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Understanding and modeling tephra transport: lessons learned 
from the 18 May 1980 eruption of Mount St. Helens

Larry G. Mastin1      · Steven N. Carey2 · Alexa R. Van Eaton1 · Julia Eychenne3 · R. S. J. Sparks4

Abstract
Discoveries made during the 18 May 1980 eruption of Mount St. Helens advanced our understanding of tephra transport and 
deposition in fundamental ways. The eruption enabled detailed, quantitative observations of downwind cloud movement 
and particle sedimentation, along with the dynamics of co-pyroclastic-density current (PDC) clouds lofted from ground-
hugging currents. The deposit was mapped and sampled over more than 150,000  km2 within days of the event and remains 
among the most thoroughly documented tephra deposits in the world. Abundant observations were made possible by the 
large size of the eruption, its occurrence in good weather during daylight hours, cloud movement over a large, populated 
continent, and the availability of images from recently deployed satellites. These observations underpinned new, 
quantitative models for the rise and growth of volcanic plumes, the importance of umbrella clouds in dispersing ash, and 
the roles of particle aggrega-tion and gravitational instabilities in removing ash from the atmosphere. Exceptional detail in 
the eruption chronology and deposit characterization helped identify the eruptive phases contributing to deposition in 
different sectors of the distal deposit. The eruption was the first to significantly impact civil aviation, leading to the 
earliest documented case of in-flight engine damage. Continued eruptive activity in 1980 also motivated pioneering use 
of meteorological models to forecast ash-cloud movement. In this paper, we consider the most important discoveries and 
how they changed the science of tephra transport.

Keywords Mount St. Helens · Tephra · Explosive volcanism · Particle aggregation · Volcanic plume · Umbrella cloud · Ash 
cloud

Introduction

A defining trend in volcanology since the 1960s has been 
the shift from qualitative descriptions of volcanic activity 
to measurement, calculation and ultimately models that 

forecast how far and how fast  tephra moves through the 
atmosphere, and how severely tephra hazards affect people 
and property. A search on Google Scholar, for example, for 
papers containing all the words “volcanic ash,” “deposit,” 
and “numerical model” between 1900 and 1960 returns no 
results. The same search with end dates of 1970, 1979, 1990, 
and 2000 will return 3, 26, 102, and 290, respectively. This 
rate of increase is several times faster than the fifteen-year 
doubling time of scientific publications overall (Larsen 
and von Ins 2010), reflecting an evolution from narrative 
description of phenomena to physics-based conceptual 
models and quantitative numerical models. In the science of 
tephra transport, the numbers increased dramatically around 
the time of the 1980 Mount St. Helens eruption.

The Mount St. Helens eruption occurred at a time of rapid 
advance in understanding of tephra transport and deposition. 
By the 1970s, tephra specialists began to integrate field-
based observations with the physics of plume rise and par-
ticle settling. For example, Walker et al. (1971) experimen-
tally measured the fall velocity of pyroclasts, while Wilson 
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(1972) calculated particle trajectories in the atmosphere. 
Observations from Heimaey and Stromboli in 1973 showed 
that debris was ejected upward through a gas thrust region 
(Blackburn et al. 1976; Sparks and Wilson 1976; Wilson 
1976), where it slowed due to drag and negative buoyancy, 
but then accelerated into a much higher convective thrust 
region if enough air could be entrained to make the mixture 
buoyant. With insufficient entrainment, the column would 
collapse, providing a mechanism for ignimbrite formation. 
Sparks and Wilson (1976) found that column collapse was 
favored by eroding vent walls, reducing magmatic gas con-
tent, or reducing exit velocity. They developed a pioneering 
model of Plinian column variations with height and used 
it to calculate particle trajectories by adapting established 
fluid dynamical models of plumes and jets. If plumes attain 
buoyancy, buoyant plume theory (Morton et al., 1956) sug-
gested that H ∝ MER1∕4 , where H is plume height and MER 
is mass eruption rate. This relationship was confirmed by 
observations of well-documented eruptions (Settle 1978; 
Wilson et al. 1978).

Thus, the 1970s brought a new fundamental understand-
ing of explosive eruption dynamics which set the stage for 
quantitative transport modeling. However, a large, well-
observed eruption where ideas could be tested was needed.

May 18: overview and key observations

By 1980, thanks to field studies in the previous 1–2 dec-
ades, Mount St. Helens was known to be the most active 
and explosive volcano in North America’s Cascade Range. 

In the late 1950s, volcanologists from the U.S. Geological 
Survey (USGS) began a systematic study of the eruptive 
history of Cascade volcanoes (Crandell and Waldron 1956; 
Crandell et al. 1962; Crandell 1963). Work started at Mount 
Rainier, which was assumed to be the most hazardous; but 
by the mid-1970s, investigators recognized that Mount St. 
Helens had produced more explosive, tephra-forming erup-
tions with more Holocene tephras than any other Cascade 
volcano, including three large deposits (> 0.1  km3) since the 
1400s C.E. (Crandell and Mullineaux 1978).

Volcanologists were therefore not surprised when 
Mount St. Helens awakened in 1980 (Christiansen and 
Peterson 1981; Foxworthy and Hill 1982). Following two 
months of inflation, a M 5.2 earthquake at 08:32:11 Pacific 
Daylight Time (PDT = UTC-7: all times in this paper are 
local, 24-h time) on 18 May 1980 (Fig. 1). The earthquake 
caused the north flank to slide away in the largest suba-
erial landslide yet documented, uncorking a pressurized 
cryptodome that expanded north as a lateral blast, and 
then rose buoyantly to > 30 km above sea level (asl) as an 
umbrella cloud (Fig. 2), dropping branches, mud rain, and 
accretionary lapilli on nearby eyewitnesses (Waitt 2014). 
At the summit, a vertical eruptive column rose to about 
14 km asl shortly after 09:00 and fluctuated between 14 
and 19 km asl until about 17:00 before subsiding (Fig. 1). 
The east-moving ash cloud (Fig. 3a) crossed the Idaho 
border (400 km downwind) by noon, the west edge of Yel-
lowstone National Park (1000 km) by about 17:30, and 
continued towards the East Coast of the U.S. Impacts on 
the ground (Damby et al. (this volume)) included road 
closures (Schuster 1981), respiratory problems (Baxter 

Fig. 1  (a) Chronology of erup-
tive activity on 18 May 1980, 
including plume height with 
time, and time of occurrence of 
PDCs. Radar heights reported 
by Harris et al. (1981) are 
“near the volcano” and likely to 
reflect column heights above the 
vent, whereas satellite cloud-top 
heights reported by Holasek and 
Self (1995) are not restricted to 
the vent area. During the morn-
ing of 18 May, the data from 
Holasek and Self (1995) likely 
reflect the height of the drifting 
umbrella cloud
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et al. 1983; Bernstein et al. 1986), aircraft evacuations at 
Fairchild Air Force Base near Spokane, discharging of raw 
sewage into the Yakima River when ash clogged treatment 
filters (Day and Fisher 1980), and damage to agricultural 
machinery and crops (Cook et al. 1981).

