boutons along hori-
zontal axons, not a patchy one. A relatively slow propagation speed (∼30 cm/s) along unmyelinated 
horizontal axons in the monkey cortex has been reported in previous works (González-Burgos et al., 
2000; Girard et al., 2001). A comparable speed has been found for horizontal connections in the 
rat visual cortex (Lohmann and Rörig, 1994). We have taken this into account by introducing a delay 
proportional to distance, ‍D|x − y|‍, between the activity ‍rE‍ in excitatory population at location ‍y‍ and 
the corresponding postsynaptic depolarization in the E and I population at location ‍x‍. However, since 
data are predominantly available for the visual cortex and could be different for the motor cortex, we 
also compare the results in the following with the case of fast propagation and negligible propaga-
tion delays. The model is further detailed in ‘Methods.’ We begin by examining the dynamics of this 
network when external inputs are constant and the number of neurons in each module is very large. 
The effects of time-varying inputs and fluctuations due to the finite number of neurons in each module 
are then addressed in the following sections.

The network of E-I modules, described by Equations 8–17, has different dynamical regimes as a 
function of the synaptic weights ‍wEE, wIE, wEI, wII ‍ between the excitatory and inhibitory neural popu-
lations. This has been extensively studied in the rate model framework (Ermentrout and Terman, 
2010; Ashwin et al., 2016) since the pioneering work of Wilson and Cowan, 1972. In the particular 
case of the present model (‘Methods,’ see also Figure 1—figure supplement 3 for the f-I curve and 
adaptive time scale used), the different regimes are depicted in Figure  1b, generalizing previous 

https://doi.org/10.7554/eLife.81446
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results (Kulkarni et al., 2020) to take into account the finite kinetics of synaptic current and propa-
gation delays. Essential parameters controlling stability are the strength of recurrent excitation, the 
strength of feedback inhibition through the disynaptic E-I loop, and the strength of autoinhibition of 
interneurons on themselves, as respectively measured by parameters ‍α,β‍, and ‍γ‍ (Equation 34). With 
other parameters fixed, a steady firing rate state in which excitatory and inhibitory populations fire at 

‍r
s
E‍ and ‍r

s
I ‍ is unstable when the strength of recurrent disynaptic self-inhibition ‍β‍ becomes larger than a 

threshold value. Mathematical analysis (see ‘Methods’) provides the bifurcation line that separates the 
steady state regimes from the oscillatory ones. Its exact position depends on propagation delays as 
depicted in Figure 1b for zero delay and for the propagation delay, here chosen, of 1.3 ms between 
neighboring modules, see also ‘Methods’ Equation 35. The frequency of oscillations that arise when 
crossing the bifurcation line at a particular point is also shown in Figure 1b. When recurrent excitation 

Figure 1. Model of neural network generating beta oscillations. (a) Schematic depiction of the model with excitatory populations (blue), inhibitory 
populations (red), independent external inputs on each module (‘local,’ purple), and inputs common to all modules (‘global,’ orange). (b) Different 
dynamical regimes for fixed firing rates of the excitatory and inhibitory populations (‍r

s
E = 5‍ Hz, ‍r

s
I = 10‍ Hz), as a function of the strengths of recurrent 

excitation (α) and of feedback inhibition through the E-I loop (β) for a fixed value of recurrent inhibition in the inhibitory population ‍γ = 2‍, with the 
parameters ‍α,β‍ and ‍γ ‍ as defined in Equation 34. The oscillatory instability line for ‍D = 1.3‍ ms (solid black) and ‍D = 0‍ ms (dashed black) and the line 
of ‘real instability’ (short-dashed black) are shown. Color around the oscillatory lines indicates the frequency of oscillation along the bifurcation line. 
(c) Time series of the firing rate for the E (blue) and I (red) module populations at the SN (thick lines) and at the ON (thin lines with symbols) points. E 
and I population activities become steady at the SN point and display regular oscillations at the ON point. (d) Same data as in (c) for SN (blue) and ON 
(green) parameters but with ‍rE‍ plotted as a function of ‍rI ‍. (e) Firing rates of the E (top) and I (middle) populations for SN parameters when the external 
inputs are varied and (bottom) along the solid lines in top and middle panels when only the external input on the inhibitory population ‍I

ext
I ‍ is varied 

(E blue, I red). The dashed parts of the line correspond to unstable steady states. (f) Different dynamical regimes as a function of the mean strength 
of external inputs for SN. The external inputs on each population vary along the colored line when the strength of the external input fluctuates. The 
color indicates the frequency associated with the linear dynamics at the respective stationary states. (g) Example of E and I activity time traces when the 
external inputs vary in time along the colored line in (f). (h) Same data as in (g) but with ‍rE‍ plotted as a function of ‍rI ‍. Model parameters correspond to 
SN and ON in Table 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Recording data: LFP and single-unit characteristics.

Figure supplement 2. Numerical simulation grid.

Figure supplement 3. Rate model f-I curve and adaptive time scale.

Figure supplement 4. Dependence of the bifurcation lines and frequency on model parameters.

https://doi.org/10.7554/eLife.81446
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increases, the oscillation frequency decreases. As seen in Figure  1b, propagation delays displace 
the bifurcation lines but do not change much how the oscillation frequency depends on recurrent 
excitation. The positions of the bifurcation lines in the ‍(α,β)‍ parameter space also depend on the 
strength ‍γ‍ of recurrent inhibition between interneurons as shown in Figure 1—figure supplement 4a. 
The oscillation frequency on the bifurcation line also increases as ‍γ‍ becomes larger (Figure 1—figure 
supplement 4). The latency, rise time, and especially the decay time of the synaptic currents are other 
parameters that influence the oscillatory bifurcation as shown in Figure 1—figure supplement 4d–k. 
Quite generally, the oscillation frequency decreases when the synaptic time constants increase.

Table 1. Parameter table.

Parameters

Symbol Value Unit Definition

SN SN’ ON SN0

‍r
s
E, rs

I ‍ 5, 10 Hz Steady firing rates

‍I
s
E, Is

I ‍ −6.28,–3.62 mV Currents at ‍r
s
E, rs

I ‍

‍τ
s
E, τ s

I ‍ 8.74, 7.14 ms
Adaptive membrane time 
constant at ‍r

s
E, rs

I ‍

‍Φ
′

E(Is
E),Φ

′

I(I
s
I)‍ 1.46, 2.30 Hz/mV Firing rate gains at ‍r

s
E, rs

I ‍

‍τ
E
r , τ I

r ‍ 0.70 ms Rise time of synaptic currents

‍τ
E
d , τ I

d ‍ 3.50 ms Decay time of synaptic currents

‍τ
E
l , τ I

l ‍ 0.50 ms Latency of synaptic currents

‍l‍ 2 Excitatory connectivity range

‍NE, NI ‍ 16000, 4000
Neuron numbers in each E-I 
module

‍τext‍ 25 ms
Correlation time of external 
input fluctuations

‍νext‍ 3 Hz
External input amplitude 
fluctuations

‍I
ext,0
E , Iext,0

I ‍ 9.72, 0.08 6.12, 0.08 13.72, 0.08 5.72, 0.08 mV External currents

‍w
ext
E ‍ 0.96 1.12 0.96 1.20 mV⋅s

External input onto excitatory 
neurons synaptic coupling 
strength

‍w
ext
I ‍ 2 2 2 2 mV⋅s

External input onto inhibitory 
neurons synaptic coupling 
strength

‍wII ‍ 0.87 0.87 0.87 0.87 mV⋅s
Recurrent synaptic coupling 
strength (I to I)

‍wIE‍ 1 1 1 1 mV⋅s
Recurrent synaptic coupling 
strength (E to I)

‍wEE‍ 0.96 1.12 0.96 1.20 mV⋅s
Recurrent synaptic coupling 
strength (E to E)

‍wEI ‍ 2.08 1.80 2.48 1.80 mV⋅s
Recurrent synaptic coupling 
strength (I to E)

‍D‍ 1.30 1.30 1.30 0 ms
Propagation delay between to 
nearest E-I modules

‍c‍ 0.40 0.30 0.40 0.30
Proportion of global external 
inputs

https://doi.org/10.7554/eLife.81446
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For the parameters of Figure 1 (see Table 1), the dynamics of the network is illustrated for two 
values of recurrent inhibition, one above (parameters ON, ‘oscillating network’) and one below (param-
eters SN, ‘steady network’) the bifurcation line point corresponding to beta oscillation frequency (∼20 
Hz). As illustrated in Figure 1c and d, for recurrent inhibition stronger than the critical value, the ON 
model oscillates regularly. For a lower value of recurrent inhibition (SN model), the firing rates of the 
excitatory and inhibitory populations steadily fire at constant rates. When perturbed away from these 
rates, the firing rates relax to their stationary values in an oscillatory fashion, transiently exhibiting beta 
oscillations.

For fixed synaptic coupling, the steady-state firing rates of the excitatory and inhibitory neuronal 
populations depend on the strengths of the external inputs on those two populations. This is quanti-
tatively illustrated in Figure 1e for synaptic parameters of model SN. Interestingly, when the external 
input on the inhibitory neurons is increased, their steady firing rate and the steady firing rate of the 
excitatory population both decrease for a large range of the external input current. (The firing rate 
of the inhibitory population starts to increase again for very large inputs, when the firing rate of the 
excitatory population tends to vanish.) This ‘paradoxical suppression of inhibition’ (Tsodyks et al., 
1997) is typical of inhibition-stabilized networks and is observed in many cortical areas (Ozeki et al., 
2009; Sanzeni et al., 2020) including motor cortex. It arises in the SN model because it is only when 
recurrent excitation is large, as measured by the parameter α, that its frequency of oscillation is in the 
beta range (Figure 1b). Namely all networks with ‍α > 1‍ cannot stably fire at moderate rates without 
being stabilized by inhibition.

When the external input strengths are changed on the excitatory and inhibitory populations, the 
steady discharge rates of the two populations change accordingly. They can enter into the parameter 
regime where a steady discharge is actually unstable and is replaced by an oscillatory one, as shown 
in Figure 1f. We consider in the present model excitatory inputs to the motor cortex coming from a 
distal area. The respective strengths of the external inputs, ‍I

ext
E ‍ and ‍I

ext
I ‍, on the excitatory and inhibi-

tory populations are proportional to the respective strengths of their synapses, ‍w
ext
E ‍ and ‍w

ext
I ‍. Thus, ‍I

ext
E ‍ 

and ‍I
ext
I ‍ vary with the activity of the distal area on a line in the (‍I

ext
E , Iext

I ‍) plane as depicted in Figure 1f. 
The respective strengths of ‍w

ext
E ‍ and ‍w

ext
I ‍ are taken in the model (Equation 37) such that the network 

enters the oscillatory regime when the external inputs are decreased as shown in Figure 1f. This 
conforms to the early observation (Jasper and Penfield, 1949; Penfield, 1954) that external inputs 
suppress beta oscillations in motor cortex.

