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Abstract

We study informed persuasion whereby a privately informed designer without

ex ante commitment power chooses disclosure mechanisms to influence agents’

actions. We characterize the subset of Bayes-correlated equilibria yielding every

designer type a payoff higher than what they could get from any disclosure mech-

anism with credible beliefs. This set of interim optimal mechanisms is non-empty

and tractable, and all its elements are perfect Bayesian equilibrium mechanisms

of the informed-designer game. Interim optimal mechanisms are characterized

via belief-based approaches in pure persuasion settings. We identify single- and

multi-agent interactive environments in which ex ante optimal mechanisms are

interim optimal.

KEYWORDS: interim information design, Bayesian persuasion, informed prin-
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1 Introduction

Decisions on topics ranging from voting to careers and investments crucially depend

on the information agents have. In the large and influential literature on Bayesian

persuasion and information design, an uninformed designer optimally commits to a

disclosure rule.1 The designer’s purpose is to achieve a certain goal; for example,

a seller tries to convince buyers of a product’s worth, a politician encourages voters

to vote for them, and a pharmaceutical company aims to convince a doctor to pre-

scribe their medicine. In other words, the designer seeks to identify ex ante optimal

(EAO) information disclosure mechanisms, which amounts to solving a maximiza-

tion problem. However, parties selecting the informativeness of a procedure (details

on a product brochure, scope and breadth of an investment opportunities study, di-

mensions on which to test a new vehicle) often have private information that shapes

their preferences regarding which procedure to choose. The chosen procedure in turn

affects the inferences and the ultimate nature of information that is disclosed.

In this paper, we study informed information design. We take the same interim per-

spective as the influential works on disclosure games2 but enlarge the designer’s choice

set. Instead of focusing on deterministic evidence alone, the informed designer chooses

any mapping from the state space to distributions over signals. Two key differences

exist between the standard information-design setting and our informed persuasion

setting. First, the designer’s interim incentives differ from their ex ante ones. For ex-

ample, a high-quality seller prefers to disclose information, but a low-quality seller

does not. Similarly, a central bank may choose to fully reveal good news even through

ex ante it might have chosen an opaque disclosure rule. Second, the choice of the

information-disclosure policy can reveal information to the agents. For example, cus-

tomers can update their expected valuation for a product if the seller designs product-

testing procedures that have a low probability of uncovering bad characteristics, or

if some product features are not tested at all. Interim information design is thus not

a constrained optimization problem but a game that shares features with disclosure

games (cf. Milgrom, 1981) and informed-principal problems (cf. Myerson, 1983).

Establishing that a mechanism is part of a perfect Bayesian equilibrium (PBE) of an

informed information design game requires showing that for every possible deviation

to any mechanism, some belief exists alongside some continuation equilibrium play

rendering that deviation unprofitable. In general, finding a “correct” combination of

belief and continuation equilibrium is difficult, and consequently, so is identifying the

mechanisms that are part of a PBE.3 At the same time, in some settings, any devi-

ation is unprofitable; for example, if there is a state such that the designer always gets

the lowest possible payoff when agents assign probability one to that state, any de-

viation coupled with this belief is unprofitable. In such settings all Bayes-correlated

equilibria (BCE) are part of a PBE, and this set includes outcomes with the lowest

payoffs for the designer. The aforementioned issues with PBE may suggest that we

1See, for example, Kamenica and Gentzkow (2011), Bergemann and Morris (2016), Taneva (2019), and
Mathevet et al. (2020). Bergemann and Morris (2019), Kamenica (2019), and Forges (2020) provide sur-
veys of the literature.
2See, for example, Milgrom (1981), Grossman (1981), Okuno-Fujiwara et al. (1990), Seidmann and Winter
(1997), Sher (2011), Hagenbach et al. (2014), Hart et al. (2017), and Ben-Porath et al. (2019).
3Example 1 below is a simple binary action, binary state setting in which neither the EAO nor the full
disclosure mechanism are part of a PBE.
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focus on designer-optimal mechanisms. What is designer optimal, however, depends

on the perspective—an EAO mechanism may yield a strictly lower payoff for cer-

tain designer types compared with full, partial, or no information disclosure. And in

an information design game, designer types can employ such alternative disclosure

mechanisms at the interim stage.

In this paper, we provide a tool to tractably identify PBE mechanisms of the informed-

designer game, sidestepping the need to consider strategy profiles and associated be-

lief systems. We do so by identifying a class of mechanisms that we call interim optimal

(IO) mechanisms. IO mechanisms are a tractable subset of BCE mechanisms and are

hence defined without reference to the strategies and beliefs of the informed-designer

game. In Theorem 1, we show IO mechanisms always exist for general multi-agent

information design games. Theorem 2 shows that all IO mechanisms are PBE mechan-

isms. Furthermore, as their names suggests, IO mechanisms are designer optimal from

the interim perspective: IO mechanisms consist of the incentive-compatible mechan-

isms that yield payoffs for all designer types that are higher compared with the best

they can obtain by using alternative information disclosure mechanisms with cred-

ible beliefs (beliefs that assign positive probability only to types that strictly benefit).

