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Abstract: Alternative splicing is an important mean of generating the protein diversity necessary 11 
for cellular functions. Hence, there is a growing interest in assessing the structural and functional 12 
impact of alternative protein isoforms. Typically, experimental studies are used to determine the 13 
structures of the canonical proteins ignoring the other isoforms. Therefore, there is still a large gap 14 
between abundant sequence information and meager structural data on these isoforms. During the 15 
last decade, significant progress has been achieved in the development of bioinformatics tools for 16 
structural and functional annotations of proteins. Moreover, the appearance of the AlphaFold 17 
program opened up the possibility to model a large number of high-confidence structures of the 18 
isoforms. In this study, using state-of-the-art tools, we performed in silico analysis of 58 eukaryotic 19 
proteomes. The evaluated structural states included structured domains, intrinsically disordered 20 
regions, aggregation-prone regions and tandem repeats. Among other things, we found that the 21 
isoforms have less signal peptides, transmembrane regions or tandem repeat regions in comparison 22 
with their canonical counterparts. This could change protein function and/or cellular localization. 23 
The AlphaFold modelling demonstrated that frequently isoforms, having differences with the 24 
canonical sequences, still can fold in similar structures though with significant structural 25 
rearrangements which can lead to changes of their functions. Based on the modelling, we suggested 26 
classification of the structural differences between canonical proteins and isoforms. Altogether, we 27 
can conclude that a majority of isoforms, similarly to the canonical proteins are under selective 28 
pressure for the functional roles. 29 

Keywords: isoform, large-scale analysis, protein structure, AlphaFold, canonical protein 30 
 31 

     1. Introduction 32 

Alternative splicing is one of the principal sources for structural and functional 33 
diversity in the proteomes of multicellular organisms. It is a process, which may include 34 
or exclude particular exons of a multi-exonic gene from its processed messenger RNA. 35 
Different combinations of exons can produce multiple mRNA isoforms of a single gene. 36 
It is estimated that up to 95% of human multi-exonic genes are alternatively spliced [1-2]. 37 
The average number of the splice variants per human gene is equal to four [3]. All this can 38 
drastically increase the number of different proteins in the proteome. Today, most 39 
genome-wide information about alternative splicing is generated on the nucleic acid level 40 
thanks to high-throughput data such as expressed sequence tags (ESTs) [4], microarrays 41 
[5] and RNA-seq data [6]. However, not all splicing variants are expressed as functional 42 
proteins. Although a very large number of alternatively spliced variants are detected in 43 
RNA-seq studies, large-scale mass spectrometry-based proteomics analyses detect only a 44 
small fraction of alternative isoforms on the protein level [7]. One of today's problems in 45 
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this area is to establish the real number of splice variants that appear as functional proteins 46 
for each gene. In addition to the application of genome-wide mass spectrometry analyses, 47 
researchers pay special attention to the protein isoforms with the most cross-species 48 
conservation and those that are able to maintain protein structure integrity [1, 8-10]. 49 

Although the way to obtain the exact set of the real protein variants may take some 50 
time, the data already available thanks to combination of approaches (proteomics, cross- 51 
species conservation and 3D mapping) can be used for the subsequent structural and 52 
functional annotations. Today, high-quality collections of protein isoforms are stored in 53 
UniProt, NCBI RefSeq, Ensembl databanks [11-13] and in more specific ones such as 54 
APPRIS, ISOexpresso and ASES [14-16].  55 

Another important point is the existence of a single main protein isoform among 56 
several protein variants for each gene, which is called principal isoform or canonical 57 
protein. The canonical protein is identified by several criteria: experimental data on its 58 
functional role; data about its expression in different tissues of an organism; existence of 59 
the same combination of exons in orthologous proteins and in different curated databases. 60 
Although, in the annotated databases of proteomes [11-13] many canonical proteins are 61 
well distinguished from their isoforms, some of them are still poorly annotated.  62 