At least three factors made this event a milestone in vol-
canology. One was the direct observation of phenomena 
such as the lateral blast. Second, emerging technology led to 
dramatic improvements in satellite imagery (Menzel 2020) 
with unprecedented temporal and spatial resolution, ena-
bling tracking of the volcanic plume (Harris et al. 1981). 
A third factor was clear weather. The eruption occurred on 
a Sunday in view of thousands of cameras and produced a 
deposit that fell over land, in an area where tephra could be 
quickly accessed and sampled before significant modification 
by wind and rain.

The 1980 Mount St. Helens eruption attracted scientists 
from around the globe. The data have been mined for dec-
ades for insights into the nature of ash hazards. The timing 
of the event, occurring when computer technology and ash 
transport calculations were nascent, jump-started the field of 
ash-transport modeling, which is now an operational main-
stay of ash-hazards forecasting.

What we learned

An immense amount was quickly learned in the days and 
weeks after May 18 through vivid images, but it took many 
years to develop a fuller picture. Some of the most lasting 
discoveries are highlighted below.

Insights from satellite, radar, photographs, 
and eyewitness accounts

The lateral blast and blast co‑pyroclastic‑density–current 
(co‑PDC) plume

Ground-based photos were integrated with other observations 
to develop a detailed picture of the sequence of events (Fig. 1) 
(Voight 1981; Moore and Rice 1984; Pierson 1985; Sparks 
et al. 1986; Hoblitt 2000). Photo reconstruction showed that the 
north flank slid away as three separate blocks (Moore and Albee 
1981). The lateral blast and plumes rising from it may have 
developed from two explosions (Moore and Rice 1984; Hoblitt 
2000). From satellite and photo reanalysis, the first explosion, 
“cloud I,” began as the mountain’s north flank slid away, about 
a half minute after the M 5.2 earthquake (Voight 1981). The 
second, “cloud II,” began at 1.5 min (Moore and Rice 1984), 
was manifested by intense infrared radiation in satellite images, 
and ascended into the atmosphere at speeds up to 70 m/s, cen-
tered on a location 12–14 km north of the volcano. Moore and 
Rice (1984) attributed the second explosion to collision of blast/
avalanche with Johnston Ridge or perhaps steam generation in 
the North Fork Toutle River Valley. Hoblitt (2000) suggested 
that explosion 2 began with detachment of slide block II and 
that the cloud “exploded” when reaching rugged terrain north 
of the North Fork Toutle River. Clouds I and II reached about 
7 km altitude.

Ascent of the blast co‑PDC plume

Multiple satellite imagery sources, including restricted 
national sources and ground-based photos, were combined to 

Fig. 2  Photomosaic of the 
growing Mount St. Helens 
umbrella cloud, taken by 
Rocky Kolberg from about 
3.2 km NNE of downtown 
Toledo, Washington, USA 
(46.4686°N, − 122.8413°W), 
at about 08:52. Annotations 
indicate key processes inferred. 
Inset shows successive outlines 
of the growing umbrella cloud, 
taken at 5-min intervals from 
08:40 to 09:10, from a military 
satellite as reported in Sparks 
et al. (1986, Fig. 8). Wikime-
dia Commons photo (https:// 
commo ns. wikim edia. org/ wiki/ 
File: MtStH elens_ Mushr oom_ 
Cloud. jpg)
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give a detailed picture of the transition from lateral blast—a 
horizontally directed expulsion of pyroclastic currents—to a 
vertically rising plume (Moore and Rice 1984; Sparks et al. 
1986). The data from two classified U.S. Air Force infra-
red geostationary satellites (Rice 1981; Sparks et al. 1986) 
allowed rates of plume rise and umbrella expansion to be 
quantified with a time resolution of 5 min. These observations 
provided the first direct documentation of the buoyant liftoff 
process now recognized as a key aspect of co-PDC plumes.

These data showed that pyroclastic density currents from 
the blast expanded until about 08:36:00–08:37:30. Toward 
its outer edges, an overriding current of gas and particles 
began to separate from a dense, granular undercurrent 
(Gardner et al. 2017) while passing over ridges, leaving 
patches of standing trees before rejoining the main flow. 
Toward the center of the blast zone (the area where trees 
were toppled), a buoyant cloud began to rise. Shortly after 
lifting off, the ground-hugging PDC slowed its outward lat-
eral movement and stalled. A photomosaic (Fig. 2) illustrates 
the rising plume at about 08:52, with a radius in the lower-
most kilometer that decreases as air is drawn in and then 
spreads out at multiple levels at higher altitude. Satellite data 
(Sparks et al. 1986) showed ascent velocities up to 110 m/s. 
The plume reached a height of 25 km by 08:50 and then 
31 km by about 08:54 following a late pulse. In map view, 
the radial growth of the umbrella cloud averaged 20–25 m/s 
between 08:50 and 09:10, and the westward side of the cloud 
pushed upwind 28 km until it stagnated as the radial expan-
sion speed approached that of the ambient winds. Negatively 
buoyant material from the top of the plume collapsed into 
the neutrally buoyant umbrella with increased crosswind 
spreading and downwind dispersal (Bursik et al. 1992a; 
Holasek and Self 1995).

Physics of plume rise and spreading The dynamics of this 
cloud were clearly different from that of a steady Plin-
ian column, which exits the vent as a negatively buoyant 
high-speed jet, decelerates, and then accelerates again 
after attaining buoyancy (Sparks and Wilson 1976). In 
contrast, this co-PDC cloud from Mount St. Helens lifted 
off the ground as a positively buoyant thermal with little 
initial upward velocity. Buoyant liftoff from a ground-
hugging PDC is attributed to reversal of buoyancy with 

respect to the overlying atmosphere by a combination of 
sedimentation, entrainment, and heating of entrained air 
(Sparks et al. 1986; Woods and Wohletz 1991; Gardner 
et al. 2017). The PDC decelerates rapidly and motion tran-
sitions from lateral to vertical. Buoyant liftoff was also 
demonstrated in PDCs from explosive activity later in the 
day on May 18 (Figs. 1, 4d) and during later eruptions 
in 1980 (Calder et al. 1997), though not with the same 
intensity as from the lateral blast.