As such, IO mechanisms are preferred over full disclosure (unraveling), which may

be what the designer prefers when the state is favorable; obfuscation, which may be

what the designer prefers when the state is unfavorable; and any other disclosure

mechanism coupled with credible beliefs.

An ex ante designer-preferred IO mechanism always exists, and we call it IO∗. Propos-

ition 1 and Proposition 4 establish conditions under which IO∗ and EAO mechanisms

coincide. Proposition 4, in particular, implies that in a large class of binary-action set-

tings,4 the usual ex ante commitment assumption in the information-design literature

is without loss: The EAO mechanism is IO∗, thus a PBE is robust to interim informa-

tion disclosure.5

IO mechanisms are a tractable class and can be characterized using state-of-the-art

techniques. In Proposition 2, we provide a characterization of interim-optimal alloc-

ations via the belief-based approach of Kamenica and Gentzkow (2011). We do so

in a single-agent setting in which the designer’s preferences are state independent;

namely, the setting Lipnowski and Ravid (2020) coin transparent motives. When the

designer’s value function is quasiconvex in beliefs,6 Proposition 3 shows that each de-

4See, for example, Arieli and Babichenko (2019) and Chan et al. (2019), as well as some parametrized
examples in Bergemann and Morris (2019), Taneva (2019), and Mathevet et al. (2020).
5See Kamenica and Gentzkow (2011) for a discussion of the commitment assumption. Other papers
that relax the commitment assumption of the standard information-design paradigm in ways that differ
from our approach include Lipnowski et al. (2022), Lipnowski and Ravid (2020), and references therein.
In Lipnowski et al. (2022), the designer is uninformed and chooses an experiment ex ante, but can ex
post lie when the signal realization is “bad.” Lipnowski and Ravid (2020) study cheap-talk communic-
ation (rather than commitment to a disclosure rule) by an informed party that has state-independent
preferences over actions.
6Quasiconvexity of the designer’s value function naturally arises in many economic environments. Ex-
amples include settings in which a salesperson discloses information about the quality of the good with
the goal to sell more products (as in Milgrom, 1981 and Grossman, 1981), a manager seeks to motivate
the worker to exert maximal effort and the worker exerts higher effort with an increase in the likelihood
that the project is promising (as in the application “motivating through strategic disclosure” in Dworczak
and Martini, 2019), a job candidate wants to get hired, a politician wants to win office, and so forth. The
value function V is also quasiconvex in the investment-recommendation application in Dworczak and
Martini (2019) and in the think-tank and broker applications in Lipnowski and Ravid (2020).
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signer type getting a payoff weakly higher than that from full disclosure is not only

a necessary property, but also sufficient for an incentive-compatible mechanism to be

interim optimal.

Proposition 3, in conjunction with Theorem 2, implies full disclosure (i.e., the “un-

raveling” outcome, which is the unique equilibrium outcome in the leading games

on evidence disclosure) is IO and thus a PBE outcome even if the informed party can

choose arbitrary mechanisms. We leverage Propositions 2 and 3 to build a constrained

information-design program characterizing IO∗ mechanisms. We illustrate interim

optimality in simple examples.

Related literature We contribute to the information design literature (Kamenica and

Gentzkow, 2011, Bergemann and Morris, 2016, Taneva, 2019) by identifying a tractable

subset of BCE mechanisms that are robust to interim information disclosure and arise

at a PBE of the informed-designer game. We also contribute to the informed principal

literature stemming from Myerson (1983), by developing a concept that always exists

and is a PBE of the informed-designer game. Clearly, when the designer has access

to all experiments, the optimum can be achieved by choosing and committing to the

experiment before learning additional information, which is not generally true if the

set of experiments is restricted. In a pioneering paper, Perez-Richet (2014) studies

equilibrium refinements and what happens when an informed designer can choose

from constrained-information policies in a single-agent setting with binary actions and

states and state-independent payoffs for the designer.7 Degan and Li (2021) consider a

binary-action setting in which the informed sender has a restricted choice set (chooses

the signal’s precision). Alonso and Câmara (2018) focus on whether the designer can

benefit from having private information prior to offering an experiment in a setting in

which the designer may have access to a limited set of experiments. In contrast, in this

paper, we consider an interim information-design setting with an arbitrary number of

states, actions, agents, and general payoffs, in which the informed designer can choose

any disclosure mechanism. We provide more detailed comparisons with related works

throughout the paper, such as the discussions following the definition of the informed-

designer game in Section 3, the last part of Section 4, and Appendix C.