Depending on the proteomes and quality of their annotation, the number of isoforms 63 
usually exceeds the amount of canonical proteins 2-3 times [11, 17]. At the same time, if to 64 
compare the number of proteins with the available experimental structural information, 65 
the situation is opposite. Almost all proteins in the Protein Data Bank [18] are canonical. 66 
Thus, due to a large gap between abundant sequence information and meager structural 67 
data on the isoforms, there is a growing interest in assessing the structural states and 68 
functional roles of alternative protein isoforms. As we have already mentioned, the 69 
sequence data on the isoforms are abundant. Therefore, if we want to get a global view of 70 
the structural-functional difference between the canonical proteins and their isoforms, 71 
apparently, the most appropriate approach is bioinformatics rather than the time- 72 
consuming experimental methods. In line with this need, during the last decade, 73 
significant progress has been achieved in the development of bioinformatics tools for 74 
large-scale structural and functional annotations of proteins. In the early days of structural 75 
bioinformatics, the foremost efforts of researchers were devoted to proteins with globular 76 
3D structures. However, today, it is becoming clear that non-globular protein regions, 77 
having either intrinsically disordered conformations, membrane domains, elongated 78 
structures with tandem repeats or being aggregation-prone also have important 79 
functional roles [19-21]. Thus, an accurate structural and functional prediction of protein 80 
molecule can only be achieved when accounting for all these structural states. Recently, 81 
in line with this need, we developed a computational pipeline called TAPASS, which was 82 
designed to do just that [20]. The TAPASS pipeline is using known cutting-edge predictors 83 
able to detect intrinsically disordered regions (IDRs), transmembrane regions, signal 84 
peptides, conserved structured domains, short linear motifs (SLiMs) and aggregation- 85 
prone regions in protein sequences. The main novelty of this tool is a more precise 86 
prediction of aggregation-prone regions by taking into consideration the other known or 87 
predicted structural states. Moreover, the appearance of the AlphaFold program [22] 88 
opened up the possibility to model a large number of high-confidence structures of the 89 
isoforms. This artificial intelligence program, in a short time, became the gold standard 90 
computational technique for prediction of the 3D structure of proteins based on their 91 
sequence thanks to its accuracy competitive with experimental structures in a majority of 92 
cases.  93 

In this study, by taking advantages of these state-of-the-art bioinformatics tools we 94 
systematically compared structural states of canonical proteins and isoforms. The analysis 95 
was performed on a large scale using 58 eukaryotic proteomes and provided a global view 96 
on the prevalence of each of these types of structures in canonical and isoform sets. 97 
Moreover, in some cases, our analysis proposed functional implications caused by 98 
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structural changes of the isoforms as well as the possibility of selective evolutionary 99 
pressure, to which they can be exposed for the functional roles. 100 

2. Materials and Methods 101 

2.1. Construction of datasets of canonical proteins and their isoforms 102 

2.1.1. Main dataset 103 

Construction of properly divided large datasets of canonical proteins and their 104 
isoforms represents a challenge because some proteins are still poorly annotated. To 105 
obtain large subsets of canonical proteins and their isoforms, we retrieved corresponding 106 
sequences from reference proteomes of 58 eukaryotic species (Supplementary materials 107 
S1) by using July 2020 release of UniProt databank [11]. Our choice was justified by the 108 
fact that UniProt contains a large combined set of several databases. The UniProt uses the 109 
following criteria to identify the canonical proteins: experimental data on their functional 110 
role; data about their expression in different tissues of an organism; existence of the same 111 
combination of exons in orthologous proteins and in different curated databases 112 
(https://www.uniprot.org/help/canonical_and_isoforms). First, we used option 113 
“Download all (FASTA (canonical & isoform)” to get 1 906 397 sequences including both 114 
canonical proteins and their isoforms. Second, we used “Download one protein sequence 115 
per gene” option to obtain a better-defined set of 1 244 044 canonical proteins. To avoid 116 
redundancy, we clustered the isoforms by CDhit [23] and removed the identical ones. This 117 
gave us 661,745 isoforms. Then we selected those isoform sequences, which had the same 118 
gene IDs as proteins from the canonical set and were highly similar BLAST(e-value < 10- 119 
35) with them [24]. As a result, we obtained a dataset of 263 475 canonical proteins and 565 120 
942 isoforms, which was used in our analysis (Supplementary materials S2).  121 

 122 

2.1.2. Dataset of proteins from cancer-related genes with well-documented expression 123 
levels 124 

Not all proteins from the UniProt databank have information about their expression 125 
level. Therefore, we built a smaller set of canonical proteins and corresponding isoforms 126 
of human cancer-related genes with well-documented expression levels in both 22 normal 127 
and cancer tissues. For this purpose, we used ISOexpresso database [15]. Our dataset 128 
contains 82 canonical and 166 isoform proteins, which were used for evaluation of the 129 
correlation between aggregation and expression level of proteins.  130 