On reaching the height of neutral buoyancy in the atmos-
phere, both vent-derived and co-PDC plumes may spread radi-
ally as an umbrella cloud. A theoretical treatment of these two 
phenomena (Sparks et al. 1997, Ch. 11) found that umbrella 
clouds rising from sustained sources should grow at about 
R ∝ t

2∕3 (Sparks et al. 1997, Eq. 11.8), whereas those rising 
from instantaneous sources like the Mount St. Helens blast 
cloud should grow at R ∝ t

1∕3 (R = cloud radius, t = time). 
Observed umbrella growth rates at Pinatubo, Philippines, in 
1991 follow the predictions for a steady plume (Holasek et al. 
1996). The Mount St. Helens co-PDC plume fell between that 
of a steady and an instantaneous plume, reflecting perhaps that 
it was fed over a period of time comparable to the rise time 
(Woods and Wohletz 1991; Sparks et al. 1997).

Plinian phase and downwind plume spreading

USGS personnel made continuous airborne observations 
for more than 4.5 h (Krimmel and Post, 1981). From about 
09:00 until 12:15, eyewitnesses and radio logs (Criswell 
1987) indicate that a steady Plinian column rose from the 
vent to 14–19 km asl (Figs. 1, 4c) (Christiansen and Peterson 
1981; Criswell 1987; Holasek and Self 1995). Shortly after 
noon, lighter-toned material appeared discontinuously from 
the vent, eventually composing most of the column; then 
about 12:15, eruptive vigor increased and PDCs started to 
pour northward through the crater breach (Foxworthy and 
Hill 1982; Criswell 1987). An elongate ash plume from 
above the PDCs extended northeast, rising to more than 
14 km asl (Harris et al. 1981; Holasek and Self 1995). From 
13:30 to 15:00, PDCs erupted more episodically and then 
eventually abated by ~ 16:25, after which the Plinian plume 
reached its greatest height of ~ 19 km asl, before starting to 
decline around 17:30.

Through a combination of eyewitness accounts, good 
timing, and new technology, we learned a great deal about 
the phenomena that dispersed tephra. The U.S. National 
Weather Service (NWS) tracked plume height and down-
wind movement continuously from radars in Portland, 
Seattle, and Spokane (Harris et al. 1981). In addition, the 
cloud was imaged every half hour, in both visible and ther-
mal infrared (10–12 μm) (Holasek and Self 1995) by the 
GOES-3 satellite.

Fig. 3  (a) Map showing outlines of the ash cloud at different times 
on 18 May from Sarna-Wojcicki et al. (1981, Fig. 332); (b) isopach 
map of the deposit (mm), from Sarna-Wojcicki et al. (1981, Fig. 336); 
(c) isomass map of the deposit (kg/m2), from Sarna-Wojcicki et  al.
(1981, Fig.  338). Blue circles represent sample locations (Durant
et  al. 2009). Red triangle gives location of Mount St. Helens. Red
dots in (b) and (c) give sample locations in Figs. 6a, b, d (Carey and
Sigurdsson 1982). Green dots in (b) and (c) give sample locations
in Fig. 7. Yellow star in (b) gives the location of aggregates photo-
graphed in Fig. 5

◂



Modern techniques to identify ash clouds in infrared 
imagery (e.g., Prata 1989) had not yet been developed, and 
remote sensing analysts could track ash only during day-
light hours based on grayscale tones in visible imagery. In 
GOES-3 visible imagery, the cloud moved eastward at about 
100 km/h in the first 1000 km before night fell (Fig. 3a). The 
following day, the center of the increasingly diffuse cloud 
passed over the mid-continent, New England, maritime 
provinces of Canada, and into the North Atlantic (Sarna-
Wojcicki et al. 1981). At downwind locations, the ash cloud 
arrived overhead before it started depositing at ground level 
(Durant et al. 2009; Eychenne et al. 2015) (Figs. 4c, 5). At 
Spokane, for example, the delay was about 1.75 h (Sarna-
Wojcicki et al. 1981; Durant et al. 2009).

Over years of post-eruption analysis, the scientific com-
munity learned many things about the factors controlling 
ash cloud transport. Some key findings are listed below and 
illustrated in Fig. 4:

• Relationships between plume height and eruption rate
generally followed established height-rate relationships
at the time (Settle 1978; Wilson et al. 1978), but showed
new complexities. Carey et al. (1990) found that the mass
eruption rate inferred from deposit mass was a few times
greater than predicted by plume height. The discrepancy
was attributed either to partitioning of the erupted mass
into PDCs (e.g., Carey et al. 1990) or bending of the
plume by high winds (Degruyter and Bonadonna 2012).

Fig. 4  Key processes and 
features of the plume and down-
wind cloud at three times on 18 
May 1980 eruption. (a, b) Rise 
and expansion of the coign-
imbrite plume, 08:40–09:00 
local time. (c) Movement of the 
downwind cloud shortly before 
noon, as it was being fed by a 
Plinian column from the vent. 
(d) Downwind movement of the
cloud in late afternoon, as it was 
being fed by ash from both the 
Plinian column and from ash 
elutriating from PDCs near the 
vent. Some of the key processes 
described in this paper are 
labeled
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The addition of Mount St. Helens data into later compila-
tions of eruption rate and plume height (e.g., Sparks et al. 
1997; Mastin et al. 2009; Aubry et al. 2021) broadened 
the scatter and added to growing recognition of complex-
ity.

• Both the initial umbrella cloud and later Plinian column
were undercooled by about 15 °C (meaning the cloud
top was colder than the atmosphere at that height) due
to adiabatic expansion during plume ascent (Holasek
and Self 1995). The cloud equilibrated with surround-
ing temperatures over about 30–60 min. Undercooling
is now a commonly recognized phenomenon in strato-
spheric eruptions (e.g., Woods and Self 1992; Holasek
et al. 1996) and quantified in many plume models (e.g.,
Woods and Self 1992; Suzuki et al. 2016). Undercool-
ing complicates efforts to estimate stratospheric cloud
height based on cloud-top temperature. Holasek and Self
(1995) overcame this complication by pioneering the use
of cloud geometry to estimate plume height.