When the external input strength on the SN model varies in time, its operating point moves rela-
tive to the bifurcation line and correspondingly, beta oscillations are dampened at varying rates. This 
leads to waxing and waning of their amplitudes as shown in Figure 1g and h. This is also true for 
the ON model that stands close to the bifurcation line and can move into the non-oscillatory regime 
when external inputs vary. These networks that operate close to the bifurcation line thus appear as 
promising candidates to describe the waxing-and-waning of beta oscillations seen in recording data. 
This leads us to try and compare beta oscillations produced in the model by inputs varying on an 
appropriate time scale, together with intrinsic fluctuations arising from the finite number of neurons in 
each module, to those seen in electrophysiological recordings.

Fluctuation of external inputs and finite-size stochasticity produces 
model LFP signals statistically similar to the recorded ones
Early reports (Murthy and Fetz, 1992) already stressed that beta oscillations were not of constant 
amplitude but modulated on different time scales. As confirmed in several later studies (see, e.g., 
Feingold et al., 2015), the average power of beta oscillations changes on a second time scale with 
different phases of movement, for example, preparation, execution, and post-execution periods. 
Within individual trials, the amplitude of beta oscillations fluctuates on much shorter time scales with 
brief bursts of elevated amplitudes of ∼100 ms duration. Examples of LFP spectrograms from two 
trials of Brochier et al., 2018 are shown in Figure 2a and b and Figure 2—figure supplement 1a 
and b, respectively, for monkeys L and N. Whereas single trials exhibit short bursts of beta oscillations, 
trial-averaged spectrograms (Figure 2c and Figure 2—figure supplement 1c) and LFP power spectra 
(Figure 2d and Figure 2—figure supplement 1d) only show the average increase of oscillation in the 
beta band and its modulation on a 1 s behavioral time scale (Figure 2c and Figure 2—figure supple-
ment 1c). A more quantitative characterization of the brief high oscillation amplitude events, the beta 

https://doi.org/10.7554/eLife.81446
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bursts, here taken to be the 75th percentile of the beta oscillation amplitude distribution (Figure 2e 
and Figure 2—figure supplement 1e, see also Figure 2—figure supplement 2), is provided by their 
duration distributions shown in Figure 2f and Figure 2—figure supplement 1f.

Can the model introduced in the previous section account for these data? At least two sources can 
be considered for these transient bursts of oscillations fluctuating from trial to trial. The first one is that 
the number of neurons in each E-I module, the population of neurons in a 200 μm neighborhood of 
each electrode, is finite, of about 2 × 104 cells given the cell density in cortex. This by itself produces 
stochastic fluctuations of each module’s activity. These intrinsic fluctuations can be described in a 
simple way by adding to each neuronal population’s mean firing rate a stochastic component that 
is inversely proportional to the square root of its population size (see ‘Methods’; Kulkarni et  al., 

Figure 2. Single-electrode recordings vs. model E-I module dynamics with fluctuating inputs. (a–h) Monkey L recordings (Brochier et al., 2018), 
(i–p) model simulations. (a, b) Two examples of single trial spectrograms of a single-electrode LFP during the preparatory period (the CUE-OFF to 
GO period in Figure 1—figure supplement 1). (c) Spectrogram averaged over different trials and different electrodes. (d) Power spectrum of single-
electrode LFP averaged over all electrodes. Average over trials (solid violet line) and standard deviation of fluctuation over trials (violet shaded region). 
Inset: violin plot showing the distribution over trials of the average power spectrum peak frequency in the 13–30 Hz interval. (e) Distribution of beta 
oscillation amplitudes. The amplitude of oscillation corresponding to the beta burst are shown in darker color. (f) Distribution of beta burst duration. 
(g) Average LFP cross-correlation between two electrodes as a function of their distance. (h) Auto-correlation of single LFP time-series averaged over 
trials and electrodes. (i–p) Corresponding panels for simulations with model SN. (i, j) Two examples of single modules spectrograms of ‍IE‍ 1 s time 
series. (k) Average ‍IE‍ time series spectrogram. (i) Corresponding power spectrum (see d for a detailed description). (o) Cross-correlations between 
different modules ‍IE‍ times series as a function of their distance, for different fractions ‍c‍ of global (i.e., shared) external inputs, ‍c = 0.4‍ (solid), ‍c = 0.1‍ 
(dashed), and ‍c = 0.7‍ (dashed-dotted). (p) Auto-correlation of single module ‍IE‍ time series for the different fractions ‍c‍ in (o). Model parameters 
correspond to SN in Table 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Beta bursts and power spectra for monkey N.

Figure supplement 2. Data analysis: filtering and burst amplitude threshold.

Figure supplement 3. Model power spectra and beta bursts as a function of the external input parameters.

https://doi.org/10.7554/eLife.81446
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2020; Brunel and Hakim, 1999). The effects of these intrinsic fluctuations for models ON and SN 
(Figure 1b) can be obtained both mathematically and through computer simulations. The results are 
displayed in Figure 2—figure supplement 3 for varying numbers ‍N ‍ of neurons per module around 
our estimated value ‍N = 2 × 104‍. In this figure and following ones, we plot the excitatory current in 
the excitatory population as a simple proxy for the LFP in the model. We refer to it as the model 
‘proxy-LFP’ in the following. For the parameters SN (Figure 2—figure supplement 3a and b), the 
model LFP power spectrum amplitude decreases with the number of neurons, but in the whole range 
‍N = 2 × 103 − 2 × 105‍, the power spectrum shape is invariant and accurately coincides with the one 
obtained mathematically by a linear analysis (Equation 51). Compared to the experimental LFP power 
spectra (Figure 2d and Figure 2—figure supplement 1d), the peak around beta frequencies is less 
pronounced; furthermore, the power spectrum misses the trough and enhancement for frequencies 
lower than beta frequency observed in the recordings. For the (oscillatory) ON model (Figure 2—
figure supplement 3j and k), the power spectra are more strongly peaked than the experimental 
ones, with in addition a notable peak at the harmonic frequency of ∼50 Hz coming from the non-
sinusoidal shape of the oscillations (Figure 1c and d). This indicates that in either the SN or the ON 
model, intrinsic fluctuations are not sufficient to account for the experimental spectra of Figure 2d 
and Figure 2—figure supplement 1d.

Besides intrinsic dynamical fluctuations, it is likely that fluctuations in the motor cortex arise from 
time-varying inputs coming from other cortical areas or extra-cortical structures, or a mixture of the 
two. In absence of specific data, we model these as fluctuating inputs with a finite correlation time, 
more precisely as Ornstein–Uhlenbeck processes with a relaxation time ‍τext‍ (‘Methods’) and refer to 
them simply as ‘external inputs.’ The network dynamics also depend on the way these external inputs 
target the motor cortex. Are they essentially independently targeting local areas or do they target 
the motor cortex in a more globally synchronized manner? Again in the absence of specific measure-
ments, we suppose that the external inputs comprise a mixture of global inputs that provide a fraction 
‍c‍ of the power, and independent local inputs that provide the remaining fraction ‍1 − c‍ (see ‘Methods).

With this simple description, external inputs are characterized by three parameters: their ampli-
tude ‍νext‍, their correlation time ‍τext‍, and the fraction ‍c‍. We set out to determine these parameters by 
comparison with the single-electrode LFP trace and with the cross-correlation between the LFP traces 
of different electrodes.

The single-electrode power spectra and the single-electrode oscillation depend little on the frac-
tion ‍c‍, we thus consider them first (Figure 2—figure supplement 3).

The inclusion of external fluctuations increases the lower frequency part of the power spectra. 
It also comparatively decreases the power at frequencies higher than beta frequencies as soon 
as the fluctuation correlation time is in the few tens of millisecond range as shown for models SN 
(Figure 2—figure supplement 3c–f) and ON (Figure 2—figure supplement 3l–o). The amplitude 
of external fluctuations should be large enough for their effect to be of larger magnitude than the 
one produced by intrinsic fluctuations namely ‍νext > 0.2‍ Hz. For the SN model, it should also be small 
enough (‍νext < 3‍ Hz), not to produce a secondary power enhancement at double the beta frequency 
as shown in Figure 2—figure supplement 3c. In this range of amplitudes, the power spectrum shape 
is independent of the external fluctuation amplitude ‍νext‍ after normalization and corresponds to the 
mathematical expression (Ozeki et al., 2009; Figure 2—figure supplement 3d). For the ON model, 
a sharp secondary peak at twice the beta frequency is present at low external fluctuation amplitude 
(Figure 2—figure supplement 3l). When the external fluctuations are stronger, this peak is blurred 
and becomes a wide power enhancement around twice the beta frequency for ‍νext ∼ 3‍ Hz (Figure 2—
figure supplement 3f and o), comparable to the one seen for the SN model at the same external 
fluctuation amplitude (Figure 2—figure supplement 3c). The external amplitude fluctuations also 
produce the power spectrum trough and enhancement observed at lower frequencies in experimental 
recordings (Figure 2d and Figure 2—figure supplement 1d) when their correlation time is not too 
short (Figure 2—figure supplement 3e–f and n–o).

Examination of the burst durations and amplitudes provides further information and constraints 
on the parameters. For both SN and ON models, the burst mean duration grows with the input 
correlation time ‍τext‍ (Figure 2—figure supplement 3g and p) while it is weakly dependent on the 
input fluctuation amplitude ‍νext‍ (Figure 2—figure supplement 3i and r). For the SN model, the input 
fluctuation amplitude ‍νext‍ does not strongly affect the burst amplitude and duration distributions 

https://doi.org/10.7554/eLife.81446
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(Figure 2—figure supplement 3h–i). Their shapes are moreover close to the experimentally observed 
ones (Figure 2e and f). On the contrary, for the ON model, the shape of the burst amplitude distribu-
tion strongly depends on the amplitude ‍νext‍ (Figure 2—figure supplement 3q). It is only for large ‍νext‍ 
that the shape is close to the one obtained for the SN model and resembles the experimental one. 
The coincidence of the SN and ON distributions, as for the power spectra, is indeed expected when 
the fluctuations are large enough as compared to the difference between their reference parameters. 
Since the ON network appears potentially relevant only for large fluctuations, when the distinction 
before the two network set points is not meaningful, we focus in the following on a network at the set 
point SN, that is fluctuating around a non-oscillatory set point.

Figure 2i–n and Figure 2—figure supplement 1i–n show the results of model simulations for the 
SN model with a relaxation time ‍τext = 25‍ ms and ‍νext = 3‍ Hz. Both LFP power spectra and beta burst 
duration as well as amplitude distributions closely resemble the experimental ones.