 131 

2.1.3. Datasets for estimation of the structural difference in isoforms by using AlphaFold 132 
modelling 133 

To evaluate the structural changes caused by the differences in the sequences (hereafter 134 
referred as difference regions) of the corresponding canonical and isoform proteins we 135 
used pairs of proteins with the difference regions inside of well-conserved structured 136 
domains. For this purpose, we chose human proteins annotated in SwissProt [25] and 137 
having evidence of existence at protein level (PE=1). The conserved structural domains 138 
were detected by using HMM library of the CATH databank [26]. At the next step, we 139 
selected CATH domains that overlapped with the difference regions. A CATH domain 140 
found in a canonical protein may be shortened in the isoform so that the remaining 141 
domain is not able to fold. Therefore, we considered only isoforms where 1) canonical 142 
CATH domain is shorter than 200 aa and at least 70% of the domain remains in the 143 
isoform, or 2) canonical domain is longer than 200 aa and at least 50% of the domain 144 
remains in the isoform. For the modelling, we subsequently selected 168 canonical 145 
proteins with 223 corresponding isoforms where the difference regions were longer than 146 
20 AA and located inside of the CATH domains. Finally, to select the most conserved and 147 
studied domains, we run the 168 canonical proteins by local BLASTP against PDB 148 
sequences from 7 species (P.troglodytes, B.taurus, M.musculus, R.norvegicus, D.rerio, 149 
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D.melanogaster, C.elegans) and kept only those having more than 10 hits with E-value < 10- 150 
6. As a result, we obtained 53 canonical human proteins with 63 corresponding isoforms 151 
for the prediction by the AlphaFold program.  152 

Subsequently, the 3D structures of the isoforms were predicted by AlphaFold Colab 153 
[27]. The structural models of the canonical proteins were obtained from the AlphaFold 154 
database (https://alphafold.com/download#proteomes-section). The obtained structural 155 
models were analysed by using PyMol [28]. 156 

 157 
 158 

2.2. Bioinformatics tools used to annotate structural states of proteins 159 

To annotate structural states of proteins, we used TAPASS pipeline, which includes 160 
several prediction tools. Structured domains were predicted by using HMM libraries (e- 161 

value <10-3) of CATH. Intrinsically disordered regions were detected by IUPred [29] and 162 
an in-house BISMM filter, which chooses hydrophilic regions greater than 75% and 163 
proline-rich regions more than 25%. Signal peptide and transmembrane regions were 164 
predicted with SignalP and TMHMM, respectively [30, 31]. The tool also predicts 165 
amyloidogenic regions (aggregation prone motifs) by ArchCandy2.0 [32], TANGO [33] 166 
and PASTA 2.0 [34] with their default parameters. We detected short linear motifs (SLiMs) 167 
of degradation (degrons) by using motifs collected in the Eukaryotic Linear Motif (ELM) 168 
resource [35]. 169 

 170 

2.3. Detection of structural changes in and around the difference regions 171 

All types of the difference regions (insertion, deletion, non-identical and mixed) can 172 
cause structural changes not only in the place of their location but also in the flanking 173 
regions with identical sequences. Most of the methods used in the TAPASS for structural 174 
annotation of canonical and isoform proteins detected these changes automatically. 175 
However, cases when deletions truncated CATH domains required additional rules (see 176 
2.1.3). Application of these rules in our analysis affected prediction of 177 
structured/unstructured regions and Exposed Aggregation-prone Regions (EARs).  178 

 179 

2.4. Analysis of tandem repeats in canonical proteins and isoforms 180 

Tandem repeat regions were identified by MetaRepeatFinder (MRF) 181 
(https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=15) [36] tool in five proteomes 182 
(H.sapiens, M.musculus, D.melanogaster, D.rerio, A.thaliana). From several tandem repeat 183 
finders of MRF, we chose Regex, T-REKS [37] and TRUST [38] which are specialized in 184 
the detection of TRs with units of less than 3 residues, less than 15 residues and more than 185 
15 residues, respectively.  As a result, the combination of these finders detects all types of 186 
tandem repeats. The overlap between “difference” region and TR region was counted if 187 
they had at least one common residue.  188 

3. Results and Discussion 189 

3.1. Identification, classification and distribution of difference regions  190 

Difference in the sequences of canonical proteins and their isoforms is quite specific 191 
in comparison with the differences between orthologous/paralogous proteins. Frequently, 192 
the differences between the orthologues represent point mutations and (or) short indels 193 
spread over the proteins. While canonical proteins and their isoforms always have 194 
region(s) with identical sequences (corresponding to the same exons) and relatively long 195 
fragments where sequences can be completely different (Figure1). To detect the difference 196 
regions, we generated pairwise alignments of canonical-isoform proteins by using Clustal 197 
Omega [39] and treated it by our in-house script (Supplementary materials S3).  198 