• Although plume-top heights ranged from ~ 14 to 31 km,
the distal cloud moved eastward at much lower levels,
about 10–14 km asl, where the cloud was neutrally buoy-
ant and wind speeds were the highest (Sarna-Wojcicki
et al. 1981; Woods et al. 1995) (Fig. 4c). It is now recog-
nized that ash dispersal tends to occur at altitudes well
below the overshooting top height (e.g., Holasek et al.
1996).

• Over distances of several hundred kilometers downwind,
the width in plan view of the May 18 ash cloud increased
with the square root of distance, suggesting that gravity
current spreading was a more important cloud-widening
process than turbulent diffusion (Bursik et al. 1992a).

This finding contradicts assumptions that cloud widen-
ing results primarily from turbulent diffusion (e.g., Folch 
2012). The detailed observations of Holasek and Self 
(1995) were also used by Bonadonna and Phillips (2003) 
to quantify for the first time the relative effects of gravita-
tional spreading and wind advection on plume widening 
and downwind transport.

• Gravitational instabilities at the base of the downwind
cloud formed mammatus structures a few hundred kilo-
meters downwind (Fig. 4c). Also, a region of high radar
reflectivity appeared at a few hundred kilometers down-
wind, at about 2–3 h after the eruption start, and per-
sisted for about 11 h (Harris et al. 1981; Durant et al.
2009). This high-reflectivity zone was interpreted by
Durant et al. (2009) to result either from the growth of
aggregates in the cloud or from frozen hydrometeors fall-
ing through the melting level to form liquid water. The
downwind distance, about 300 km, coincides with the
location of a secondary thickness maximum described
below (Fig. 4d).

Insights from the fall deposits

The 18 May 1980 eruption produced a widespread tephra-
fall deposit distributed over 150,000  km2 with a total vol-
ume of about 0.25  km3 DRE (dense rock equivalent, Sarna-
Wojcicki et al. (1981)). Fallout occurred east of the volcano 
in the states of Washington, Idaho, and Montana (Folsom 
and Quinn 1980; Sarna-Wojcicki et al. 1981; Carey and 
Sigurdsson 1982), although some fine ash was transported 
to the west and northwest at high levels in the atmosphere 
(Danielsen 1981). Volcanologists were able to sample and 
map out the distribution of a pristine fallout deposit prior to 
significant erosion and reworking. Observations of eruption 
column height (Harris et al. 1981), atmospheric trajecto-
ries (Rosenfeld 1980; Danielsen 1981), eruption chronol-
ogy (Christiansen and Peterson 1981; Criswell 1987), and 
eyewitness accounts (Rosenbaum and Waitt 1981) enabled 
quantitative assessment of factors controlling the formation 
of widespread tephra-fall deposits from a major explosive 
eruption. Additionally, the rich diversity of observations and 
complete documentation made this a benchmark event for 
subsequent studies and refinements of models for atmos-
pheric dispersal of tephra (e.g., Armienti et al. 1988; Fero 
et al. 2008; Folch et al. 2010; Mastin et al. 2016).

Questions remain about the footprint of the ash deposit. 
Existing maps are not entirely consistent with each other 
(e.g., Folsom and Quinn 1980; Sarna-Wojcicki et al. 1980) 
and later observations noted ashfall in new places (Jensen 
et al. 2019b). Jensen et al. (2019a, unpublished data) exam-
ined archival news reports and eyewitness observations that 
suggest that thicknesses of 0.5–1 mm extended well into 
southeastern British Columbia and southern Alberta. There 

aggregates

Fig. 5  Ash aggregates on pavement, photographed by Spencer Wood 
on the morning of May 19, 1980, on Whitebird Grade near Gran-
geville, Idaho (45.8289°N, 116.2465°W), 470 km ESE of Mount St. 
Helens. Location given by yellow star in Fig. 3b



are credible accounts of ash “dustings” much farther north, 
in Edmonton, Saskatchewan, and the U.S. east coast (Tilling 
1984; S. Moran, USGS, pers. commun. 2022). Cutler et al. 
(2020) revisited the May 18 tephra deposit and found good 
preservation where the original thickness exceeded 0.5 cm. 
Related studies performed decades after 1980 showed that 
winnowing of fine ash with time could modestly reduce fine-
ash content (Cutler et al. 2021) and that the quality of pres-
ervation depends on surface vegetation and development of 
biocrusts (Cutler et al. 2018).

Downwind and crosswind sedimentological variations

Detailed measurements of the 18 May 1980 tephra fall dis-
tribution included both thickness and mass per unit area 
(Figs. 3b,c) (Folsom and Quinn 1980; Sarna-Wojcicki et al. 
1980; Carey and Sigurdsson 1982), making this at the time 
the most thoroughly documented fall deposit out to its distal 
limits. Most previous studies lacked data on distal tephra. 
By combining mass loading and thickness measurements, 
investigators calculated bulk deposit density values rang-
ing from > 1000 kg/m3 in proximal areas to < 100 kg/m3 
distally (Fig. 6c) (Folsom and Quinn 1980; Sarna-Wojcicki 
et al. 1980). Several distinct layers were identified at most 
sites, which represented tephra from the initial co-PDC blast 
cloud, the main Plinian column, and secondary plumes gen-
erated by PDC generation (Sarna-Wojcicki et al. 1981). A 
distinctive feature of the deposit is the occurrence of a sec-
ondary thickness maximum approximately 325 km east of 
Mount St. Helens in the vicinity of Ritzville, Washington 
(Figs. 3b, 4c,d). This feature had been documented in only 
a few other fall deposits, most notably associated with the 
1932 explosive eruption of Quizapu volcano, Chile (Hildreth 
and Drake 1992), but its significance had not been examined 
in detail.