The rest of the paper is structured as follows. The next section studies an informed

prosecutor example. Section 3 describes the setting, formulates the informed-designer

game, and defines EAO and EPO mechanisms. In Section 4, we define interim-optimal

mechanisms and prove that they exist and that they are PBE outcomes of the game.

Section 5 provides a belief-based characterization of interim optimality. In Section 6,

we study interim optimality in multi-agent settings. Section 7 concludes. In Ap-

pendix A, we present the general model in which the designer can be imperfectly

informed about the state and can commit to enforceable actions. We prove Theorem 1

and Theorem 2 directly for the general setting of Appendix A in Appendix A.1 and

Appendix A.2, respectively. Appendix B has the proofs of Section 5. In Appendix C,

7Without putting some reasonable restrictions on beliefs, PBE has very little predictive power in such
settings because off-path beliefs can be chosen in a way that completely cancels out the information
revealed by off-path experiments. This observation generalizes to some information-design settings with
state-independent preferences for the designer, where the EAO mechanism is a PBE mechanism even
when it is strictly dominated by the ex post optimal (EPO) mechanism for some designer types (see
Zapechelnyuk, 2022).
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we compare interim optimality to other leading concepts in the informed-principal

literature. Appendix D studies an imperfectly informed prosecutor example.

2 Informed prosecutor

In this section, we provide an introduction to IO mechanisms by reconsidering the

leading judge example of Kamenica and Gentzkow (2011), and we illustrate why PBE

can have very little predictive power and an EAO mechanism may not be a robust

prediction (despite being a PBE) in informed information design games.

Suppose a judge is facing a defendant that is either guilty or innocent, T = {tG, tI},

and the prior on the defendant being guilty is p(tG) = p. The judge’s set of actions

is a subset of {a0, a2, a3, ā0}. The prosecutor is the information designer (player 0) and

has state-independent payoffs: u0(a0) = u0(ā0) = 0, u0(a2) = 2, and u0(a3) = 3. In

contrast to the version in Kamenica and Gentzkow (2011) when the prosecutor chooses

the investigation procedure, they know whether the defendant is guilty or not.

We consider three variations that only differ in the number of actions. The first vari-

ation corresponds to the judge example in Kamenica and Gentzkow (2011). The judge

has two actions: a0 = acquit and a2 = convict with two decades imprisonment. The judge’s

optimal action as a function of their belief q(tG) = q is a0 if q < 1/3 and a2 if q ≥ 1/3.8

The next variation arises from adding action a3 to the previous setting: Now the judge

can rule in addition a3 = convict with three decades imprisonment. We assume a3 is op-

timal for the judge when q ≥ 2
3 . In the last variation, we add a fourth action, ā0 =

execution, and assume ā0 is the judge’s optimal action for q > q̄, where q̄ >
2
3 . This

extreme action yields a payoff of 0 to the prosecutor.
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Figure 1: Designer value function (solid lines) and ex ante payoff at the EAO mechanism (dashed

lines). Left panel: two actions (A = {a0, a2}); middle panel: three actions (A = {a0, a2, a3}); right panel:
four actions (A = {a0, a2, a3, ā0}).

Figure 1 depicts the designer’s expected payoff as a function of p. The EAO distri-

bution of posteriors is obtained from the concavification of the value function V, de-

noted by cav V, and it is depicted with the dashed line in Figure 1.9 Note for p ≤ 1
3

the EAO distribution of posteriors is the same for all variations: it splits p (with prior-

dependent weights) to two posterior beliefs 0 and 1
3 inducing the designer-EAO payoff

vector UEAO = (U(tG), U(tI)) = (2,
4p

1−p).

8For brevity, we only describe the judge’s optimal action as a function of the belief and do not provide
the payoff details that lead to that function (as usual ties are broken in favor of the prosecutor).
9In single-agent settings, the set of BCE mechanisms can be described by Bayes’ plausible distributions
of posteriors. The concavification of V is the smallest concave function that is point-wise greater than or
equal to V.
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Can this EAO payoff vector arise at a PBE of the informed prosecutor game and, more

broadly, what is the set of PBE payoff vectors for the prosecutor? The answer to the

second part of this question is surprisingly simple and also answers the first part. In

this example, PBE (interim) payoff vectors (for the designer) coincide with all BCE

payoff vectors. To see why, observe that action a0 leads to the lowest possible payoff

for the designer, (U(tG), U(tI)) = (0, 0), and it is the agent’s unique optimal action for

q = 0. Therefore, any mechanism yielding a BCE payoff vector is part of a PBE because

any off-path deviation coupled with belief q = 0 after the observation of the deviation

mechanism, and after the observation of any message from this mechanism, leads to

action a0, rendering the deviation unprofitable.10 BCE induce very low payoff vectors,

for example, (U(tG), U(tI)) = (0, 0), which is the payoff arising from no disclosure.