Having reproduced the single-electrode characteristics of the recording, we turn to the equal-time 
correlation between signals on different electrodes. As shown in Figure 2g and Figure 2—figure 
supplement 1g, the correlation between two neighboring electrodes is lower than the autocorrela-
tion of a single-electrode LFP, namely, its variance, but is comparable to the correlation between 
more distant electrodes. Namely, part of the LFP signal is strongly synchronized between distant elec-
trodes. This is not the case in the model if the external inputs on different modules are uncorrelated, 
that is, for ‍c = 0‍. At the other extreme, when ‍c = 1‍, the signals are much more correlated than in the 
data. As shown in Figure 2o, it is only when the external inputs are almost equally split between 
local and global contributions that the model correlations are comparable to the experimental ones. 
For monkey L (N), the value ‍c = 0.4‍ (‍c = 0.3‍) is found to provide the best match. (Note that for the 
comparison with monkey N, we also use slightly changed synaptic couplings SN’ that lead to a slightly 
lower peak beta oscillation frequency in accordance with experimental data, see Table 1 for retained 
parameter values.) The autocorrelation of the single-electrode LFP (Figure 2h and Figure 2—figure 
supplement 1h for monkeys L and N, respectively) is also well accounted for by the model (Figure 2p 
and Figure 2—figure supplement 1p for parameters SN and SN’, respectively).

Figure 2 and Figure 2—figure supplement 1 provide a comparison between the experimental 
data for the two monkeys and the model at points SN and SN’, respectively, with the determined 
characteristics of the external inputs. The model clearly accounts well for the data characteristics, as 
quantified by the power spectra, burst duration, and amplitude distributions and correlation between 
different electrodes.

This leads us to investigate how the model compares to the data for other spatio-temporal charac-
teristics of the LFP signals, namely, traveling waves of activity of different types and their characteristics.

Traveling waves of different types
Several groups have reported traveling waves on the motor cortex during the preparatory phase of the 
movement in instructed-delay reaching tasks. In the early study of Rubino et al., 2006, planar waves 
of beta oscillations in multielectrode LFP recordings were described. Later works (Rule et al., 2018; 
Denker et al., 2018) have classified the spatio-temporal beta oscillations recorded by multielectrode 
arrays into different states. Here, we use the data of Brochier et al., 2018 and closely follow the 
classification scheme proposed by these authors (Denker et al., 2018), distinguishing periods with 
planar (Pla.) or radial (Rad.) waves, as well as globally synchronized (Syn.) episodes and more random 
(Ran.) appearing states. The classification criteria for these four states are based on the instantaneous 
phase and phase gradient spatial distributions as precisely described in ‘Methods.’ In short, negligible 
phase delays between electrodes characterize the synchronized state. In the other states, the oscil-
latory activities of some electrodes have significant phase differences and give rise to spatial phase 
gradients. The phase gradients are tightly aligned for planar waves, pointing inward or outward for 
radial waves, or are more disordered in the remaining ‘random’ category. We apply the exact same 
analysis to the experimental recordings and our model simulation data (Figure 3—figure supplement 
1 and ‘Methods’).

Figure 3a provides one example of a planar wave in monkey L recordings (Brochier et al., 2018) 
with the narrow distribution of phase gradient directions shown in Figure 3b. An example of a radial 
wave is shown in Figure 3c with its outward pointing phase gradients shown in Figure 3d. Analogous 
examples for monkey N are shown in Figure 3—figure supplement 2.

https://doi.org/10.7554/eLife.81446
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Figure 3. Waves in recordings and in model simulations. (a–f) Monkey L recordings (Brochier et al., 2018), (g–l) Model simulations with SN parameters. 
(a) Snapshot of a planar wave. The phases of the LFP on the different electrodes are shown in color. Smoothed phase isolines are also shown (thin lines). 
(b) Distribution of phase gradients on the multielectrode array in (a). Note the high coherence of the phase gradients (‍σg = 0.61‍). (c) Example of a radial 
wave with LFP phases and isolines displayed as in (a). (d) Corresponding distribution of phase gradients (‍σg = 0.13‍). (e) Distribution over time and trials 
of measured planar wave speeds. (f) Proportion over time and trials of planar (Pla.), synchronous (Syn.), radial (Rad.), and random (Ran.) wave types. 
(g–l) Corresponding model simulations. (g) Snapshot of a planar wave showing the ‍IE‍ phases of different modules. (h) Distribution of ‍IE‍ phase gradients 
(‍σg = 0.51‍) in (g). (i) Snapshot of a radial wave. (j) Distribution of phase gradients in (i) (‍σg = 0.13‍). (k) Distribution of planar wave speeds. (l) Proportions 
of different wave types.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Data analysis protocol.

Figure supplement 2. Waves in model simulations and in recordings for monkey N.

Figure supplement 3. Variation of wave type distribution and planar wave speed with the amplitude of the external input fluctuations (‍νext‍).

Figure supplement 4. Waves statistics in monkey L recordings.

Figure supplement 5. Waves statistics in SN model simulations.

Figure supplement 6. Waves statistics in monkey N recordings.

Figure supplement 7. Waves statistics in SN’ model simulations.

Figure supplement 8. Simulation of the model of Figure 3 with periodic boundary conditions.

Figure supplement 9. Intrinsic stochasticity without local inputs.

Figure supplement 10. Proportion of different waves for shuffled signals.

Figure supplement 11. Model with no propagation delay.

Figure supplement 12. Variation of the excitatory connectivity range, ‍l‍, in the model of Figure 3—figure supplement 11.
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For a traveling wave of oscillatory activity at frequency ‍f ‍, the local phase velocity is directly related 
to the inverse of the local phase gradient ‍∇ϕ‍. Following previous works (Rubino et al., 2006; Rule 
et al., 2018; Denker et al., 2018), we define the average wave speed in the presence of phase gradi-
ents varying from electrode to electrode as

	﻿‍
v = 2πf∑

x,y |∇ϕ(x, y)|/N ‍
 
�

(1)

where the denominator is the gradient magnitude averaged over all ‍N ‍ electrode positions. We refer 
to ‍v‍ simply as the wave speed. The distribution of observed planar wave speeds is shown in Figure 3e. 
The median planar wave speed is about 30 cm/s but it should be noted that the distribution includes 
also events with much smaller velocities. The proportion of the different wave types is depicted in 
Figure 3f.

Can these data be accounted for by our model network? As discussed in the previous section, 
the single electrode LFP data and their correlations determine the correlation time (‍τext‍) of the fluc-
tuating inputs and their repartition (‍c‍) between global and local inputs, but do not tightly constrain 
their amplitude. We thus performed a series of model simulations with different input amplitudes ‍νext‍ 
for the SN model as summarized in Figure 3—figure supplement 3a. The four wave states can be 
observed for most ‍νext‍. Examples of planar and radial waves are provided in Figure 3g–j. However, the 
proportion of the different wave types and the planar wave speeds greatly vary with ‍νext‍ (Figure 3—
figure supplement 3). In the SN model, the input fluctuations promote oscillations. The stronger the 
amplitude ‍νext‍, the more developed the oscillations in neural activity and the better they synchronize. 
Thus, increasing the noise amplitude first increases the proportion of synchronized activity and the 
propagation speed of planar waves. At higher noise amplitudes, the desynchronizing effect of noise 
counteracts its oscillation-promoting effect and the wave speed decreases with increasing input ampli-
tude. This leads in the SN model for ‍νext‍ in the range ‍1 − 3‍ Hz to a proportion of a planar wave states of 
a few percent with a planar wave speed of about 30 cm/s, as observed in the experimental recordings 
(Figure 3e–f). As a consequence, the proportion of planar and radial waves as well as synchronized 
activity increases with ‍νext‍. The effect of increasing the amplitude of the input fluctuations is quite 
different for the ON model (Figure 3—figure supplement 3b). In this case, the oscillatory activity is 
self-generated and the oscillations between different modules are well-synchronized without fluctu-
ating inputs. The local inputs tend to desynchronize the different modules and create oscillatory phase 
differences between them. The proportion of fully synchronized states thus decreases with increasing 
‍νext‍. The speed of planar waves that is inversely proportional to the magnitude of phase gradients 
(Equation 1) also decreases. For an input fluctuation amplitude ‍νext = 3‍ Hz, the SN model agrees well 
with the distribution of observed wave speeds and the repartition between the different wave types 
for monkey L as shown in Figure 3, although radial waves seem somewhat underrepresented in the 
model network. This is also the case for monkey N as shown in Figure 3—figure supplement 2. The 
detailed statistics of the duration, wave speeds, oscillation amplitude, and frequency for the four 
wave states are detailed in Figure 3—figure supplement 4 and Figure 3—figure supplement 5 for 
monkey L recordings and the SN model and in Figure 3—figure supplement 6 and Figure 3—figure 
supplement 7 for monkey N recordings and the SN’ model. The SN model simulated in Figure 3 and 
Figure 3—figure supplement 5 is taken as our reference model in the following and referred to as 
such. All its parameters are provided in Table 1.

The model and the simulation results suggest that the observed spatio-temporal patterns arise 
from the opposing effects of synchronization by long-range excitatory connectivity and global inputs 
and desynchronization by local inputs and the intrinsic stochasticity arising from the finite number of 
neurons in each module.

Before proceeding, it appears worth discussing and scrutinizing different aspects of our simula-
tions. At a technical level, the simulation results come from the central 10 × 10 modules of a larger 24 
× 24 grid with fixed boundary conditions (Figure 1—figure supplement 2 and ‘Methods’). In order 
to test the effect of the boundary conditions on the results, we performed a set of simulations and 
measurements with the same setting but with periodic boundary conditions. As shown in Figure 3—
figure supplement 8, this did not significantly change the auto- and cross-correlations of module 
activities, nor the distributions of different wave types or of planar wave speeds. Therefore, one can 
conclude that the results are not dependent on the implemented boundary condition.

https://doi.org/10.7554/eLife.81446
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At a more conceptual level, one can wonder whether all the model components are necessary. A first 
natural question is whether intrinsic stochasticity would be enough to create spatio-temporal patterns 
similar to experiments without the necessity for desynchronization coming from local inputs. In order 
to address this possibility, we performed a set of simulations without local inputs. We increased the 
intrinsic noise as compared to our reference model (‍N = 20000‍) by lowering the numbers of neurons 
per module. As shown in Figure 3—figure supplement 9, for a number of neurons of ‍N = 2000‍ (or 
higher) per module, the dynamics is too synchronized to account for the experimental data, the cross-
correlation of the activity of different modules is very high even for distant modules and the speed 
of propagation of planar waves is also quite high. If the amplitude of the fluctuating global inputs to 
the network is decreased to ease the desynchronization of different modules, the network stays too 
close to the operating point SN and planar waves are no longer seen (not shown). Results comparable 
to our reference model can only be obtained when the number of neurons per module is lowered 
to ‍N = 200‍ (Figure 3—figure supplement 9a–d). This of course would be quite a low number for 
the ‍0.1 − 0.2‍ mm2 area of motor cortex that each module is meant to represent, even if restricted to 
the cortical layers (e.g., II/III) where the dynamics could mainly take place. We found in a previous 
work (Kulkarni et al., 2020) that our reduced description of local noise (Equation 10 and ‘Methods’) 
agreed well with simulations of spiking networks with dense local connectivity and sparse long-range 
connectivity. Whether our description of intrinsic stochasticity underestimates the fluctuations in a 
more sparsely connected network would have to be checked by large direct numerical simulations of 
spiking networks. Even if this was the case, the very low number of neurons in a module that we found 
to be necessary to reproduce the experimental recordings would still support the role of local inputs 
in creating dephasing between different local regions of motor cortex and planar waves.