We classified the differences between the canonical-isoform pairs into 4 groups 199 
choosing as a starting point canonical sequences: insertion, deletion, non-identical and 200 
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mixed (Figure 1). The “non-identical” regions have different sequences of the same length. 201 
“Mixed” regions are those, which have both amino acid substitutions and indels in the 202 
difference region. Sometimes, these regions also include identical regions shorter than 203 
10aa. 204 
 205 

Figure 1.  (A) Schematic representation of four groups of difference regions (dark blue and pink 206 
colors indicate identical and non-identical regions in the sequences, respectively). (B) Occurrence of 207 
types of the difference regions. (C) Distributions of the average length of canonical proteins and 208 
isoforms in proteomes. The distributions contain 58 points corresponding to the average length of 209 
each proteome. Here and elsewhere ns means non-significant difference with p-value > 0.05, *,**,*** 210 
and **** mean significant differences with p-value < 0.05, < 0.01, < 001 and < 0,0001, respectively. 211 

The analysis showed that, the “mixed” difference region is the most common case 212 
followed by the deletions (Figure 1B).  At the same time, a more detailed analysis of the 213 
“mixed” cases showed that it also contains a significant amount of deletions (68.6% of 214 
positions have deletions, 15.4% insertions and 16% amino acids).  Because of the frequent 215 
deletions, in average, the isoforms are shorter in length than canonical proteins (Figure 1 216 
C). 217 

 218 

3.2. Distribution of structured and unstructured regions 219 

Previous studies suggested that isoform proteins have a higher coverage of 220 
unstructured regions in comparison to the canonical proteins [40-42]. This conclusion 221 
suggested a lower level of involvement of isoforms in functional activity than of canonical 222 
ones. We examined this conclusion by using our datasets and TAPASS pipeline [20] (see 223 
2.1.3). Our analysis showed that the proportion of proteins containing unstructured 224 
regions is slightly higher in the isoform set (Figure 2). The same tendency was observed 225 
when we compared coverage of unstructured regions in proteins. At the same time, both 226 
of these differences were not statistically significant. Thus, our results do not confirm the 227 
previous conclusions about higher number of unstructured residues in isoforms rather 228 
suggesting that the canonical proteins and their isoforms have the same ratio of residues 229 
in structured/unstructured states. This also suggests that during evolution isoforms 230 
preserve their structural domains, which are playing functional roles (Supplementary 231 
materials S4). 232 
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 233 

Figure 2. Violin plots of proportion and coverage of proteins containing IDRs in canonical and 234 
isoform proteins. The distributions contain 58 points corresponding to each proteome. (A) 235 
Proportion of proteins with IDRs in canonical proteins and isoforms. The difference between 2 sets 236 
is non-significant. (B) Coverage of IDRs in canonical proteins and isoforms, The coverage in 237 
isoforms is slightly higher, however, this difference is non-significant 238 

3.3. Changes in subcellular localization 239 

For the understanding of the functional role of a protein, it is important to know 240 
where it resides in the cell. There are a number of bioinformatics tools that can accurately 241 
predict the outcome of protein targeting in 4 major subcellular localizations: secreted 242 
proteins can be identified by SignalP [30], transmembrane regions (more exactly 243 
transmembrane helices) by TMHMM [31], nuclear proteins with nuclear localization 244 
signals can be found by regular expressions [35] and the remaining proteins as a rough 245 
approximation can be considered as cytosolic.  246 

  247 

Figure 3. Difference in subcellular localization between canonical proteins and isoforms. (A) 248 
Proportion of proteins containing signal peptides. This value is significantly higher in canonical 249 
proteins than in isoforms.  (B) Proportion of proteins containing transmembrane regions. The plot 250 
demonstrates a significant decrease of transmembrane proteins in the isoform set. (C) Proportion of 251 
proteins with nuclear localization signal.  Isoforms have a remarkably high proportion of nuclear 252 
localization signals in comparison with canonical proteins. 253 