The May 18 tephra fall deposit consisted of a mixture 
of pumice, glass shards, accidental lithics, and crystals of 
plagioclase, orthopyroxene, amphibole, sparse clinopy-
roxene, and Fe-Ti oxides sourced from the primary dacitic 
magma, cryptodome, and older volcanic deposits of Mount 
St. Helens. These components varied systematically down-
wind along the main dispersal axis, controlled by the density 
and size of individual components (Carey and Sigurdsson, 
1982). The dominantly dacitic magma erupted on May 18 
consisted of about 70% rhyodacitic melt and 30% pheno- and 
microphenocrysts (Blundy and Cashman 2001) (Rutherford 
et al. 1985) (Kuntz et al. 1981). The deposit consisted largely 
of pumice and lithics out to about 50 km (Carey and Sigurds-
son, 1982). With increasing distance from source, the per-
centage of crystals and glass shards increased significantly, 
with crystal content reaching a peak between about 150 and 
200 km distance (Fig. 6d). At 175 km from source, the fall 
deposit was highly enriched in crystals of plagioclase and 

mafic phases, resembling beach sand. In the area of the sec-
ondary thickness maximum, the deposit was dominated by 
fine, glassy tephra. SEM imaging (Eychenne et al. 2015) and 
glass geochemistry (Cutler et al. 2020; Foo et al. 2020) dis-
criminated components from the initial blast co-PDC cloud 
(fragments of dense cryptodome and older, altered volcanic 
deposits, higher glass  SiO2) and more vesicular magma from 
the later Plinian phase and associated PDCs. Surprisingly, 
beyond 150 km from vent, about half of the tephra by mass 
was derived from the initial co-PDC blast cloud even though 
that blast phase was much shorter than the later Plinian and 
PDC activity. These high-resolution componentry analyses 
demonstrated that significant lateral facies variations can 
occur in fall deposits from multi-phase eruptions.

As with other tephra-fall deposits, the grain size of the 
May 18 sequence decreased regularly with distance from 
source (Fisher and Schmincke 1984), but displayed a dis-
tinct bimodal character in the bulk deposit and within indi-
vidual stratigraphic units (Fig. 6a) (Carey and Sigurdsson 
1982; Durant et al. 2009; Eychenne et al. 2015). A coarse 
mode became systematically finer with increasing distance 
from source, whereas a fine mode remained relatively con-
stant (Fig. 6b). At about 400 km from source, the grain size 
became unimodal (Fig. 6a). Subsequent work with more 
samples quantified the different modes and their areal dis-
tribution downwind and crosswind (Eychenne et al. 2015). 
Transects perpendicular to the main dispersal axis (Fig. 7) 
showed the fine ash increasing in proportion to the north 
and the coarse mode increasing to the south (Eychenne et al. 
2015). The fine-ash mode is mostly attributable to the initial 
blast co-PDC cloud. This work demonstrated that the deposit 
was derived from at least two distinct plumes, initially at dif-
ferent altitudes, that eventually merged downwind. The ini-
tial blast co-PDC plume was injected to a height of > 30 km 
asl and was displaced to the north of Mount St. Helens, 
whereas the second, longer-lived plume was generated from 
a Plinian column and co-PDC clouds rising mostly over the 
summit and attaining heights of about 14–19 km asl (Harris 
et al. 1981).

Proximal ash aggregation

Ash aggregation occurred within the May 18 ash plumes in 
distinct ways depending on the phase of the eruption and 
distance from source. Accretionary lapilli ranging from a 
few millimeters to about 1 cm in diameter (Fig. 8a) are pre-
served in the proximal deposits of the initial blast co-PDC 
plume. Eyewitnesses described falling mudballs by about 
09:00 which variably felt “ice cold” or “a little warm” to 
the touch (Rosenbaum and Waitt 1981). Some mudballs, 
about 1 cm in size, splatted on car windshields. Sisson 
(1995) produced isopleth maps of ash aggregate diameters 
(Fig. 8a) and concluded that proximal sedimentation from 



the giant umbrella cloud was dominated by wet aggrega-
tion, although the origin of the water remains enigmatic. 
Magmatic water comprised only a few weight percent of the 

cryptodome magma, and the eruption occurred on a clear, 
dry day, limiting the amount of moisture entrainment from 
the surrounding atmosphere. External water could have been 

Fig. 6  (a) Grain-size distribu-
tion of the bulk fall deposit at 
different distances downwind 
along the main dispersal axis. 
Data from Carey and Sigurds-
son (1982) (Fig. 3). (b) Plot of 
the size of the coarse mode, 
fine mode, and mean grain size 
of the bulk fall deposit as a 
function of distance downwind. 
Numbers on the blue and yel-
low curves indicate the weight 
percent of the total deposit 
that each mode represents at 
various distances downwind. 
After Carey and Sigurdsson 
(1982). (c) Bulk deposit density 
versus distance downwind 
from Mount St. Helens. After 
Sarna-Wojcicki et al. (1981). 
(d) Variations in componentry
with distance. Data from Carey
and Sigurdsson (1982) (Fig. 7).
Sample locations given as red
dots in Figs. 3b, c. Data used
in Figs. 6a, b, d provided in
Table S1
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sourced from the hydrothermal system within the saturated 
edifice and glaciers/snowpack pulverized by the landslide 
(Sparks et al. 1986; Hoblitt 2000). These other sources 
of water increased the moisture content of the fragment-
ing cryptodome, portions of the blast surge, and the strato-
spheric co-PDC blast plume.

Other phases of the May 18 eruption contain evidence 
for aggregation on a smaller scale. Unit C1 of Waitt and 
Dzurisin (1981) represents deposits up to 80 km distant, 
derived from co-PDC clouds on the afternoon of May 18. 
The ash contains concentrically structured, millimeter-
scale accretionary lapilli, which are only present near 
the margins of Spirit Lake (Fig. 8b). Waitt and Dzurisin 
(1981) proposed that aggregation only took place when the 
PDCs entrained moisture as they swept across Spirit Lake. 

These contrasting observations of pervasive, wet aggrega-
tion in the blast co-PDC ashfall and localized aggregation 
within the afternoon PDC’s have influenced interpreta-
tions of the roles of external moisture on ash transport and 
fallout in other deposits worldwide (e.g., Oruanui (Van 
Eaton and Wilson 2013) and Tenerife (Brown et al. 2009)). 
Aggregation processes also occurred in the downwind, dis-
tal cloud, as described below.

Secondary thickness maximum and enhanced fine ash 
sedimentation

Early simulations of the May 18 tephra fall using a simple 
particle trajectory model investigated the origin of the sec-
ond thickness maximum in western Washington (Carey and 
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Sigurdsson 1982). Modeling inputs included (1) the pro-
portions of different components, their sizes, densities, and 
settling velocities; (2) transport elevations, plume spreading, 
and wind velocities; and (3) estimates of total source grain-
size distribution. The results demonstrated that the second 
thickness maximum could not be reproduced if deposition 
was controlled by fallout of particles individually. Fine 
ash (< 63 microns) in the second thickness maximum area 
should have been transported much farther based on their 
settling velocities, wind strength, and elevation of transport. 
They concluded that formation of a second thickness maxi-
mum could only be generated if fine ash had formed aggre-
gates and settled at a higher velocity than their constituent 
particles (Fig. 9a). Support for this inference came from the 
collection of loosely bound aggregates (“Sorem clusters”) 
in Pullman, Washington, 390 km east of Mount St. Helens 

(Sorem 1982). Aggregates were typically 500–250 microns 
in diameter, consisted predominantly of glass shards with 
some crystals, and were likely held together by a combina-
tion of mechanical interlocking and/or electrostatic attrac-
tion (Sorem 1982).