A second legitimate question concerns the role of spatial correlations, produced by the connec-
tivity spatial structure, in the observed spatio-temporal dynamics. Could the results be simply the 
product of random fluctuations in the activities of different modules? In order to address this ques-
tion, we simulated the model of Figure 3 and shuffled the proxy-LFP signals of the different modules 
after the simulation. We then reclassified the different types of waves in the shuffled signals. As a 
comparison, we followed the same procedure for the recordings of monkey L, namely, we classified 
the occurence of different types of waves after shuffling the LFPs recorded on different electrodes. 
The results are shown in Figure 3—figure supplement 10 and very similar for the simulations and 
the experimental recordings. Shuffling has little effect on the proportion of synchronized and random 
waves. This is intuitively understandable since synchronized signals remain synchronized after shuf-
fling, and shuffling cannot synchronize unsynchronized signals. More interestingly, shuffling entirely 
suppresses the appearance of planar waves. Therefore, the spatial correlation of different electrode 
signals, a reflection of the underlying long-range connectivity, is crucial for the appearance of planar 
waves. This conclusion is further supported by varying the connectivity range as described below.

Properties of planar waves and characteristics of their inputs
The presence of planar waves is one remarkable feature of the multi-electrode recordings. It is thus 
worth analyzing some of their properties in the model.

The mean speeds of planar waves in the recordings and in the model are of a few tens of cm/s 
(Figure 3e and k and Figure 3—figure supplement 2e and k), which is comparable to the propa-
gation speed along non-myelinated horizontal fibers (González-Burgos et al., 2000; Girard et al., 
2001). One might thus think that both are tightly linked. This is actually not the case. An equally good 
agreement with the recording data can be found in the model in the absence of propagation delay, 
that is, for ‍D = 0‍. The corresponding wave pattern statistics are shown in Figure 3—figure supple-
ment 11, and agree as well as the model with delay with the data for monkey L (Figures 2 and 3).

One can wonder how the range ‍l‍ of long-range excitatory connections influences planar wave 
appearance and properties. This is more easily addressed in the absence of propagation delay (‍D = 0‍) 
since, in this case, with other parameters fixed, the operating point of the network (Figure 1b) does 
not change when ‍l‍ is varied, which is not the case when propagation delays are significant. The results 
of simulations for different ‍l‍ in the model of Figure 3—figure supplement 11 are shown in Figure 3—
figure supplement 12.

First, when long-range excitatory connections are absent (‍l = 0‍), both synchronized states and 
planar waves are absent and replaced by random states (Figure 3—figure supplement 12a). This is 

https://doi.org/10.7554/eLife.81446
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linked to the significant decrease in the correlation of the activities of different modules, shown by the 
cross-correlation plots in Figure 3—figure supplement 12a. This confirms that long-range excitatory 
connections are required for planar wave existence.

Second, when ‍l‍ is halved (Figure 3—figure supplement 12b) as compared to the reference model 
of Figure 3 (i.e., ‍l = 1‍ in module distance units or 400μm in real units), both synchronized states and 
planar waves exist but in reduced proportions as compared to the reference case. Correlatively, the 
proportion of random states increases. The speed of planar waves is also strongly reduced.

Finally, when ‍l‍ is increased by 50% (Figure 3—figure supplement 12c) as compared to the refer-
ence model, synchronization between distant modules is increased, the synchronized regime prevails 
and planar wave occurrence is reduced.

Synchronized and random states are much more prevalent than planar waves and the number of 
these two types of patterns is comparable (‍N = 3906‍ synchronized events vs.‍N = 4293‍ random events 
in 72 simulations of 10 s duration each). It is interesting that planar waves predominantly arise from 
synchronized states and moreover that synchronized states tend to persist in the background of planar 
waves. Namely, of 421 planar waves in SN model simulations that started after a synchronized state, 
364 (resp. 57) were followed by a synchronized state (resp. random state), clearly a much greater 
proportion than if the ending state was drawn at random (‍p = 3 × 10−57

‍). In contrast, of the 161 planar 
waves that started from a random state, 92 (69) ended in a random (synchronized) state, a proportion 
compatible with random draw (‍p = 0.22‍).

It is difficult to decipher the structure of the inputs associated to planar waves from the existing 
experimental recordings. The model allows one to more easily address this question for the simu-
lations. To this end, different planar waves episodes in the reference model of Figure 3 were aver-
aged after aligning their oscillatory phase maps, as described in ‘Methods.’ In brief, the different 
events were shifted in time, so that to make their phases at at half-duration coincide, and, where 
space-dependent maps of planar waves were considered, rotated in space to make the wave 
direction coincide. This was similarly performed for the experimental recordings. The structure 
of the mean planar wave obtained by averaging planar wave events propagating along the prin-
cipal four axis of the grid is shown in Figure  4. The average phase (Figure  4a) and proxy-LFP 
(Figure 4b) clearly show the planar wave propagation. Similar mean spatio-temporal phase maps 
are obtained by distinguishing three groups of planar wave velocities before averaging (Figure 4—
figure supplement 1).

We furthermore aligned planar wave events in time based on wave onset. This temporal alignment 
procedure can be used to compute the average parameter ‍σp‍, quantifying synchronization between 
different module activities (‘circular variance of phase,’ see Equation 6 in ‘Methods’), associated to 
the average planar wave around wave onset. As shown in Figure 4c, ‍σp‍ rises just before the planar 
wave to reach a high synchronization value. Similar phase and LFP profiles are obtained with exper-
imental data (Figure 4—figure supplement 2a and b) together with the rise of the synchronization 
parameter ‍σp‍ (Figure 4—figure supplement 2c).

The average inputs on the modules, which are unavailable in the recordings, can be computed in 
the model. The global input to the whole network is found to be shifted to negative values before the 
appearance of a planar wave (Figure 4d), effectively reducing the drive to both the excitatory and the 
inhibitory populations of all modules and pushing the network towards its self-sustained oscillating 
regime (see Figure 1f). When the local inputs are averaged in the same manner, no significant feature 
emerges. This is presumably due to the large variability of local input patterns that can give rise to a 
planar wave.

In order to go beyond correlation and test whether a shift of global inputs can help create 
planar waves, we performed simulations of the reference model in which, in addition to the fluc-
tuating local and global inputs (Figure 4e), steps of current were injected in all modules of the 
network, as depicted in Figure 4f and g. The current steps were chosen of a duration of 50 ms and 
of an amplitude comparable to the global input shift associated to planar waves. The injection of 
these current steps resulted in a 50% increase of the number of planar wave episodes (Figure 4f). 
This was not simply a result of the perturbation of the network since injection of steps with the 
opposite sign of the injected current on the contrary strongly reduced the appearance of planar 
waves (Figure 4g).

https://doi.org/10.7554/eLife.81446
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Figure 4. Average planar wave characteristics and the role of global inputs. (a) Average phase, (b) average 
excitatory current ‍IE‍ (proxy-LFP), (c) average synchronization parameter ‍σp‍, and (d) average global external input. 
For (a, b), planar waves were aligned in time by matching their average phases around mid-event, and rotated 
to make wave directions coincide (see ‘Methods’). The time ‍t = 0‍ corresponds to zero average phase. For (c, 
d), planar waves were aligned in time based on wave onset (vertical dashed blue line), corresponding to time ‍t = 0‍ 
in these panels. (e–g) Stimulation by global currents modifies planar wave proportion (top). Typical traces of the 
global inputs including the fluctuating part and the additionally injected current for the three cases are shown in 
the graphs below (purple lines); periods of injection are shown as shaded areas and injection strength is indicated 
by the blue bars. (e) Without additional stimulation, the mean number of planar wave events per simulation is 

‍Npw = 6.4 ± 2.3‍ with a mean duration of each event  ‍Dpw = 42.2 ± 38.7‍ ms (‍N = 10‍ simulations of 10 s each). (f, 
g) Wave proportions with injected current. (f) Negative stimulation with an amplitude comparable to that observed 
in (d) produces a greater number of planar wave events ‍Npw = 9 ± 2.6‍ (‍N = 10‍, ‍p = 0.04‍ one-tailed Welch’s 
t-test), mean duration of planar wave events ‍Dpw = 43.5 ± 37.8‍ ms. (g) Positive stimulation decreases the number 

Figure 4 continued on next page
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Synaptic connection anisotropy and planar wave propagation direction
Our model network provides a satisfactory description of LFP correlations and wave statistics in the 
data of Brochier et al., 2018 when averaged over directions. The long-range synaptic connection 
probability that we implemented decreases with distance and is independent of orientation. With 
this choice, we checked that the direction of observed planar waves does not significantly depend on 

Figure 5. Influence of anisotropy of connectivity or local inputs on planar wave propagation direction. (a–f) Effect of anisotropic recurrent connectivity. 
(a–c) Model simulations with an isotropic connectivity as in the previous figures. (d–f) Model simulations with an anisotropic connectivity. (a, d) The 
function ‍C(x, y)‍ is shown (with ‍x‍ arbitrarily chosen at position (7,6)). (b, e) Proportion of different wave types. (c, f) Distribution of propagation 
directions of planar waves. In (f), the planar waves predominantly propagate along the x-axis, the axis along which ‍C‍ decreases the fastest. (g–l) Effect 
of anisotropy of local inputs. (g–i) Model simulations with isotropic local inputs. This is similar to previous figures with the difference that local inputs 
targets adjacent modules weighted by a Gaussian kernel ‍G(x, y)‍ (Equation 22). (j–l) Model simulations with anisotropic local inputs. (g, j) The function 

‍G(x, y)‍ is shown (with ‍x‍ arbitrarily chosen at position (7,6)). (h, k) Proportion of different wave types. (i,l) Distribution of propagation directions of planar 
waves. In (l), the planar waves predominantly propagate along the x-axis, the axis along which ‍G‍ decreases the fastest.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model with a generalized description of local inputs.

of planar waves events ‍Npw = 2.8 ± 1.9‍, (‍N = 10‍, ‍p = 0.003‍ one-tailed Welch’s t-test), mean duration of planar 
wave events ‍Dpw = 25.4 ± 24.7‍ ms. The proportion of the different wave types is shown in the three cases.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Average planar wave spatio-temporal phase maps.