Our analysis of the proportion of proteins with signal peptide showed that it is 254 
significantly lower in isoforms than in canonical proteins (Figure 3A). It suggests that in 255 
some cases the isoforms may maintain their globular functional domains but change their 256 
cellular localization from extracellular to cytosolic. A similar tendency was observed with 257 
the canonical proteins containing transmembrane helices (Figure 3B). Moreover, we found 258 
that the proportion of the nuclear localization signals in isoforms is significantly higher in 259 
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comparison with canonical proteins. It indicates that isoforms are more often localized in 260 
nucleus than canonical proteins (Figure 3C). The proportion of canonical proteins with 261 
transmembrane helices is higher than in isoforms, suggesting that a noticeable part of the 262 
isoforms loses their transmembrane localization. Parts of the difference regions that gain 263 
and loose signal peptides represent 2% and 4%, respectively. For the transmembrane 264 
helices, it is 2% and 7%. These changes may have important functional implications 265 
(Supplementary materials S4).  266 

 267 

3.4. Proportion of aggregation-prone regions 268 

Proteins are usually soluble and easily degraded by proteases after having performed 269 
their functions. However, some of them depending on the amino acid sequence and at 270 
certain condition can assemble into stable, protease-resistant aggregates. These aggregates 271 
are linked to serious diseases, which include, but are not limited to, Alzheimer’s disease, 272 
Parkinson’s disease, type II diabetes and rheumatoid arthritis [43]. Moreover, protein 273 
aggregation can be “functional” and play a central role in Liquid–liquid Phase Separation 274 
(LLPS), a process that leads to the formation of membrane-less organelles [44-45]. Several 275 
computational programs for prediction of protein aggregation have been developed [46].  276 
The most realistic evaluation of the aggregation potential requires prediction of motifs 277 
located within unstructured regions and being aggregation-prone, which we call 278 
“Exposed Aggregation-prone Regions” (EARs) [20]. Here, we analyzed the EARs in 279 
canonical proteins and isoforms. Our interest in this analysis was also because, in general, 280 
canonical proteins have a higher level of cellular expression in comparison with their 281 
isoforms. It is reasonable to assume that to avoid aggregation, canonical proteins with the 282 
higher expression level may have the lower aggregation potential. The other reason of the 283 
higher aggregation potential of the isoforms may be truncation of native globular domains 284 
and unfolding of their remaining parts. For example, it was shown, that the p53 isoform, 285 
Δ133p53β, which is critical in promoting cancer activity is regulated through an 286 
aggregation-dependent mechanism [41]. The analyses of the truncated DNA-binding 287 
domain of Δ133p53β suggests that its remaining part most probably is unfolded and 288 
contains the EARs.  289 
 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

Figure 4. Proportion of EAR-containing proteins in canonical and isoform proteomes predicted by 299 
three tools (ArchCandy, Pasta, Tango). Differences between canonical proteins and isoforms are 300 
non-significant. 301 

We estimated an average aggregation potential of canonical proteins and isoforms 302 
by proportion of EAR-containing proteins predicted by one of the predictors (ArchCandy, 303 
Pasta, Tango) in these two datasets. Our analysis revealed that the median value of 304 
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proportion for isoforms with EARs is almost the same as for canonical proteins (Figure 4). 305 
(Supplementary materials S4). 306 

Although, it is accepted that the canonical proteins have higher expression levels 307 
than the isoforms [7,47], most proteins from our main dataset do not have reliable 308 
information about their expression level. Therefore, we analyzed also smaller sets with 82 309 
canonical and 166 isoform proteins of human cancer genes with well-documented 310 
expression level in normal and cancer tissues (Supplementary materials S5, S6). These sets 311 
were used for evaluation of the correlation between aggregation and expression level of 312 
the proteins. The results confirm that average expression level of canonical proteins is 313 
significantly higher than of their isoforms.  We also compared the relationship between 314 
expression level and aggregation potential of proteins in normal and cancer cells. The 315 
results of the analysis are shown in Figure 5. The expression of canonical proteins is higher 316 
in both normal and cancer cells. At the same time, expression level of all proteins slightly 317 
decreases in cancer cells. We also found that the proteins with EARs are expressed less in 318 
both normal and cancer cells than the ones without EARs. These results are in agreement 319 
with the assumption that to avoid aggregation, proteins with the higher expression level 320 
may have the lower aggregation potential. 321 

 322 

 323 
Figure 5.  Violin plots of expression of canonical proteins and their isoforms in normal and cancer 324 
cells. (A) EAR-containing proteins and (B) non-EAR-containing proteins. EARs were predicted by 325 
using ArchCandy program. Mean levels of expression for EAR-containing canonical proteins and 326 
isoforms in normal cells were 1.565 and 0.386, respectively, and in cancer cells 1.490 and 0.306. For 327 
non-EAR-containing proteins, these values were 5.784, 1.773, and 4.984, 1.499 respectively. In 328 
accordance with T-test, all results were significant with p-values of less than 10-13. 329 