Dry aggregation alone cannot explain all the features of 
fine ash from the May 18 fall deposit, especially the proxi-
mal fine-ash deposition and the consistency of the fine-mode 
size over large horizontal distances. Consequently, enhanced 
fallout of fine ash is thought to be the combined result of 
dry and wet aggregation; detrainment instabilities of cloud 
base; hydrometeor formation, settling, and destruction; 
and entrainment of small particles by larger ones (Fig. 4d) 
(Durant et al. 2009; Eychenne et al. 2015).

Recognition of fine-ash aggregation at Mount St. Helens 
has implications for tephra-fall hazards. Premature fallout of 

Fig. 9  (a) Predicted mass load-
ing of the Mount St. Helens 
fall deposit using the tephra 
dispersal model of Carey and 
Sigurdsson (1982), with and 
without particle aggregation. (b) 
Observed mass loading of the 
Mount St. Helens fall deposit 
along the main dispersal axis 
from Sarna-Wojcicki et al. 
(1981). (c) Predicted (solid 
lines) and observed (dashed 
lines) values of the coarse and 
fine modes of the Mount St. 
Helens deposit along the main 
dispersal axis. After Carey and 
Sigurdsson (1982)
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fine ash significantly reduces the atmospheric residence time 
of particulates and thus partially mitigates in-flight hazards 
to aircraft. Aggregation can result in localized higher deposi-
tion of fine ash, leading to health impacts from respiratory 
problems or fouling of water supplies and other potential 
infrastructure damage (Wilson et al. 2015).

Premature fallout of fine ash causes bimodality of dis-
tal ash-fall deposits due to a combination of deposition of 
individual particles, usually coarser than 63 microns, and 
aggregates consisting fine ash (Carey and Sigurdsson 1982; 
Rose and Durant 2009). This result was supported by early 
modeling (Fig. 9c). Studies of other widespread tephra-fall 
layers demonstrate similar grain-size bimodality of distal 
deposits (Sparks and Huang 1980) and led to the recogni-
tion that aggregation and other enhanced sedimentation pro-
cesses are common in tephra deposition (Brazier et al. 1983; 
Brown et al. 2012).

The Mount St. Helens event set the standard for analyzing 
the total grain-size distribution of a large-magnitude explo-
sive eruption and shed new light on how the fine-ash compo-
nent constrains fragmentation processes. Based on an early 
granulometric application of the Coulter Counter Method 
(Graham 2003), Carey and Sigurdsson (1982) showed that 
more than 60% of the May 18 deposit consisted of fragments 
63 microns or smaller. A later compilation (Rust and Cash-
man 2011) showed this to be among the most fine-enriched 
deposits yet sampled. It is now thought that the fine-ash 
component of the 1980 fall deposit was enhanced by the 
substantial addition of fragments milled during blast co-
PDC activity (Eychenne et al. 2015), similar to other large, 
co-PDC deposits (e.g., Sparks and Huang 1980; Wilson 
2001; Wiesner et al. 2004; Engwell et al. 2014; Engwell 
and Eychenne 2016).

Other insights

The 1980 eruptions of Mount St. Helens also spawned two 
new fields of study associated with ashfall: ash resuspen-
sion and impacts to human health and agriculture. While 
these topics are outside the scope of this article, they are too 
important to completely ignore. Airborne measurements of 
resuspended ash in the atmosphere after 18 May for example 
(Hobbs et al. 1983) were among the first ever made, showing 
that wind speeds of only a few meters per second could pick 
up recently deposited ash and reduce visibility. Air qual-
ity monitoring stations set up throughout Washington State 
in 1980 provided some of the first-ever measurements of 
total suspended particulates (TSP) during an ashfall event. 
The 8-h average TSP in Yakima on 18 May, 33.8 mg/m3, 
remains the highest measured during any ashfall event any-
where (Bernstein et al. 1986). From 18 through 25 May, 
resuspension kept daily TSP values in Yakima above the 
U.S. Environmental Protection Agency’s Emergency Action 

Level of 0.8 mg/m3 (Bernstein et al. 1986). At Yakima’s two 
major hospitals, visits per day to the Emergency Room due 
to asthma and/or bronchitis rose nearly an order of magni-
tude above normal on 19 May and remained above normal 
for more than two weeks. These observations motivated 
some of the first studies of effects of ash on human health 
(e.g., Baxter et al. 1981). Heavy ashfall over the agricultural 
college of Washington State University in Pullman prompted 
important first studies of the effects ash on agriculture (Cook 
et al. 1981; Johansen et al. 1981; Lyons 1986) and on range 
and forest land (Folsom 1986). Since 1980, resuspension 
events at other volcanoes such as Eyjafjallajökull (Leadbet-
ter et al. 2012; Thorsteinsson et al. 2012; Liu et al. 2014), 
the Valley of Ten Thousand Smokes in Alaska (Hadley et al. 
2004; Wallace and Schwaiger 2019), and Cordòn Caulle vol-
cano, Chile (Folch et al. 2014; Mingari et al. 2020), dem-
onstrate that ash-resuspension problems can be chronic and 
widespread. Similarly, areas of chronic ashfall such as at 
Montserrat (Searl et al. 2002; Horwell et al. 2003) or Merapi 
(Damby et al. 2013) have spawned extensive studies of vol-
canic ash health hazards (Horwell and Baxter 2006).

How Mount St. Helens changed our understanding 
of ash transport and deposition

The discussions below summarize how Mount St. Helens 
improved our understanding of volcanic processes and our 
ability to anticipate and forecast hazards but are by no means 
comprehensive. Some aspects of what we learned, for exam-
ple, about effects of ash resuspension and post-event impacts 
to health, are covered in greater detail by Damby et al. (this 
volume).