Consequently, PBE has unsatisfactory predictive power. In fact, the definition of PBE

permits off-path beliefs that make the information revealed from the subsequent ex-

periment irrelevant. Further, it is quite unreasonable for the prosecutor who knows,

or is sufficiently convinced,11 that the defendant is guilty to settle at the interim stage

for a payoff lower than the unraveling (full disclosure) payoff.

To identify which payoff vectors are robust to unraveling and, more broadly, to beliefs

that the designer could credibly induce through disclosure, consider the table that

follows in which we describe the designer’s payoff vectors in the two-, three-, and

four-action variations of the example arising from various disclosure mechanisms: no

disclosure (ND), full disclosure (FD), EAO disclosure (inducing two posteriors 0 and
1
3 ), and partial disclosure (PD) inducing signals i and g with posteriors 0 and q, where

q > p is a posterior inducing the highest payoff for the designer (i.e., q ≥ 1
3 in the

two-action example, q ≥ 2
3 in the three-action example, and q ∈ [ 2

3 , q̄] in the four-

action example). All these payoff vectors arise at some PBE of the informed-designer

game. We focus on p ∈ (0, 1
3) and revisit the example for the remaining priors after

we formally define IO in Section 4.

prior p ∈ (0, 1
3) A = {a0, a2} A = {a0, a2, a3} A = {a0, a2, a3, ā0}

No disclosure 0, 0 0, 0 0, 0

Full disclosure 2, 0 3, 0 0, 0

Partial disclosure 2, 2
(1−q)p
q(1−p)

3, 3
(1−q)p
q(1−p)

3, 3
(1−q)p
q(1−p)

EAO disclosure 2,
4p

1−p 2,
4p

1−p 2,
4p

1−p

Table 1: Designer’s interim payoff vectors (U(tG), U(tI))

In the two-action variation, there is no ex ante and interim conflict: Both designer

types prefer the EAO payoff vector that corresponds to concavification, UEAO = (2,
4p

1−p),

to the one corresponding to full disclosure, UFD = (2, 0), or to any other disclosure

mechanism. In addition, because designer type tG gets their first-best payoff, any al-

ternative mechanism proposal by the designer can only strictly benefit type tI , so belief

credibility should imply that the agent assigns probability zero to tG and so chooses

action a0. Therefore, in the two-action variation, the EAO payoff vector (and any BCE

10Note that off-path beliefs that do not have full support may be conflicting information subsequently
released from off-path mechanisms. Consider, for example, a deviation to a fully revealing mechanism
coupled with off-path belief q = 0. This mechanism may reveal that the defendant is guilty for sure,
yielding inconsistency. In such an instance, Bayes’ rule does not apply and the definition of PBE permits
any subsequent off-path belief. In particular, the belief we started with, q = 0, is PBE-consistent.

11In Appendix D we revisit this example and allow for a partially informed prosecutor.
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that gives a payoff of 2 to tG) is robust to interim information disclosure and credible

beliefs, and EAO and IO∗ (the ex ante preferred IO) mechanisms coincide.

In the three-action variation, the payoff vector corresponding to full disclosure is

UFD = (U(tG), U(tI)) = (3, 0), and the payoff vector corresponding to partial dis-

closure is UPD = (U(tG), U(tI)) = (3, 3
(1−q)p
q(1−p)). Because we cannot compare the in-

terim payoff vector UEAO with UFD or UPD, there is now ex ante and interim conflict:

Type tG strictly prefers full or partial disclosure to EAO, whereas the opposite holds

for tI . The EAO mechanism is not interim optimal because type tG strictly prefers full

disclosure (tG gets a payoff of 3 instead of 2), and a belief for the judge that assigns

probability one to type tG is credible because full disclosure strictly benefits type tG.12

In the four-action variation, the ideal action for the prosecutor is only obtained for in-

terior beliefs. As in the previous variation, the EAO mechanism is not interim optimal

because belief q ∈ [ 2
3 , q̄] induces action a3, which strictly benefits both types. To under-

stand why robustness to belief q ∈ [ 2
3 , q̄] is related to robustness to interim disclosure,

it is convenient to represent partial disclosure as a partition of a modified state space

T̃ as follows. Assume for simplicity that the prior is p = 1
6 .