Figure supplement 2. Average spatio-temporal planar wave maps for monkey L recordings.

Figure 4 continued
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orientation as shown in Figure 5a–c (namely, the anisotropy created by our choice of a rectangular 
grid is weak). However, it was reported by Rubino et al., 2006 that waves tend to propagate along 
preferred axes on the cortical surface with respect to sulcal landmarks and that the orientation of the 
preferred axes of propagation also vary between different regions, for example, between primary 
motor cortex and dorsal premotor cortex. For a given preferred axis, propagation in both directions 
was observed, for example, both rightward and leftward propagating waves were recorded. In order 
to investigate the possible origin of this observation, we assessed the effect of introducing some 
anisotropy in our model. We considered two simple possibilities, namely, that intrinsic connectivity 
was anisotropic or that local inputs target the motor cortex in an anisotropic manner (Figure 5). We 
consider them in turn.

First, in order to analyze the effect of anisotropic connectivity in our model, we simulated a modi-
fied version of the model in which the connectivity was of twice longer range in the y-direction than in 
the x-direction, as illustrated in Figure 5d. This did not change much the distribution of the observed 
wave types (Figure 5e). In contrast, Figure 5f shows the measured distribution of the directions along 
which planar waves propagate when connections are anisotropic. The fractions of waves propagating 
along the x- and y-axis are clearly different. There is a large predominance of waves observed to prop-
agate along the x-axis, namely, along the axis where the connectivity is shorter range. Longer-range 
connectivity promotes longer-range synchronization along the y-axis and synchronized states. The 
weaker connectivity along the x-axis allows for the formation of the larger phase gradients along the 
x-axis and planar waves.

Second, we wished to analyze the effect of a possible anisotropy of the local input spread. In our 
reference model, local inputs target only one module. In order to be able to introduce anisotropy, 
we first generalized the local input description. We considered the case where local inputs predomi-
nantly target a given module at position ‍x‍ but also the neighboring ones, at positions ‍y‍, with smaller 
weights as described by a kernel function ‍G(x, y)‍ (Equation 22 and ‘Methods’). As for connectivity, ‍G‍ 
was taken to be Gaussian. Simulation results for an isotropic ‍G‍ of range ‍l(I)‍ are shown in Figure 5g–i 
and Figure 5—figure supplement 1. When ‍l(I)‍ is large enough so that local inputs significantly target 
neighboring modules, it has a strong synchronizing effect as seen both in the large proportion of 
synchronized states and the high cross-correlation of the activity of different modules (Figure 5—
figure supplement 1a and b for ‍l(I) = 2‍ in grid units or 800 μm in real units and Figure 5—figure 
supplement 1c and d for ‍l(I) = 1‍ or 400 μm in real units). For local inputs of narrower footprints 
(Figure 5g–i and Figure 5—figure supplement 1e and l for ‍l(I) = 0.5‍ or 200 μm in real units), the 
results are analogous to the ones obtained with our reference model, as intuitively expected.

With this generalized description of local inputs, we can now consider an anisotropic kernel ‍G(x, y)‍ 
(Equation 22) so that local input targeting is more spread out in one direction than in the orthog-
onal one. This is represented in Figure 5j for the case that we simulated where local inputs are more 
spread out in the y-direction (‍l

(I)
y = 1‍ or 400 μm in real units) than in the x-direction (‍l

(I)
x = 0.5‍ or 200 μm 

in real units). This anisotropic targeting of local inputs produces a clear anisotropy in the distribution 
of planar wave propagation directions, as shown in Figure 5l. Planar waves preferentially propagate 
along the x-axis where the inputs are confined to a narrower region and gradients in the phase of the 
oscillatory activity are more easily produced.

Thus, both anisotropy in connectivity and in the targets of local inputs can produce an anisotropy 
in wave speed direction. However, Gatter et al., 1978 reported a more spatially extended connec-
tivity in layers 2/3 and 5 of motor cortex in non-human primates in the rostro-caudal direction. Rubino 
et al., 2006 found that planar waves predominantly propagated along the same rostro-caudal axis. 
Given our results, this argues against connectivity anisotropy being the dominant factor determining 
planar wave speed direction. It remains to be investigated whether local input targets are more spread 
out along the medio-lateral dimension, as the model suggests.

Discussion
We have proposed and studied here a simplified model of the motor cortex based on local recur-
rent connections coupling excitatory and inhibitory neuronal populations together with long-range 
excitatory connections targeting both populations. This builds on previous works describing beta 
oscillations in motor cortex as arising from recurrent interactions between excitatory and inhibitory 
populations (Pavlides et al., 2015; Sherman et al., 2016; Chen et al., 2020). Of note, the model of a 
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single E-I module of Sherman et al., 2016 includes two layers of hundred multi-compartment spiking 
neurons to approximately take into account the layered structure of the cortex and allow a detailed 
comparison with MEG signals. In a complementary fashion, our model uses a simpler description of 
an E-I module but goes beyond these previous works by taking into account long-range interactions 
and analyzing the resulting spatio-temporal patterns.

The well-known oscillatory instability of coupled E-I networks is not qualitatively modified by the 
presence of long-range connections and the model displays an instability leading to sustained oscilla-
tory behavior. These oscillations occur at beta frequency for adequate synaptic parameters. Compar-
ison with available data has led us to conclude that the motor cortex operates close to this beta 
oscillatory instability line under strong fluctuating inputs from other areas. This constantly displaces 
the operating point of the dynamics and leads to waxing and waning of beta amplitude oscillations. 
A similar proximity of an oscillatory regime has been proposed for the bursts of beta oscillations in 
the basal ganglia using different models (Rubchinsky et al., 2012; Bahuguna et al., 2020). Analysis 
of this oscillatory behavior in time and across electrodes has led us to infer the characteristics of the 
appropriate external inputs. The observed power enhancement on the low frequency-side of the 
beta peak requires that their time correlation is not too short on a 10 ms scale while the duration of 
the observed oscillation bursts requires that it is not too long on the same time scale. In an analo-
gous way, the external input amplitude should be, on the one hand, sufficiently large to significantly 
modify the LFP characteristics above the background of intrinsic local fluctuations arising from the 
finite number of neurons sampled by each electrode. On the other hand, it should be small enough to 
preserve the harmonicity of beta oscillations, as indicated by the absence of a significant secondary 
50–60 Hz peak in the LFP spectra. The spatial correlation of beta oscillations at the millimeter distance 
scale has furthermore led us to suggest that the motor cortex receives inputs that target local areas 
but also synchronous inputs that target it more globally. Under these conditions, traveling waves of 
different kinds are observed that resemble those recorded in vivo both in their repartition between 
the different wave types and their speeds of propagation. Characterization of the inputs onto motor 
cortex during movement preparation is needed to test these theoretical predictions.

Propagating waves of neural activity have been observed in different contexts (Ermentrout and 
Kleinfeld, 2001; Muller et al., 2018). Some are unrelated to neural oscillations such as subthreshold 
waves (Bringuier et al., 1999) or propagation of spiking activity in visual cortex (Davis et al., 2020). 
Others are based on oscillatory activity with proposed mechanisms relying on a gradient of frequen-
cies (Ermentrout et al., 1998) or structural sequences of activation (Muller et al., 2016). The traveling 
waves and the mechanism here proposed to underlie them are quite different. They are obviously 
based on the existence of oscillations since the traveling waves are a reflection of different phases 
of oscillation at different positions on motor cortex. The model we have developed here includes 
structural connectivity that tends to synchronize oscillations at different positions, but the stochastic 
external inputs play an essential role in creating dephasings between different locations. The wave 
propagation speeds are found to be rather low and distributed in the few tens of cm/s. The mean 
speed of about 30 cm/s is comparable to the propagation speed along non-myelinated horizontal 
fibers (González-Burgos et al., 2000; Girard et al., 2001). However, we have found that it is actually 
independent of it, as a comparable distribution of traveling speeds is found in a model with no prop-
agation delays. This stands, for instance, in sharp contrast with a recent model of the propagation of 
spiking activity in visual cortex (Davis et al., 2021), which does not involve oscillatory activity but also 
takes into account strong local fluctuations of neural activity. In the present context, the observed 
speeds of the oscillatory waves of activity are set by the oscillatory frequency and by the dephasings 
produced by the external inputs in the recorded area.

We have proposed that external inputs have both local and global components. The existence 
of a global component appears consistent with the presence of global inhibition in motor cortex 
during movement preparation (Greenhouse et al., 2015). The model ‘external inputs’ could repre-
sent direct inputs from different neural structures, including other cortical areas such as frontal and 
parietal cortex (Davare et al., 2011), and extra-cortical ones like the thalamus (Hooks et al., 2013), 
or a mixture of the two. The known thalamo-cortical connectivity (Jones, 2001) makes the thalamus 
a privileged candidate for the origin of, at least, part of these external inputs. Indeed the described 
diffused connectivity from calbindin-positive matrix neurons could be the source of our global inputs 
while core parvalbumin-positive neurons could be the source of our local inputs. This requires further 
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experiments assessing the origin of synaptic inputs and their influence on waves and wave types. We 
have moreover suggested that the observed anisotropy of wave propagation is linked to the anisot-
ropy of local input targets, with the specific prediction that traveling waves of oscillatory activity are 
predominantly observed orthogonal to the axis where they are more spread out. This also needs to 
be tested in further experiments.

The model suggests that inputs to the motor cortex play an important role in the generation of 
beta oscillations and of spatio-temporal patterns during movement preparation. The experimental 
measurement of these inputs and their correlations at different locations thus appears an important 
research direction. Do synchronized inputs target distant locations of motor cortex? Does a a shift of 
these global inputs accompany the birth of planar waves as we have found in the model? Perturba-
tion experiments, for instance, by optogenetic means, would also bring important information. Can 
sustained beta oscillations be induced by mild inhibition of pyramidal cells and interneurons? The 
model furthermore suggests that such perturbations applied in a transient way would enhance the 
appearance of planar waves.

Finally, the role of traveling waves during movement preparation remains an important question 
that needs to be clarified. We have shown that a stochastic description of the inputs to the motor 
cortex is sufficient to account for the recordings. However, the produced traveling waves are correlated 
with the particular inputs that the motor cortex receives. Indeed, traveling waves have been shown 
to carry information about the subsequent movement (Rubino et al., 2006). Movement preparation 
is presently viewed, in a dynamical systems perspective, as taking place in a subspace orthogonal to 
the dynamics of the movement itself and producing the proper initial condition for it (Kaufman et al., 
2014; Wang et al., 2018; Zimnik and Churchland, 2021; Inagaki et al., 2022; Bachschmid-Romano 
et al., 2022). Beta oscillations and their associated timescale are however absent from this descrip-
tion. Further work is needed to refine it and include beta oscillations and waves and obtain a more 
comprehensive description of motor cortex dynamics.