 330 
 331 

3.5. Canonical proteins have more degradation motifs than their isoforms 332 

Abundance of proteins in the cell mostly depends on the balance of two opposite 333 
processes: expression and degradation. In general, canonical proteins have a higher level 334 
of cellular expression in comparison with their isoforms. It was interesting to understand 335 
if there is any difference between these proteins in terms of their degradation. The 336 
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experimental data on the protein degradation are limited and controversial. We compared 337 
canonical and isoform proteins in silico by analyzing the occurrence of degron motifs by 338 
TAPASS [20]. The degrons are short linear motifs that increase targeting of proteins for 339 
degradation [48-49]. We found that canonical proteins have higher proportion of degrons 340 
in comparison to the isoforms and this difference is statistically significant (Figure 6).  341 
(Supplementary materials S7) 342 
 343 

Figure 6.  Proportion of canonical proteins and isoforms with degrons predicted by using SLiMs (T- 344 
test p-value = 0.00071). The distributions contain 58 points corresponding to each proteome. The 345 
proportion of degron-containing proteins is significantly higher in the canonical set than in the 346 
isoform one.  347 

If more frequent occurrence of degrons in the canonical proteins causes their higher 348 
degradation rate in comparison with the isoforms, this may decrease the difference of the 349 
abundance between canonical proteins and isoforms. In its turn, similar level of the 350 
abundance may explain almost the same proportion of the aggregation-prone proteins 351 
predicted (Figure 4) for the canonical and isoform sets.  352 

 353 

3.6. Occurrence of tandem repeats in canonical proteins and isoforms  354 

Many protein sequences contain arrays of repeats that are adjacent to each other [50- 355 
51], so called tandem repeats (TRs). Several authors have proposed that TRs might have 356 
evolved by exon duplication and rearrangement [52-53]. Therefore, it was interesting to 357 
get insight in the difference between canonical proteins and isoforms at these particular 358 
regions. We detected TRs in five well-annotated proteomes (H.sapiens, M.musculus, 359 
D.melanogaster, D.rerio, A.thaliana) by using MetaRepeatFinder (MRF) 360 
(https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=15). These proteomes contain in 361 
total 44357 canonical proteins. We found that a large part (43%) of them contains at least 362 
one TR region, and each TR-containing protein has, in average, about two TR regions. 363 
Comparison of the occurrence of the TR regions in canonical proteins and isoforms 364 
revealed that isoforms have less TR regions than canonical proteins (0.5 vs 0.81 TR region 365 
per protein) (Figure 7A). It is especially noticeable for TRs with a repeat length of 4-10 366 
residues (Figure 7B). Partially, the decrease of TRs in the isoforms can be explained by the 367 
fact that among the differences between canonical proteins and isoforms we 368 
predominantly observed deletions (see section 3.1.). It was interesting to study the 369 
relationship between the location of the TRs and the difference regions. Our analysis 370 
showed that among the difference regions detected in the aligned pairs, a significant part 371 
(35%) overlaps with TRs.  372 
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 373 

Figure 7. (A) Average number of tandem repeat regions determined per protein by MRF tool; (B) 374 
Distribution of proteins with tandem repeat by the length of their repetitive units. 375 

3.7. Differences within the 3D structures of canonical proteins and isoforms predicted by 376 
AlphaFold. 377 

Our proteome-wide analysis provides a global view on the canonical-isoform protein 378 
difference. At the same time, it is also interesting to investigate these changes from within 379 
the 3D structures down to the atomic details. In orthologous and paralogous proteins, the 380 
difference in the amino acid sequences of   more than 30 % of identity may guarantee the 381 
same structural fold [54]. However, the character of the differences between canonical and 382 
isoform sequences is quite specific. They are identical at the location of the same exons, 383 
however, in the places of alternative splicing they can have completely different 384 
sequences. This “mosaic” arrangement may trigger significant structural and functional 385 
changes.  386 