First, consider an hypothetical situation in which the designer is only partially in-

formed about the state. Their type is in T̃ = {ti, tg}, where ti knows that the defendant

is innocent and tg believes that the defendant is guilty with probability q ∈ [ 2
3 , q̄]; tg

has probability 1
6q and ti has probability 1 − 1

6q . Now, exactly as in the three-action ex-

ample, full disclosure of t̃ ∈ {ti, tg} should induce belief in the defendant being guilty

equal to q ∈ [ 2
3 , q̄] for the agent. Hence, for type tg, action a3 should be played with

probability one, which implies that the EAO mechanism (that never induces an in-

terim payoff higher than 2) is not interim optimal. The EAO mechanism is not robust

to unraveling when the designer is partially informed.

Next, we extend the argument by starting from the previous scenario and endow-

ing the designer with an additional, completely informative signal. Specifically, the

partially informed designer type tg becomes type t
g
G by learning that the defendant

is guilty (which happens with probability q) or becomes type t
g
I by learning that the

defendant is innocent (which happens with probability 1 − q). The type space is now

T̃ = {ti, t
g
I , t

g
G}, with prior (1 − 1

6q ,
1−q
6q , 1

6). In this setting, which is informationally

equivalent to the original one, partial disclosure can be written as a partition that

reveals {ti} or {t
g
I , t

g
G}. Compared with the EAO outcome, t

g
I and t

g
G strictly bene-

fit from partial disclosure with the credible belief that assigns the deviation from the

EAO mechanism to t
g
I and t

g
G and assigns belief Pr(t

g
G | {t

g
I , t

g
G}) = q ∈ [ 2

3 , q̄] to the

defendant being guilty. More generally, information disclosure can be represented as

in works by Green and Stokey (1978), Gentzkow and Kamenica (2017), and Brooks,

Frankel, and Kamenica (2022) by a partition of T̃ = [0, 1] × {tG, tI}, where the de-

signer knows (x, t) ∈ T̃, and the element x of [0, 1] is drawn uniformly. The above

partially revealing experiment can be represented by the partition {{g}, {i}}, where

i = [0,
6q−1

5q ]× {tI} and g is the complement. Then, Pr(tG | g) = q ∈ [ 2
3 , q̄] and partial

revelation strictly benefits the designer for all t̃ ∈ g.

12This unraveling force is at the core of the evidence disclosure works mentioned in the introduction: A
high-quality seller who can certify quality does so and charges a high price or sells high quantities.
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Hence, in both the three- and four-action variations, for a payoff vector to be interim

optimal, it must ensure tG a payoff of at least 3. In the four-action variation, IO pay-

off vectors set U(tG) = 3 and U(tI) ∈ [ 3(1−q̄)
5q̄ ,

3p
2(1−p)

]. To obtain the IO set in the

three-action variation, we simply set q̄ = 1. IO∗ is the same in both variations and

is obtained by splitting the prior p to posteriors 0 and 2
3 , yielding a payoff vector

(U(tG), U(tI)) = (3,
3p

2(1−p)
). Whenever the concavification outcome is robust to “gen-

eralized” unraveling forces, as in the case of the two-action variation, it corresponds

to IO∗; whenever not, the example illustrates that the IO set identifies BCE outcomes

that are robust and IO∗ selects the ex ante designer-preferred one.

3 Model

Environment We consider an incomplete-information environment with n + 1 play-

ers. Player 0 is the information designer who interacts with n players called agents. We

denote by I = {1, . . . , n} the set of agents. Each agent i ∈ I has a non-empty and finite

set of actions Ai. Let A = ∏i∈I Ai be the set of action profiles.

The designer is privately informed about the state of the world that affects players’

payoffs.13 Let T be the non-empty and finite set of states, which is the set of types of

the designer. The common prior p ∈ ∆(T) is assumed to have full support. For every

action profile a ∈ A and type t ∈ T, the payoff of the designer is u0(a, t) and the payoff

of agent i is ui(a, t). Following the terminology of Myerson (1982, 1983), the setting

above is called a Bayesian incentive problem and is denoted by

Γ = ((Ai)i∈I , (ui)
n
i=0, T, p).

Informed-designer game The informed-designer game is the following extensive-

form game between the privately informed designer and the agents:

1. Nature selects the state of the world, t ∈ T, according to the prior probability

distribution p ∈ ∆(T).

2. The designer is privately informed about t ∈ T.

3. The designer chooses a non-empty and finite set of signals14 X = ∏i∈I Xi and an

information-disclosure mechanism

ν : T → ∆(X);

4. Agents publicly observe the mechanism ν proposed by the designer.

5. Signals (x1, . . . , xn) are drawn with probability ν(x1, . . . , xn | t). For every i,

signal xi is privately observed by agent i.