Methods
Recording data
We analyzed the data that was made publicly available and described in detail in Brochier et al., 
2018. We content ourselves here to describe their main features for the convenience of the reader. 
The data were obtained from two macaque monkeys (L and N) trained to perform one of four move-
ments at a GO signal. In brief, in each trial, the animal was presented for 300 ms with a visual cue that 
provided partial information on the movement to be performed. It had to wait for 1 s, before the GO 
signal that also brought the missing information about the rewarded movement. The different phases 
of a trial are depicted in Figure 1—figure supplement 1. The neural activity was recorded during the 
task with a 10 × 10 square multielectrode Utah array, with neighboring electrodes separated by 400 
μm, implanted in the primary motor cortex (M1) or premotor cortex contralateral to the active arm. 
We make use of two published recording sessions (one for monkey L of 11:49 min/135 correct trials, 
one for monkey N of 16:43 min/141 correct trials) as fully detailed in Brochier et al., 2018.

Data analysis
An overview of our data analysis protocol is provided in Figure 3—figure supplement 1. The different 
steps are detailed below.

Data filtering
The index of each electrode in the data (Figure  2—figure supplement 2) was matched to the 

‍(x, y)‍-position of the electrode in the data that we use in the following. The few missing electrode 
signals were replaced by the average of the neighboring electrode signals. The followings steps were 
applied to the so obtained ‍N = 100‍ electrode signals. The LFP signal of each electrode was band-
pass filtered in the 13–30  Hz range using a third-order Butterworth filter (signal.filtfilt function of 
the Python package scipy). The filtered signal of each electrode was then z-score normalized and 
Hilbert-transformed, using the scipy Hilbert transform function signal.hilbert to obtain its instanta-
neous amplitude ‍Axy(t)‍ and phase ‍Φxy(t)‍ (Figure 2—figure supplement 2). The instantaneous maps 

‍Axy(t)‍ and ‍Φxy(t)‍ were used for beta burst and wave pattern detection, respectively.
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Beta burst analysis
For each electrode amplitude time trace ‍Axy(t)‍, the percentiles of the amplitude distribution were 
determined (Tinkhauser et al., 2017). The beta burst threshold was set at the ‍75th‍ percentile. A burst 
onset was defined as a time point at which the analytical amplitude exceeded the threshold and its 
termination as the earliest following time point at which the amplitude fell below the threshold. The 
time difference between these two time points was defined as the burst duration. The amplitude of a 
burst was defined as the average amplitude during the burst duration. The procedure is illustrated in 
Figure 2—figure supplement 2.

Spatio-temporal pattern analysis and wave classification
The spatio-temporal patterns of oscillatory activity were classified with the help of the phase map 

‍Φxy(t)‍ following the steps of Denker et al., 2018 with minor modifications. First, the phase gradient 
map ‍Γxy(t)‍ and its normalized version, the phase directionality map ‍∆xy(t)‍, were obtained. Specifically 
the phase gradient map was obtained by averaging the phase differences between a point and its 
existing next and next-nearest neighbors along the x- and y-axis,

	﻿‍

Γxy(t) = 1
Nx

∑
neighbors with |dx|≤2

Φ(x+dx,y;t)−Φ(x,y;t)
dx

+ i
Ny

∑
neighbors with |dy|≤2

Φ(x,y+dy;t)−Φ(x,y;t)
dy ‍�

(2)

where the vector has been written as a complex number and ‍Nx‍, ‍Ny‍ count the actual number of 
neighbors along x and y, respectively (‍Nx + Ny‍ may differ from 8 for electrodes near the array bound-
aries). Normalization of the gradients to unit length serves to produce the ‘phase directionality map’ 
(Denker et al., 2018),

	﻿‍ ∆xy(t) = |Γxy(t)|−1Γxy(t)‍� (3)

The alignment of the unit vectors ‍∆xy(t)‍ at time ‍t‍ was quantified using the norm ‍σg‍ of their mean, 
the ‘circular variance of phase directionality’ (Denker et al., 2018), with

	﻿‍ σg(t) = N−1|
∑

x,y ∆x,y(t)| ∈ [0, 1]‍ � (4)

with ‍N ‍ the total number of electrodes.
The data was classified into successive 1 ms spatial ‘patterns.’ Patterns with well-aligned ‍∆xy(t)‍ 

were classified as planar wave patterns using the criterion ‍σg(t) > 0.5‍ and provided the first category 
of the classification.

The remaining patterns were further classified using additional measures. Patterns were next cate-
gorized as ‘radial waves’ (or not) by considering critical points (i.e., maxima, minima or saddle points) 
of the phase map ‍Φxy(t)‍ (Rule et al., 2018). A smoothed phase gradient map, the ‘gradient coherence 
map,’ was defined following Denker et al., 2018,

	﻿‍ Λxy(t) = N−1
xy

∑
x′,y′∈{−2,−1,0,1,2} ∆x+x′,y+y′ (t)‍� (5)

(Note that the sum is taken over existing neighboring electrodes, the number of which is given by 

‍Nxy ≤ 9‍.) Minima, maxima, and saddle points were obtained by locating the sign changes in the local 
gradient coherence map (Perry and Chong, 1987). Maps with exactly one critical point were classi-
fied as radial waves, thus providing the second category of our classification (these patterns could be 
subdivided in further subcategories [Rule et al., 2018] but this was not pursued).

The synchronous patterns were finally identified using the ‘circular variance of phases’ (Denker 
et al., 2018), ‍σp‍, analogous to the well-known Kuramoto order parameter,

	﻿‍ σp(t) = N−1|
∑

x,y ejΦx,y(t)| ∈ [0, 1]‍� (6)

with ‍N ‍ the total number of electrodes in the array. Patterns with ‍σp(t) > 0.85‍, indicating tight synchro-
nization of the oscillations of all electrodes, were classified as ‘synchronized,’ the third classification 
category. All remaining patterns were assigned to the ‘random’ fourth category.

After all successive patterns were classified, a planar, a radial, or a synchronized wave episode 
was registered when at least six consecutive frame beared such a label. In other words, planar, radial, 
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or synchronized wave episodes were requested to last for at least 6 ms to be declared as such. All 
remaining patterns were registered as random waves.

Alignment and averaging of planar waves
To compute average quantities relating to planar waves like average phase maps or input strength, 
we aligned events in time in two different ways, either (i) with respect to the phase of the underlying 
oscillation or (ii) with respect to the onset of a planar wave. For the phase alignment, we determined 
the average phase across the array at half the duration of any given event, which we denote ‍ϕ̄

(k)
center‍ for 

event ‍k‍ in the following. We then converted this phase to a time with respect to a reference frequency 
fref according to ‍t

(k)
center = ϕ̄(k)

center/(2πfref)‍, where ‍fref =
∑

k fk/K ‍ is the mean frequency over all ‍K ‍ events of 
a given type, with fk being given by ‍⟨dϕ/dt⟩/(2/π)‍ averaged over space and time during the event. We 
then aligned all events in time by centering each event ‍k‍ on time ‍t

(k)
center‍ rounded to the closest time 

bin. With this choice, time ‍t = 0‍ corresponds to an average phase ‍̄ϕ = 0‍. For the alignment relative 
to wave onset, we simply aligned all planar wave events with respect to the first frame classified as 
planar wave.

To furthermore compute averages over planar waves without loosing spatial information related 
to wave direction, but not restrict ourselves to the analysis of waves that propagate along a single 
direction, we considered all wave events that propagate along any of the four principal directions (0, 
‍π/2‍, ‍π‍, ‍3π/2‍) of the grid, which are statistically equivalent. We specifically selected waves with a mean 
gradient vector, averaged over units and wave duration, that points within a ‍±π/8‍ interval centered 
on the respective direction. (Note that waves with a mean gradient outside the selected sector are 
not taken into account.) In a second step, we then rotated units by (0, ‍3π/2‍, ‍π‍, ‍π/2‍) for events of the 
four principal directions, respectively, such that eventually all gradients pointed to the ‍±π/8‍ interval 
centered on 0, corresponding to a leftward traveling wave (opposite to the mean gradient). As all four 
principal directions are equivalent due to the symmetry of the system, this allowed us to improve the 
statistics of our measurements without introducing any bias because of the discretized grid.

Model
The motor cortex is described as a collection of recurrently connected excitatory (E) and inhibitory (I) 
neuronal populations of linear size ‍∼ 400µm‍, comparable to the one of a cortical column. These E-I 
modules are connected by long-range excitatory connections with a connection probability decaying 
with the distance between modules. The neural activity of each E-I module is represented at the 
level of its excitatory and inhibitory neuronal populations in the rate-model framework (Wilson and 
Cowan, 1972; Dayan and Abbott, 2005). This eases numerical simulations that would otherwise be 
extremely demanding for a comparable spatially structured network of a few hundred modules with 
a few tens of thousand spiking neurons each. Additionally, the rate model description also eases 
analytical computations. We choose a rate model description with an adaptive time scale (Ostojic and 
Brunel, 2011; Augustin et al., 2017). It was shown to quantitatively describe networks of stochas-
tically spiking exponential integrate-and-fire (EIF) neurons, either uncoupled and receiving identical 
noisy inputs (Ostojic and Brunel, 2011), or coupled by recurrent excitation (Augustin et al., 2017), 
as well as sparsely synchronized oscillations of recurrently coupled spiking E-I modules of EIF neurons 
(Kulkarni et al., 2020). The adaptive time scale rate model describes the activity of a population of 
EIF neurons as

	﻿‍ τ (I) dI
dt = −I + I0 + s(t), r(t) = Φσ[I(t)]‍� (7)

with ‍Φσ[I]‍ the f-I curve of an EIF neuron with white noise current input of mean ‍I ‍ and noise strength 
‍σ‍ (see Kulkarni et al., 2020 for a detailed description). The time scale ‍τ (I)‍ is referred to as ’adaptive’ 
because it varies with the current ‍I ‍. The function ‍τ (I)‍ is chosen here, as in Kulkarni et al., 2020 and 
precisely described there, to best fit the response to oscillatory inputs in a wide frequency range of 
1 Hz to 1 kHz, of an EIF neuron subjected also to a white noise current of mean ‍I ‍ and strength ‍σ‍. The 
tabulated functions ‍Φσ[I]‍ and ‍τ (I)‍ are plotted in Figure 1—figure supplement 3. They are given in 
Kulkarni et al., 2020 and are also provided here as Source data for the convenience of the reader.