Given the fact that almost all proteins with experimentally determined 3D structures 387 
are canonical, the comparison requires molecular modelling of isoform structures.  388 
Previously, this type of modelling of the isoform structures and their comparison with the 389 
structures of the corresponding canonical proteins was described for some particular 390 
proteins [10]. Today, with the development of an artificial intelligence program 391 
AlphaFold [22], the scientific community got an opportunity to build high-quality 392 
structural models on a large-scale. Here, we applied AlphaFold program to obtain  393 
structural models of the isoform proteins. It was especially interesting to examine cases 394 
when the difference regions between the isoform and canonical proteins are conserved in 395 
several organisms and located within well-conserved structured domains.  For the 396 
modelling, we used human proteins. To evaluate the cross-species conservation, we used 397 
7 species from the Animal Kingdom (P.troglodytes, B.taurus, M.musculus, R.norvegicus, 398 
D.rerio, D.melanogaster, C.elegans). We considered that AlphaFold structural models are 399 
reliable when their level of the confidence (pLDDT) was higher than 70%, they did not 400 
have disallowed backbone conformations and the inside residues of the structure were 401 
predominantly apolar and did not have charged residues, which were not involved in the 402 
ionic bonds. The detection of unstructured regions was based on criteria used in TAPASS 403 
[20]. Several isoforms had difference regions outside of the well-conserved structured 404 
domains while inside of these domains they were identical between each other. Each 405 
group of these isoforms were reduced to one representative case.  As a result, we 406 
compared the 3D structures of 50 canonical human proteins with 51 structural models of 407 
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the corresponding isoforms predicted by AlphaFold. This allowed us to classify the 3D 408 
structure transformations into four subgroups.  409 

 410 
 411 

3.7.1. Exon deletions with the preservation of the overall structure 412 

Proteins with tandem repeats 413 
Though most of the selected proteins have globular structures, non-globular 414 

structures built of tandem repeats were found in 26% (13 of 51) of the cases. In the 415 
analyzed proteins with the difference regions inside of the complete structure, the most 416 
frequent situation is deletion of one repetitive unit. As a rule, these changes (also with any 417 
integer number of the repeats) does not cause serious structural perturbations (Figure 8A).  418 
These cases are observed in proteins with tandem repeats from Class III, IV and V [51,54- 419 
55]. In a few cases, the difference regions do not have an integer number of the repeats. 420 
This could lead to structural changes, if this difference is located in the middle of the 421 
repetitive structure. However, the isoform models showed that the change of the loop size 422 
between the repeats preserves the integrity of the whole structure (Supplementary 423 
materials S8, S9). In the other such cases, these difference regions are located at the 424 
terminal parts of the repetitive domains with no effect on the overall structure 425 
(Supplementary materials S8, S9). The described structural changes preserve the overall 426 
structure though create patches of new surfaces that can lead to modification of protein 427 
functions.  428 

 429 
Globular proteins 430 
Among 51 analyzed pairs, there are 20 globular structures, representing 38% of the 431 

cases, with the deletions of exons in the middle of the structure. In most of these cases, the 432 
deletion does not lead to critical structural transformations (Figure 8A). In some cases, it 433 
makes shorter loops preserving α-helices or β-strands; sometimes it removes one or 434 
several transmembrane helices. At the same time, these deletions can lead to changes in 435 
binding properties of the isoforms and (or) changes in the oligomerization states of the 436 
protein [56]. 437 

 438 

3.7.2. Exon substitutions that preserve the 3D structure  439 

The other subgroup of four analyzed proteins (8% of the cases) is characterized by 440 
substitutions of exons. The size of the substituted exons is the same or almost the same 441 
and the sequences of canonical and isoform variants are not identical but similar. 442 
AlphaFold suggests that the new exons of the isoforms fits the native structure. This does 443 
not change the overall structure but leads to local changes on the molecular surface. This 444 
can be a basis for the modification of protein functions [57] (Figure 8B).   445 

 446 
 447 
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Figure 8. (continue ) 449 
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 450 
 451 

Figure 8. Ribbon representation of AlphaFold models of canonical proteins (left) and their isoforms 452 
(right). Fragments of canonical proteins deleted in the isoforms are in orange. Fragments of isoforms 453 
that substitute deleted fragments of the canonical proteins are in magenta. Representative structures 454 
of each subgroup from top to bottom are: Q7RTR2, LRR-protein of NLR family CARD domain- 455 
containing protein 3; P16520, 7-bladed beta-propeller of Guanine nucleotide-binding protein 456 
G(I)/G(S)/G(T) subunit beta-3. AlphaFold model of isoform represents 6-bladed structure with an 457 
open beta-propeller, SwissModel structure made based on the known 6-bladed structure (PDB code 458 
1E1A) has closed beta-propeller; O94856, Neurofascin; O95259, Potassium voltage-gated channel 459 
subfamily H member 1; P11362, Fibroblast growth factor receptor 1; O00762, Ubiquitin- 460 
conjugating enzyme E2 C, on the right, in yellow, the known crystal structure of ubiquitylation 461 
module similar to the truncated structure of the isoform in the center; P13569, Cystic fibrosis 462 
transmembrane conductance regulator.  463 
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 464 
 465 