6. Every agent i chooses an action ai ∈ Ai as a function of the signal xi ∈ Xi.

13To keep the exposition focused in the main text we present definitions and results for this baseline
setting in which the designer is perfectly informed about the state but all definitions readily extend to
the general setting of Appendix A.

14Formally, we can define for every i any superset of Ai, and assume the designer chooses a finite subset
Xi of that superset.
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Key comparisons The key difference between the informed-designer extensive form

and the usual formulation of information design (as in Bergemann and Morris, 2019)

or Bayesian persuasion (Kamenica and Gentzkow, 2011) is that in those settings, the

designer is not informed about t (i.e., stage 2 in the description above is absent). This

standard setting corresponds to a mechanism design problem with verifiable types

(an omniscient mediator), and a version of the revelation principle applies (Myerson,

1982, Forges, 1993, Forges and Koessler, 2005, Bergemann and Morris, 2019).

By contrast, in the extensive-form game described above, the choice of the mechanism

is at the interim stage, so it is an informed-principal problem pioneered by Myerson

(1983). The setting is a common value one in Maskin and Tirole’s (1992) terminology

because typically the state of the world affects agents’ payoffs. Our setup differs from

the usual formulations of informed-principal problems in two ways. First, in contrast

to Maskin and Tirole (1992) and the majority of works on informed-principal prob-

lems,15 the principal has no truth-telling constraints. Second, the experiment’s out-

puts are signals rather than contractually enforceable outcomes,16 which makes our

game closer to an informed-principal setting with moral hazard.17

Chen and Zhang (2020) and Hedlund (2017) study signaling single-agent settings in

which the designer is partially informed and chooses an experiment that reveals in-

formation about a payoff-relevant state but not directly about their type. More pre-

cisely, in those papers, as in our general setting in Appendix A, the state of the world

is (t, ω) ∈ T × Ω, and the designer knows only t ∈ T. The designer in Chen and

Zhang (2020) and Hedlund (2017) chooses µ : Ω → ∆(X), whereas the designer in our

game chooses a mechanism µ : T × Ω → ∆(X). In those papers, the mechanism does

not condition directly on the designer’s type t, whereas it does in our setting, exactly

as it does in Myerson (1983) and in the information design literature (Bergemann and

Morris, 2016, 2019). Consequently, our setting and our modeling of mechanisms—the

object of choice of the designer–coincide with those in Bergemann and Morris (2016,

2019).

Our informed-designer game is also related to the games studied in the literature on

strategic information disclosure as in Grossman (1981) and Milgrom (1981). In this

literature, the informed party chooses which piece of evidence to disclose (formally, a

message from a type-dependent set of messages), whereas in our setting, the informed

party can choose any information-disclosure mechanism.

Strategies and PBE definition The extensive-form game we analyze is complex. The

designer has private information as in signaling games and, more importantly, the de-

signer’s choice set is rich because they choose disclosure mechanisms (functions from

states to distributions over signals). For the designer, a strategy specifies for each t ∈ T

an information-disclosure mechanism ν : T → ∆(X). For each possible mechanism

ν and for each possible private signal xi from that mechanism, agent i’s strategy spe-

cifies a probability distribution over Ai. Appendix A.2 contains formal definitions of

15To the best of our knowledge, the exceptions are De Clippel and Minelli (2004), who assume that types
are verifiable, and Koessler and Skreta (2019), who allow for general evidence structures.

16Our formulation straightforwardly adjusts to accommodate contractible actions, and we do so in Ap-
pendix A.

17See, for example, Wagner et al. (2015) and Mekonnen (2021).
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strategies and continuation games, as well as a number of auxiliary results owing to

Myerson (1983).

Below, we rely on the revelation and the inscrutability principles (Myerson, 1983) and

provide a simplified formulation of PBE, expressed simply in terms of direct mechan-

isms instead of strategies in the informed-designer game. This formulation is stand-

ard in the informed-principal literature and relies on the following ideas. A strategy

profile induces an outcome µ : T → ∆(A), henceforth called a direct recommendation

mechanism, which specifies a probability distribution over action profiles for each state.

Consider any Nash equilibrium or PBE strategy profile inducing µ : T → ∆(A). The

strategy of the designer can be replaced by a pooling strategy that specifies the same

direct mechanism µ for all designer types. Along the equilibrium path (i.e., when the

designer uses µ), each agent’s strategy is replaced by an obedient strategy. Specific-

ally, for every ai ∈ Ai, every agent i plays action ai when they receive the signal ai

from µ. In that way, the same outcome µ is implemented along the path. Agents get

less information than in the original equilibrium because (i) they learn nothing about

the designer’s type by observing µ (inscrutability), and (ii) they learn the minimal

information about the state and others’ signals by their recommended action (revel-

ation principle). A direct mechanism is called a PBE mechanism if it is an outcome

of a PBE strategy profile and belief system. We proceed to formally define obedient

mechanisms and PBE.