We generalize the rate model description Equation 7 to a two-dimensional network of E-I modules 
coupled by long-range excitation,
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	﻿‍ τE(IE) dIE
dt (x, t) = −IE(x, t) + Iext

E (x, t) + Isyn
EE (x, t) − Isyn

EI (x, t)‍� (8)

	﻿‍ τI(II) dII
dt (x, t) = −II(x, t) + Iext

I (x, t) + Isyn
IE (x, t) − Isyn

II (x, t)‍� (9)

where the index denotes the module position on a rectangular grid. The firing rates are related to the 
currents by

	﻿‍ rA(x, t) = ΦA[IA(x, t)] +
√

ΦA[IA(x,t)]
NA

ξA(x, t), A ∈ {E, I}‍� (10)

The ‍ξA(x, t)‍ are independent unit amplitude white noises for each neuronal population in each module 

‍⟨ξA(x, t)ξB(x′, t′)⟩ = δA,Bδx,x′δ(t − t′)‍ and Ito’s prescription is used to define Equation 10 (Kulkarni et al., 
2020). These stochastic terms account, in the firing rate framework, for the fluctuations due to the 
finite numbers ‍NE‍ of excitatory neurons and ‍NI ‍ of inhibitory in each E-I module (Brunel and Hakim, 
1999). For the numerical computations, both ‍ΦE‍ and ‍ΦI ‍ are taken equal to the function ‍Φσ[I]‍ provided 
in the Source data and plotted in Figure 1—figure supplement 3a.

The currents ‍I
ext
E (x, t)‍ (resp. ‍I

ext
I (x, t)‍) represent inputs external to the motor cortex, possibly posi-

tion and time-dependent, targeting the excitatory (resp. inhibitory) population of the E-I module at 
position ‍x‍,

	﻿‍ Iext
A (t)(x, t) = Iext,0

A + σext
A η(x, t), σext

A = wext
A νext, A ∈ {E, I}‍� (11)

With our normalization choice ‍νext‍, has the dimension of a frequency and can be interpreted as the 
discharge rate amplitude of the external inputs. We model the fluctuations of external inputs as 
stochastic O-U processes with global and independent components,

	﻿‍

τext
dη
dt (x, t) = −η(x, t) + √

τext [
√

1 − c ξ(x, t) +
√

c ξg(t)]

⟨ξ(x, t)ξ(x′, t′)⟩ = δ(t − t′)δx,x′ , ⟨ξg(t)ξg(t′)⟩ = δ(t − t′) ‍�
(12)

The currents ‍I
syn
EE (x, t)‍, ‍I

syn
EI (x, t)‍ (resp. ‍I

syn
IE (x, t)‍, ‍I

syn
II (x, t)‍) represent the recurrent excitatory and inhibitory 

inputs on the excitatory (resp. inhibitory) population of the module at position ‍x‍. The recurrent inputs 
depend on the firing rates of the neuronal populations of the different motor cortex modules and on 
the kinetics of the different synapses. Namely,

	﻿‍

Isyn
AE (x, t) = wAE

´ t
−∞ du SE(t − u)

∑
y C(|x − y|)rE(y, u − D|x − y|),

Isyn
AI (x, t) = wAI

´ t
−∞ du SI(t − u)rI(x, u), A ∈ {E, I} ‍�

(13)

The kinetic kernels ‍SE(t), SI(t)‍ include synaptic current rise times, ‍τ
E
r , τ I

r ‍, decay times, ‍τ
E
d , τ I

d‍, and laten-
cies, ‍τ

E
l , τ I

l ‍,

	﻿‍
SA(t) = θ(t−τA

l )
τA

d −τA
r

{
exp[−(t − τA

l )/τA
d ] − exp[(−(t − τA

l )/τA
r )]

}
, A ∈ {E, I}

‍�
(14)

where ‍θ(t)‍ denotes the Heaviside function, ‍θ(t) = 1, t > 0‍ and 0 otherwise. The kernels ‍SA, A ∈ {E, I}‍ 
are normalized such that:

	﻿‍
´

dt SA(t) = 1‍� (15)

We have supposed, for simplicity, that the kinetics of the synaptic currents depend on their excitatory 
or inhibitory character but not on the nature of their post-synaptic targets (e.g., ‍I

syn
EI ‍ and ‍I

syn
II ‍ have the 

same kinetics). Instead of using the kinetic kernels ‍SA(t), A ∈ {E, I}‍, one can equivalently compute the 
synaptic currents by introducing supplementary variables ‍JAE, JAI ‍,

	﻿‍

τE
d

dIsyn
AE

dt (x, t) = −Isyn
AE (x, t) + JAE(x, t),

τE
r

dJAE
dt (x, t) = −JAE(x, t) + wAE

∑
y C(x − y)rE(y, t − τE

l − D|x − y|)‍�
(16)

	﻿‍

τ I
d

dIsyn
AI

dt (x, t) = −Isyn
AI (x, t) + JAI(x, t),

τ I
r

dJAI
dt (x, t) = −JAI(x, t) + wAIrI(x, t − τ I

l )‍�
(17)
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In Equation 13 or Equation 16, the probability that an excitatory neuron at position ‍y‍ targets a 
neuron at position ‍x‍ is represented by the function ‍C(x − y)‍ normalized such that

	﻿‍
∑

x C(x) = 1‍� (18)

The delay ‍D|x − y|‍ accounts for the signal propagation time along horizontal non-myelinated fibers in 
the motor cortex (González-Burgos et al., 2000; Girard et al., 2001). The mathematical expressions 
below are written for a general function ‍C(x)‍. For all the numerical computations, except those shown 
in Figure 5d–f, the following isotropic Gaussian function is taken,

	﻿‍ C(x) = 1
Z exp(−|x|2/l2), Z =

∑
x exp(−|x|2/l2)‍� (19)

In Figure 5d–f, we consider instead the anisotropic function,

	﻿‍ C(x) = 1
Z exp(−x2/l2x − y2/l2y), Z =

∑
x exp(−x2/l2x − y2/l2y)‍ � (20)

with ‍x = (x, y)‍.
In Figure 5, an anisotropic distribution of the local input targets is considered. This is modeled by 

replacing Equation 12 by

	﻿‍

τext
dη
dt (x, t) = −η(x, t) + √

τext [
√

c ξg(t) +
√

1 − c
∑

y G(x, y)ξ(y, t)]

⟨ξ(x, t)ξ(x′, t′)⟩ = δ(t − t′)δx,x′ , ⟨ξg(t)ξg(t′)⟩ = δ(t − t′) ‍�
(21)

The kernel ‍G‍ is taken to be Gaussian,

	﻿‍
G(x) = 1

Z exp[−(x/lIx)2 − (y/lIy)2], Z =
(∑

x G2(x)
)1/2

‍�
(22)

where the normalization ‍Z ‍ is chosen such as to have the same local variance of the noise as in Equation 
12. In Figure 5g–i and Figure 5—figure supplement 1, an isotropic kernel ‍G‍ is taken with ‍l

I
x = lIy = lI ‍.

Theoretical analysis
Our analysis starts by considering the deterministic version of the model described by Equations 
8–17, that is, the limit ‍NE → ∞‍, ‍NI → ∞‍, in which the amplitudes of the stochastic terms vanish in 
Equation 10. All module populations are supposed to fire steadily in time at constant rates ‍r

s
E‍ and ‍r

s
I ‍. 

This requires external inputs that are constant in time, that is, with ‍σ
ext
E = σext

I = 0‍ (Equation 11), and 
of specific magnitudes that we first determine.

We then assess the stability of this steady state. This provides the bifurcation diagrams of Figure 1. 
When the steady state is stable, we compute the effect of fluctuations arising both from the finite 
number of neurons in each E-I module and from the time variation of the external inputs. This provides 
the analytic curves for the power spectra and correlations of currents, shown in Figure 2, Figure 2—
figure supplement 1, and Figure 2—figure supplement 3.

Steady state
We consider first the steady state of the deterministic network in which excitatory populations and 
inhibitory populations are firing at constant rates ‍r

s
E‍ and ‍r

s
I ‍, independently of time and module posi-

tion, with

	﻿‍ rs
A = ΦA(Is

A), A ∈ {E, I}‍� (23)

In this state, the synaptic currents in the different populations are obviously also independent of time 
and position. Given the normalization conditions (Equations 15; 18), they simply read,

	﻿‍ Isyn
AB (x, t) = Isyn,s

AB = wABrs
B, A ∈ {E, I}, B ∈ {E, I}‍� (24)

From the model definition (Equations 8; 9), these firing rates are produced by constant external 
inputs of magnitudes,

	﻿‍ Iext
A (x, t) = Iext,s

A = Is
A − wAE rs

E + wAI rs
I , A ∈ {E, I}‍� (25)

https://doi.org/10.7554/eLife.81446
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Bifurcation lines
The stability of the steady firing state can be assessed by imposing the constant external currents 
(Equation 25) and computing the dynamics of small perturbations around the steady state. To this 
end, we linearize Equations 8–17 and look for solutions that are oscillatory in space and exponential 
in time,

	﻿‍ IE(x, t) = Is
E + δIE(x, t), IE(x, t) = δ̃IE(q,σ) exp(σt + iq · x)‍� (26)

with similar expansions for the other variables. Substitution in the explicit formulas (Equation 14), or in 
the corresponding differential equations (Equations 16; 17), provides the expression of the synaptic 
current in term of the module activities,

	﻿‍ δ̃I
syn
AB (q,σ) = wABC(q,σ)S̃B(σ)δ̃IB(q,σ)‍� (27)

where ‍̃SE(σ)‍ and ‍̃SI(σ)‍ are the Laplace transforms of ‍SE(t)‍ and ‍SI(t)‍,

	﻿‍
S̃A(σ) = exp(−στA

l )
(1+στA

r )(1+στA
d ) , A ∈ {E, I}

‍�
(28)

Substitution of Equation 27 in the linearized Equations 8; 9 gives

	﻿‍ L̃EI(q,σ) · δ̃I(q,σ) = 0‍� (29)

The matrix ‍̃LEI(q,σ)‍ reads,

	﻿‍

L̃EI(q,σ) =




1 + στE − αC(q,σ)S̃E(σ) wEIΦ
′
I(I

s
I)S̃I(σ)

−wIEΦ
′
E(Is

E)C(q,σ)S̃E(σ) 1 + στI + γS̃I(σ)




‍�

(30)

where the function ‍C(q,σ)‍ is the Fourier transform of the coupling function with propagation delays 
taken into account,

	﻿‍ C(q,σ) =
∑

x exp[−iq · x − σ|x|D]C(|x|)‍� (31)

In Equation 30 and in the following, the short-hand notation ‍τE‍ (resp. ‍τI ‍) is used for ‍τE(Is
E)‍ (resp. ‍τI(Is

I)‍). 
The existence of a non-trivial solution of Equation 29 requires that the determinant, ‍W(q,σ)‍, of the 
matrix ‍̃LEI(q,σ)‍ vanishes, that is,

	﻿‍ W(q,σ) =
[
1 − αC(q,σ)T̃E(σ)

] [
1 + γT̃I(σ)

]
+ βC(q,σ)T̃E(σ)T̃I(σ) = 0‍ � (32)

with the functions ‍̃TE(σ), T̃I(σ)‍, defined by,

	﻿‍ T̃A(σ) = S̃A(σ)
1+τAσ

, A ∈ {E, I}‍� (33)

The constants ‍α‍ and ‍γ‍ respectively measure the gain of monosynaptic recurrent excitation and inhibi-
tion while ‍β‍ measures the gain of disynaptic recurrent inhibition,

	﻿‍ α = wEEΦ
′
E(Is

E), β = wIEwEIΦ
′
E(Is

E)Φ′
I(I

s
I ), γ = wIIΦ

′
I(I

s
I)‍ � (34)

where ‍Φ
′
A(I)‍ denotes the derivative of ‍ΦA‍ with respect to ‍I ‍.