3.7.3. Deletion that is substituted in the structure by another part of the molecule 466 

We observed 6 of 51 cases (12%), where an exon deletion in the isoform removes a 467 
region that is critical for structural integrity of the globular domain. In the AlphaFold 468 
model of the isoform this part of the structure is filled by a new fragment, which, in the 469 
canonical protein belongs to an unstructured region. This suggests, that to provide 470 
structural diversity, proteins may have two or more neighboring regions, one is in the 471 
structure and another unstructured. If the first region is deleted in the isoform, the second 472 
one can dock into the structure, preserve it and modify the function.  (Figure 8C)  473 

 474 

3.7.4. Deletions that destabilize structured domains  475 

     We found eight cases (representing 16%) where exon deletions may destabilize 476 
the 3D structure of the isoforms.  It mostly happened in the large multi-domain proteins. 477 
We assigned these examples to a separate subgroup. In these structures, the domain, 478 
which may be destabilized by the deletion of a critical part, can be transformed to an 479 
unfolded linker connecting the other globular domains. Instead, in the canonical structure 480 
these domains are connected by the structured domain (Figure 8D). In the case of 481 
canonical proteins with a single structured domain, the isoforms may represent 482 
intrinsically disordered proteins.  483 

 484 
                                                    3.7.5. Limitations of AlphaFold in the interpretation of the conformational changes. 485 

 Our analysis revealed some limitations of AlphaFold modelling of the isoforms. For 486 
example, it is the case, when we try to distinguish between isoforms with exon deletions, 487 
which preserve the overall structure, from the ones that destabilize it. In most of the cases, 488 
we could not base our decisions on the confidence score pLDDT for the reason that even 489 
structures, which missed a large part of the domain, frequently had pLDDT score higher 490 
than 70%. These borderline cases were classified based on our visual analysis. In general, 491 
AlphaFold had tendency to build the isoform models that are very close to the canonical 492 
structures, but with missing parts corresponding to the deleted exons. One of these 493 
examples is shown in Figure 8A, where an isoform of the canonical 7-bladed beta- 494 
propeller of Guanine nucleotide-binding protein subunit beta-3 has 6 repetitive units. 495 
AlphaFold model of the isoform is almost identical to the canonical structure, but misses 496 
one blade leading to the structure with an open beta-propeller.  However, SwissModel 497 
structure made based on the known 6-bladed structure (PDB code 1E1A) represents a 498 
closed 6-bladed beta-propeller. Such ambiguous cases cannot be resolved without 499 
experimental studies.  500 

 501 

5. Conclusions 502 

We took advantage of the progress achieved in the development of bioinformatics tools 503 
for large-scale structural annotations of proteins and examined the structural differences 504 

between canonical proteins and their isoforms. It became possible thanks to the TAPASS 505 

pipeline, which uses several state-of-the-art programs for prediction of structured 506 
domains, unstructured regions, transmembrane regions, aggregation-prone motifs [20].  507 

Moreover, the availability of AlphaFold program [22] opened up the possibility to model 508 

a large number of the isoform structures. Altogether, our in silico analysis of 58 eukaryotic 509 

proteomes supported the concept that the majority of isoforms, similarly to the canonical 510 
proteins are under selective pressure for the functional roles. We also found that the 511 

proportions of proteins with signal peptide and transmembrane helices are lower in 512 

isoforms than in canonical proteins. This suggested that some isoforms lose their 513 
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transmembrane or extracellular localization and, eventually their functional roles. At the 514 

same time, we did not observe significant differences between canonical proteins and their 515 
isoforms in the occurrence of unstructured regions or aggregation-prone motifs. Our 516 
modelling of the isoform structures demonstrated that the AlphaFold program is perfectly 517 

suitable for investigations of the structural differences of splicing variants at atomic 518 
details. It was shown that frequently the isoform sequences being different from the 519 

canonical ones still can fold in similar structures. At the same time, the isoforms may have 520 
significant structural rearrangements, which can lead to changes of their functions. We 521 

suggested classification of the structural differences in the isoforms, which preserve the 522 
overall structure of the canonical proteins.  523 

 524 
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