Incentive compatible and equilibrium mechanisms A direct mechanism µ : T →

∆(A) is a recommendation system, where µ(a1, . . . , an | t) is probability that the mech-

anism privately recommends ai to each agent i when the actual type of the designer

is t. An equilibrium mechanism of the informed-designer game must be obedient,

henceforth incentive-compatible, given agents’ prior p. In a PBE, every off-path con-

tinuation outcome should also be incentive compatible for some belief q ∈ ∆(T) for

the agents. Formally, the mechanism µ is q-incentive compatible (q-IC) iff for each agent

i obedience is optimal if all the other agents are obedient; that is, for every ai and a′i in

Ai

∑
a−i∈A−i

∑
t∈T

q(t)µ(a | t)
[
ui(a, t)− ui((a

′
i, a−i), t)

]
≥ 0.

The mechanism µ is incentive compatible (IC) if it is p-IC, so it is incentive compatible

for the prior. The set of IC mechanisms is the set of BCE of Γ.

Let

U0(µ | t) = ∑
a∈A

µ(a | t)u0(a, t),

denote the interim expected payoff of the designer at state t from mechanism µ when

agents are obedient. The corresponding payoff vector of the designer is (U0(µ | t))t∈T.

Let U (q) ⊆ R
T be the set of q-IC payoff vectors for the designer:

U (q) := {U ∈ R
T : U = (U0(µ | t))t∈T and µ is q-IC}.

Denote by U(ν, q) the set of continuation equilibrium payoff vectors for the designer

given the mechanism ν : T → ∆(X) and belief q. By the revelation principle, U(ν, q) ⊆

U (q). The following definition of PBE corresponds to the definition of expectational
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equilibrium in Myerson (1983), a suitable version of PBE of the informed-designer

game in the spirit of sequential equilibrium.

Definition 1 (PBE mechanisms) A mechanism µ : T → ∆(A) is a perfect Bayesian equi-

librium (PBE) of the informed-designer game if

1. µ is incentive compatible.

2. For every mechanism ν : T → ∆(X), a belief q ∈ ∆(T) and a continuation

equilibrium payoff vector (U(t))t∈T ∈ U(ν, q) exist such that U0(µ | t) ≥ U(t)

for every t ∈ T.

The first condition is a necessary and sufficient condition for each agent’s strategy to be

a best response to other agents’ strategies and the designer’s strategy. The difference

between a Nash equilibrium and a PBE of the informed-designer game stems from the

second condition. In a Nash equilibrium, the payoff vector (U(t))t∈T arising from a

deviation to a mechanism ν can arise from any continuation strategy profile for the

agents given ν. By contrast, in a PBE the payoff vector (U(t))t∈T should be a continu-

ation equilibrium payoff vector for some belief q.18 Except for particular cases, such

at those in which the designer has state-independent preferences, a PBE is supported

by continuation beliefs and payoff vectors that depend on the specific mechanism ν the

designer deviates to.

Ex ante optimal and ex post optimal mechanisms A mechanism µ is ex post incentive

compatible19 iff for every i ∈ I and t ∈ T, we have

∑
a−i∈A−i

µ(a | t)[ui(a, t)− ui((a
′
i, a−i), t)] ≥ 0, for every ai and a′i in Ai.

An ex post IC mechanism satisfies the agents’ obedience constraints when they know

the state and it is q-IC for every q ∈ ∆(T). It maps every t to a correlated equilib-

rium (Aumann, 1974) of the n-player normal form game (I, (Ai)i∈I , (ui(·, t))i∈I). An

ex post IC mechanism always exists in our environment because the set of correlated

equilibria is non-empty.20 We now formally define the concepts of EAO and EPO

mechanisms.

Definition 2 (EAO mechanisms) A mechanism µ is ex ante optimal (EAO) if µ is in-

centive compatible, and for every other incentive-compatible mechanism ν, we have

∑
t∈T

p(t)U0(µ | t) ≥ ∑
t∈T

p(t)U0(ν | t).

18Note that if q(t) = 0 for some type t, then the off-path belief may conflict with information provided by
a deviation mechanism if this mechanism fully identifies type t. In this case, the continuation equilibrium
condition in Definition 1 (ii) implicitly assumes that type t is assigned zero probability regardless of the
message generated by the mechanism. See also Remark A.1.

19Such a mechanism is called safe in Myerson (1983) and full-information incentive compatible in Maskin
and Tirole (1990).