Co‑PDC clouds

Observations made during the Mount St. Helens eruption 
provided critical insights into the origin, and behavior, 
of buoyant clouds formed from ground-hugging PDCs. 
Before the Mount St. Helens eruption, evidence for co-PDC 
clouds came from the analyses of ancient ignimbrite and 
fall deposits, whose componentry (enrichment in crystals 
in ignimbrites), grain size, and stratigraphy (homogeneous 
fine ashfall deposits) suggested that, during emplacement of 
PDCs, significant elutriated clouds formed (e.g., Sparks and 
Walker, 1977). The giant umbrella cloud formed by the lift-
off of the blast PDC during the Mount St. Helens eruption 
provided the first direct observation of these processes from 
a PDC (Sparks et al. 1986). It also demonstrated that elutri-
ated co-PDC clouds reached similar (or even greater) heights 
than vent-derived columns, contributing significantly to the 
fallout volume and influencing grain size and componentry 
characteristics of fallout deposits (Eychenne et al. 2015). 
The early interpretations of the Mount St. Helens plume 



dynamics (both the early blast co-PDC cloud and co-PDC 
plumes from later phases) informed the interpretation of 
other deposits, including from the Pinatubo eruption in 1991 
(Holasek et al. 1996), and eruptions in the geological record 
that lack direct evidence for co-ignimbrite clouds (Engwell 
and Eychenne 2016).

Umbrella cloud growth

Umbrella growth relationships derived from the Mount St. 
Helens observations (Sparks et al. 1986) have been gener-
alized and combined with theoretical relations for steady 
growth derived from Pinatubo (e.g., Sparks et al. 1997, ch. 
11). The theory has been applied to estimate mass eruption 
rate of eruptions (Pouget et al. 2013; Van Eaton et al. 2016; 
Hargie et al. 2019), a key parameter used to model ash-cloud 
concentration for aviation safety (e.g., Beckett et al. 2020). 
The advection of ash in the upwind (Sparks et al. 1986) 
and crosswind directions (Bursik et al. 1992a) inferred in 
1980 has been considered for much larger eruptions since 
the Pinatubo event (Koyaguchi and Tokuno 1993), with the 
recognition that eruptions of size VEI 6 or larger on the Vol-
canic Explosivity Index (Newhall and Self 1982) are likely 
to produce large, circular clouds and deposits that differ 
qualitatively from the oblong and fan-shaped features asso-
ciated with weak plumes. Such giant umbrella clouds may 
be subject to Coriolis forces that increase areal dispersion 
and reduce the sensitivity of dispersion to prevailing wind 
directions or plume height (Baines and Sparks 2005; Mastin 
et al. 2014). For example, umbrella growth may account for 
Yellowstone tephra deposits that lie 2000 km upstream of 
prevailing winds (Mastin et al. 2014).

Ash aggregation

The correlation between a secondary thickness maximum 
and aggregation was first made at Mount St. Helens (Carey 
and Sigurdsson 1982). Observations of ash aggregates in 
the proximal and distal May 18 deposit have motivated lab-
oratory and field-based studies of aggregation for several 
decades (Sorem 1982; Gilbert and Lane 1994; Schumacher 
1994; Schumacher and Schmincke 1995; Veitch and Woods 
2001; James et al. 2002, 2003; Textor et al. 2006a, 2006b; 
Durant et al. 2009; Rose and Durant 2011; Brown et al. 
2012; Telling and Dufek 2012; Telling et al. 2013; Durant 
2015; Bagheri et al. 2016; Durant and Brown 2016; Mueller 
et al. 2017; Pollastri et al. 2021). For example, Schumacher 
(1994) sought to reproduce the “Sorem clusters” that fell 
in eastern Washington using laboratory experiments of 
charged ash particles, and the secondary thickness maximum 
described by Carey and Sigurdsson (1982) is often cited 
to demonstrate how aggregation can impact the large-scale 
structure of fall deposits.

Influence on operational tephra forecasting

Throughout 1980 and beyond, multiple explosive eruptions 
of Mount St. Helens sent ash in many different directions 
(Sarna-Wojcicki et al. 1981). Portland, Oregon, located 
southwest of the volcano, was assumed to be mostly safe 
from ashfall in the pre-1980 hazard assessment (Crandell 
and Mullineaux 1978), but was affected on 12 June and 17 
October. The 12 June event required removal of 5300  m3 of 
ash from more than 2400 km of city streets (Schuster 1981). 
Many communities inundated by ash on 18 May and sub-
sequent events were caught by surprise, as State emergency 
managers and the USGS were concentrating communication 
efforts on local counties where impacts were greater (War-
rick et al. 1981).

The widespread impact of ash raised the importance of 
producing daily forecasts that could show areas at risk when 
an eruption occurred. Thus, from late March 1980 through 
to the end of 1981, the USGS ran an early and pioneer-
ing NOAA forecast model (Heffter et al. 1975) that would 
interpolate wind trajectories at different elevations (Fig. 10a) 
(Miller et al. 1981). These efforts heralded major modeling 
advances in the next few decades.

From the 1980s through the 1990s, models that calcu-
late tephra sedimentation became common in volcanology 
(e.g., Carey and Sigurdsson 1982; Suzuki 1983; Hopkins 
and Bridgman 1985; Carey and Sparks 1986; Armienti et al. 
1988; Glaze and Self 1991; Bursik et al. 1992b; Sparks 
et al. 1992; Hurst 1994; Bonadonna et al. 1998). Most such 
models solved for advection and diffusion semi-analytically 
(e.g., Hurst 1994) or, in weak plumes, by calculating air 
entrainment and particle settling (e.g., Bonadonna et al. 
2005). Given a specified plume height, erupted volume, 
grain-size distribution, and one-dimensional wind sound-
ing, they can produce theoretical isopach maps. Many of 
these models were validated by comparing with the Mount 
St. Helens deposit data (Carey and Sigurdsson 1982; Hop-
kins and Bridgman 1985; Armienti et al. 1988; Glaze and 
Self 1991; Bonadonna and Phillips 2003). During the next 
phase at Mount St. Helens from 2004 to 2008, the USGS 
employed the ashfall model (Hurst 1994) for daily forecast-
ing (Fig. 10b).

In parallel efforts, from the 1980s into the 2000s, the 
meteorological community developed three-dimensional 
dispersal models to track the path of pollutant clouds 
(Draxler and Hess 1998; Jones 2004; Daniele et al. 2009; 
Folch et al. 2009; Stein et al. 2015). These models differ 
from the above-described models in that they use a three-
dimensional time-varying wind field, are fully numerical, 
slower than one-dimensional semi-analytical models (run-
ning over minutes to hours versus seconds for the latter). 
These models can forecast cloud movement as well as ash-
fall and can simulate very large or long-lived eruptions in 



changing wind fields. Today, these models are the core 
tools used to forecast ash-cloud movement for aviation 
safety. Many of them consider key processes highlighted in 
the Mount St. Helens eruption such as particle aggregation 
(Costa et al. 2010; Folch et al. 2010; Beckett et al. 2022) 
and umbrella growth (Costa et al. 2013; Mastin et al. 2014; 
Webster et al. 2020).