The oscillatory instability, or ‘Hopf bifurcation,’ line corresponds to the parameters for which the 
growth rate is purely imaginary, ‍σ = iω‍. It is obtained in parametric form, with ‍α‍ and ‍β‍ as functions 
of the frequency ‍ω‍ (and of the recurrent inhibition ‍γ‍) by separating the real and imaginary parts of 
Equation 32 and solving the resulting linear equations for ‍α‍ and ‍β‍. This gives

	﻿‍

α = Im
{

C(q,iω)
[
T̃I(iω)T̃E(iω)+γ |T̃I(iω)|2T̃E(iω)

]}
|C(q,iω)|2 |T̃E(iω)|2 Im[T̃I(iω)]

β = Im
[
C(q,iω)T̃E(iω)

]
|1+γT̃I(iω)|2

|C(q,iω)|2 |T̃E(iω)|2 Im[T̃I(iω)] ‍�

(35)

https://doi.org/10.7554/eLife.81446
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The instability first appears at long wavelengths, namely, at ‍q = 0‍ on a large enough lattice. The 
expressions (35) with ‍q = 0‍ have been used to draw the oscillatory instability lines and the frequency 
dependence on parameters shown in Figure 1b and Figure 1—figure supplement 4.

Besides this oscillatory instability, there is a possible loss of stability towards a high-firing rate state. 
It is obtained when the growth rate ‍σ‍ changes with parameter variation from being real negative to 
real positive, that is, for parameters such that ‍W(q, 0) = 0‍. Since at the ‘real’ instability threshold, the 
instability growth rate vanishes, the instability line is independent of the synaptic current kinetics. One 
indeed checks from Equations 28; 33 that ‍̃TE(0) = 1‍. Thus, Equation 32 gives for the real instability 
line for a given wavevector ‍q‍,

	﻿‍ β = [α− 1
C(q,0) ][1 + γ], and β = (α− 1)(1 + γ) when q = 0‍� (36)

Since ‍C(q, 0) < 1‍ when ‍q‍ does not vanish, the instability appears first at ‍q = 0‍ with ‍C(0, 0) = 1‍ when all 
the modules are in the exact same state.

The expressions (Equation 35, Equation 36) with ‍q = 0‍ have been used to draw the diagram of 
Figure 1b. The diagram of Figure 1f is similarly obtained by computing the external inputs corre-
sponding to different steady discharges, for fixed synaptic parameters, and assessing the stability of 
these states from their position with respect to the stability lines (Equation 35 and Equation 36). We 
have taken the synaptic strength of external inputs such that the network operating point crosses the 
oscillatory bifurcation line when the external input amplitude varies:

	﻿‍ wext
E = wEE, wext

I = 2wIE‍� (37)

Auto and cross-correlations of module activities and power spectrum
We consider the network described by Equations 8 and 9 with the kinetics of the synaptic currents 
given by Equation 14. We include the stochastic effects arising from the finite number of neurons in 
each module by using the stochastic description (Equation 10) of the instantaneous firing rates of the 
excitatory and inhibitory module neuronal populations. We also include external input fluctuations as 
described by Equations 11; 12.

We treat these two kinds of stochastic effects as perturbations of the steady dynamics and fully 
characterize the stochastic dynamics of the network at the linear level.

Linearizing the currents around their stationary values gives

	﻿‍ IE(x, t) = Is
E + δIE(x, t), II(x, t) = Is

I + δII(x, t)‍� (38)

Translation invariance leads us to search for ‍δIE‍ and ‍δII ‍ in Fourier space:

	﻿‍ δIE(x, t) =
´ +π
−π

´ +π
−π

dqx
2π

dqy
2π
´ +∞
−∞

dω
2π δ̃IE(q,ω) exp[i(q · x + ωt)]‍� (39)

with an analogous expansion for ‍δII ‍. The linearized Equations 8; 9 then read, with a vectorial notation

	﻿‍ L̃EI(q, iω) · δ̃I(q, iω) = F(q, iω)‍� (40)

where the 2 × 2 matrix ‍̃LEI(q, iω)‍ is given in Equation 30. The two components of the stochastic 
forcing term ‍F(q, iω)‍ read

	﻿‍

FA(q, iω) = wAEC(q, iω)S̃E(iω)
√

rs
E

NE
ξ̃E(q,ω)

−wAIS̃I(iω)
√

rs
I

NI
ξ̃I(q,ω) + σext

A η̃(q,ω), A ∈ {E, I}‍�
(41)

where ‍σ
ext
A ‍ is given by Equations 11; 37. Solution of the linear system (40) provides the expression of 

the Fourier components of the currents. For the excitatory current, one obtains

	﻿‍ δ̃IE(q,ω) = 1
(1+iωτE)

VE(q,iω)
W(q,iω) ‍� (42)

with ‍W(q, iω)‍ defined in Equation 32 and ‍VE(q, iω)‍ given by,

	﻿‍ VE(q, iω) = FE(q, iω)
[
1 + γT̃I(iω)

]
− FI(q, iω)wEIΦ

′
IT̃I(iω)‍� (43)

https://doi.org/10.7554/eLife.81446
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The Fourier components of the input fluctuations read

	﻿‍
η̃(q,ω) =

√
τext

1+iωτext

[√
1 − c ξ̃(q,ω) +

√
c (2π)2δ2(q)ξ̃g(ω)

]
‍ � (44)

with the white noise averages,

	﻿‍ ⟨ξ̃(q,ω)ξ̃∗(q′,ω′)⟩ = (2π)3δ(ω − ω′)δ2(q − q′) , ⟨ξ̃g(ω)ξ̃∗g (ω′)⟩ = 2πδ(ω − ω′)‍� (45)

The short-hand notation ‍δ
2(q)‍ has been used for the two-dimensional ‍δ‍-function ‍δ(qx)δ(qy)‍. Similarly, 

one has for the finite size noise averages:

	﻿‍ ⟨ξ̃E(q,ω)ξ̃∗E(q′,ω′)⟩ = ⟨ξ̃I(q,ω)ξ̃∗I (q′,ω′)⟩ = (2π)3δ(ω − ω′)δ2(q − q′)‍� (46)

The current–current correlation function is obtained by averaging the product of the currents (Equa-
tion 42) over the noise with the help of Equations 45; 46. One obtains,

	﻿‍

⟨δ̃IE(q,ω)δ̃I
∗
E(q′,ω′)⟩ = 2πδ(ω − ω′){(2π)2δ2(q − q′)SN

EE(q,ω)

+[(1 − c)(2π)2δ2(q − q′) + c(2π)4δ2(q)δ2(q′)]Sext
EE(q,ω)}‍

 
�

(47)

with

	﻿‍ Sext
EE(q,ω) = τext

∣∣σext
E +(γσext

E −σext
I wEIΦ

′
I )T̃I(iω)

∣∣2

[1+(ωτext)2][1+(ωτE)2]|W(q,iω)|2 ‍
 
�

(48)

and

	﻿‍

SN
EE(q,ω) = 1

|W(q,iω)|2

{
rs

E
NE

w2
EE

���1 + (γ − β
α )T̃I(iω)

���
2 ��C(q, iω)T̃E(iω)

��2

+ rs
I

NI

w2
EI
∣∣S̃I(iω)

∣∣2

1+(ωτE)2

}

‍�

(49)

This provides the expression of the current–current correlation in real space:

	﻿‍

⟨δ̃IE(x, t)δ̃IE(x′, t′)⟩ =
´ +∞
−∞

dω
2π exp[iω(t − t′)]

{
c Sext

EE(0,ω)

+
´ +π
−π

´ +π
−π

dqx
2π

dqy
2π

[
(1 − c)Sext

EE(q,ω) + SN
EE(q,ω)

]
exp[iq · (x − x′)]

}
‍�

(50)

One can check that the cross-correlation is a real function, as it should, since ‍S
ext
EE‍ and ‍S

N
EE‍ are related 

to their complex conjugates by ‍S
ext ∗
EE (q,ω) = Sext

EE(−q,−ω)‍ and ‍S
N ∗
EE (q,ω) = SN

EE(−q,−ω)‍, a symmetry 
inherited from the function ‍C(q,ω)‍ (Equation 31).

Taking coincident points (i.e., ‍x = x′‍) in the current–current correlation (Equation 50) gives the ‍IE‍ 
current auto-correlation for a local module in the network. Remembering that the auto-correlation is 
the Fourier transform of the spectrum, this provides the spectrum ‍S(ω)‍ of a local module excitatory 
current time series:

	﻿‍
S(ω) = c Sext

EE(0,ω) +
´ +π
−π

´ +π
−π

dqx
2π

dqy
2π

[
(1 − c)Sext

EE(q,ω) + SN
EE(q,ω)

]
‍� (51)

We take the local module excitatory current as a proxy for the LFP. Equations 50; 51 have been 
used to draw the theoretical lines for current–current correlations and power spectra in Figure 2, 
Figure 2—figure supplement 1 and Figure 2—figure supplement 3.

Simulations
The mathematical model defined in section ‘Model’ was numerically simulated. We used a 28 × 28 
grid of E-I modules. Two external layers of with E-I populations at their fixed points were added as 
boundary conditions. Measurements were only performed in the center square 10 × 10 grid to mini-
mize boundary effects. A sketch of the grid is shown in Figure 1—figure supplement 2. Model distri-
butions and averages in all figures were obtained by performing 20 independent network simulations 
of 10 s simulated time each.

The reference parameters for all simulations are provided in Table 1.

https://doi.org/10.7554/eLife.81446
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Simulations were performed with a custom C program using a first-order Euler–Maruyama integra-
tion method, with a time step ‍dt = 0.01‍ ms. Python programs were used for data analysis and to draw 
the figures. These computer codes are available at https://github.com/LKANG777/Beta-Oscillation 
(copy archived at Kang, 2023). All simulations were performed on ECNU computer clusters.
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Brochier T, Zehl L, 
Hao Y, Duret M, 
Sprenger J, Denker 
M, Grün S, Riehle A

2017 Massively parallel 
recordings in macaque 
motor cortex during an 
instructed delayed reach-
to-grasp task

https://​doi.​org/​10.​
12751/​g-​node.​f83565

G-Node, 10.12751/g-node.
f83565
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