The literature on plume dynamics, tephra transport, and 
deposition has grown hugely, and a complete up-to-date 

review is out of the scope here. Some publications that 
summarize developments over the four decades since 1980 
include Sparks et al. (1997), Bonadonna et al. (2012), and 
Folch (2012).

Influence on ash and aviation hazards

Concern over ash and aviation safety can be traced back to 
Mount St. Helens. The 18 May 1980 eruption caused the 
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intervals. (b) Hypothetical eruption forecast using the semi-analytical 
ashfall model (Hurst 1994), assuming a tephra volume of 1 million 
cubic meters and plume height of 7 km. Forecasts of this type were 
produced daily during the 2004–2008 eruption of Mount St. Helens. 
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fully three-dimensional, time-varying wind field (Schwaiger et  al. 
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cancellation of nearly 1400 flights and damaged nine aircraft 
in flight—among the most of any historical eruption behind 
Eyjafjallajökull in 2010 (Guffanti et al. 2010; Christmann 
et al. 2017). The first recorded case of in-flight engine damage 
occurred on 25 May when an L-100 aircraft flew into a plume 
over the volcano (Gabbard et al. 1982; Guffanti et al. 2010).

In 1980, the NWS Forecast Office in Seattle forecast ash-
cloud movement using interpolated NOAA-based wind tra-
jectories, similar to the USGS forecasts (Miller et al., 1981). 
Nearly two decades later, as Volcanic Ash Advisory Centers 
(VAACs) were established (Servranckx et al. 1999), national 
meteorological agencies adapted their three-dimensional 
dispersion models to track the movement of volcanic ash 
clouds. Examples include the Met Office NAME model 
(Jones 2004), the NOAA Hysplit model (Stein et al. 2015), 
the Canadian CANERM model (now MLDP0, D'Amours 
et al. (2015)), and the Meteo France model MOCAGE Acci-
dent (Sič et al. 2015). In the late 2000s and early 2010s, two 
additional 3D models, Fall3d (Folch et al. 2009) and Ash3d 
(Schwaiger et al. 2012), were developed specifically for ash 
deposition and movement of volcanic clouds. They too were 
validated by comparison with the Mount St. Helens 1980 
deposit data (Folch et al. 2010; Mastin et al. 2016).

Today, tephra dispersal models are used by both volcano 
observatories and VAACs. User interfaces (Bear-Crozier 
et al. 2012; Mastin et al. 2013; Palma et al. 2014) make 
them usable to all volcano observatory staff during unrest 
(Coombs et al. 2019) or as instructional tools (e.g., Fig. 10c). 
In 1980, it took about an hour for an operator to connect 
remotely to a NOAA server, run the model, and generate a 
map. Today, daily Ash3d simulations for all Alaska volca-
noes at a state of unrest are generated and posted automati-
cally (https:// www. avo. alaska. edu/).

Discussion and remaining questions

Based on both plume height and volume, the 18 May 
1980 eruption ranked 5 on the VEI scale. On average, VEI 
5 + eruptions occur once or twice per decade (Deligne et al. 
2010). The growth of umbrella clouds, climatic effects, soci-
etal impacts of tephra fallout and reworking, physics of shock 
waves and tsunamis are just a few examples of phenomena 
associated with such large eruptions. In addition, large erup-
tions attract widespread attention and observations that help 
science surge forward. Thus, the size of the Mount St. Helens 
eruption and the attention it garnered partially explain why 
we learned so much. But even among eruptions this size, its 
impact was large, and it seems appropriate to ask why.

Since 1980, there have been only four or five eruptions 
ranked VEI 5 or larger by the Smithsonian Institution’s 
Global Volcanism Program (https:// volca no. si. edu/): El 

Chichón (1982) (Sigurdsson et al. 1984), Hudson (1991) 
(Scasso et  al. 1994), Pinatubo (1991) (Wiesner et  al. 
2004), Puyahue-Cordòn Caulle (2011) (Pistolesi et al. 
2015), and Hunga-Tonga Hunga Ha’apai (HTHH, 2022) 
(Terry et al. 2022). Each eruption taught important les-
sons about the nature and consequences of large erup-
tions. Pinatubo for example demonstrated the power of 
large umbrella clouds in dispersing tephra (Koyaguchi and 
Tokuno 1993). HTHH provided the first modern data on 
global volcanogenic tsunamis (Carvajal et al. 2022) and 
atmospheric waves (Matoza et al. 2022). Sulfur dioxide 
emissions could be measured with increasing accuracy 
during each eruption and used to calibrate the cooling 
effect of  SO2 on climate (Carn et al. 2016). Yet none of 
these subsequent eruptions could be directly observed as 
well as Mount St. Helens in 1980. Hudson and HTHH 
were too remote. Puyahue Cordòn Caulle was also remote 
and is ranked VEI 5 only because its several VEI 3–4 
events are aggregated into a single eruption (Pistolesi et al. 
2015). Major phases of El Chichón occurred at night and 
destroyed nearby villages of observers (Sigurdsson et al. 
1984). Pinatubo erupted during a major typhoon. Large 
eruptions are infrequent; and the well-observed ones are 
rarer still.

Many questions raised by the 1980 Mount St. Helens 
eruption remain. For example, what controlled the size 
and density of aggregates? How has the tephra-fall deposit 
degraded over time? How many of the tephra eruptions of 
1980 could we identify in the stratigraphic record, using 
only exposures available today? These questions await fur-
ther study.

Conclusions

The 18 May 1980 Mount St. Helens eruption taught us 
more about tephra transport and sedimentation than just 
about any other in the past half-century. The rich obser-
vations launched a new era of research on tephra trans-
port and forecasting of tephra hazards. Many phenomena 
were highlighted, such as the growth of umbrella clouds, 
aggregation processes, and hydrometeor formation. These 
are now regarded as first-order processes essential to con-
sider in forecasting and modeling tephra hazards. The 
pioneering use of dispersion models has evolved into a 
core component of tephra-hazard forecasting. The disrup-
tive effects of ash on flight operations helped motivate 
the development of a global infrastructure to forecast 
ash-cloud movement for aviation safety. Every eruption 
teaches us something new. But the abundant observations 
and significant impacts of 18 May 1980 made it a singular 
teaching event.

https://www.avo.alaska.edu/
https://volcano.si.edu/
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