20An ex post IC mechanism also exists in the private-value environments with unverifiable types of
Maskin and Tirole (1990) and of Mylovanov and Tröger (2014). In the general model of Myerson (1983),
the designer types are unverifiable and an ex post IC mechanism may not exist because a mechanism
that is ex post IC for the agents may not satisfy the designer’s truth-telling constraints.
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An EAO mechanism corresponds to the solution of the standard (uniformed) information-

design problem (Kamenica and Gentzkow, 2011, Bergemann and Morris, 2019, Taneva,

2019).

Definition 3 (EPO mechanisms) A mechanism µ is ex post optimal (EPO) iff µ is ex

post incentive compatible and for every other ex post incentive-compatible mechan-

ism ν, we have

U0(µ | t) ≥ U0(ν | t), for every t ∈ T.

The EPO payoff vector is the best correlated equilibrium payoff vector for the designer

when t is commonly known, and it is the solution for the designer under complete

information.

Towards a new concept: interim optimality In Section 4, we introduce interim op-

timality, a concept that lies between ex ante and ex post optimality, and argue why

it is an appealing concept for informed-designer games. Before doing so we explain

why existing concepts have shortcomings that render them less suitable, in general,

for informed-designer games. We start with a simple binary state and action example

in which neither EAO nor EPO mechanisms are part of a PBE:

Example 1 (State-dependent preferences, binary actions) Suppose that there is only

one agent, two states T = {1, 0}, and two actions for the agent A = {a1, a2}. The

designer’s and the agent’s payoffs are summarized in the following matrix:

a1 a2

t = 1 3, 0 0, 1

t = 0 0, 1 1, 0

Let q(1) = q denote the belief of the agent that the designer’s type is t = 1. The unique

optimal action for the agent is to choose a1 if q < 1/2 and a2 if q > 1/2. The designer’s

highest ex ante expected payoff as a function of q is

V(q) =

{
3q if q ≤ 1/2

1 − q if q > 1/2.

When the prior is p = 3
4 , the EAO mechanism splits uniformly the prior p = 3

4 to the

posteriors 1
2 and 1. The corresponding direct-recommendation mechanism µ : T →

∆(A) is

µ(a1 | t = 1) = 1/3; µ(a2 | t = 1) = 2/3; µ(a1 | t = 0) = 1; µ(a2 | t = 0) = 0.

Then, the posterior belief of the agent is Pr(t = 1 | a2) = 1, Pr(t = 1 | a1) = 1/2

as desired. The EAO payoff vector is UEAO = (1, 0). This payoff vector is not a PBE

payoff vector of the informed-designer game. In fact, it is not even a Nash equilibrium

payoff vector: the designer can deviate to any non-revealing mechanism that sends the

same signal regardless of the state. Suppose that given such a mechanism, the agent

chooses a1 with probability β and a2 with probability 1 − β. If β >
1
3 , t = 1 strictly

benefits, and if β < 1, t = 0 strictly benefits, implying that at least one of the two

designer types benefits regardless of the value of β. It is clear that the same argument
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shows that the EPO payoff vector, UEPO = (0, 0), is not a Nash equilibrium payoff

vector.

A natural remedy to the aforementioned issues with EAO and EPO is to simply fo-

cus on PBE. Doing so is not compelling for two reasons: tractability and predict-

ive power. Tractability can be an issue because the characterization of PBE of an

informed-designer game in general requires identifying the correct belief-continuation

play combination for each (not necessarily direct) deviation to mechanism ν that renders

ν unprofitable. Finding this correct combination may require characterizing all con-

tinuation equilibria of ν for all possible beliefs! Coming to the second point, the

informed prosecutor example underscores that PBE predictions could be weak and

unreasonable, because off-path beliefs can be cooked so that informative disclosure

mechanisms are totally ignored by the agents. In particular, some PBE mechanisms

are not immune to full disclosure, and are therefore inconsistent with simple inform-

ation unraveling arguments à la Milgrom (1981). In particular, in the three-action

variation of the informed prosecutor example, the EAO mechanism is a PBE but is not

immune to full disclosure.

4 Interim-optimal mechanisms

Our goal is to identify a tractable subset of IC mechanisms (i.e., Bayes correlated equi-

libria) that are the best an informed designer can robustly select, in the sense that there

is no alternative disclosure mechanism the designer could deviate to when facing

agents making mechanism-consistent inferences. Because each designer type is able

to implement any ex post IC mechanism by fully revealing the state, our notion of

interim optimality requires that a mechanism guarantees each designer type a payoff

weakly higher than their EPO payoff. In other words, no designer type t can strictly

prefer an alternative mechanism that is IC for q = δt (IC given a belief that assigns

probability 1 to t). More generally, because the designer can also partially reveal the

state, interim optimality requires that each designer type t does not strictly prefer an

alternative mechanism that is IC given a belief q, credible in the sense that q assigns

positive probability only to designer types who strictly benefit from this alternative

mechanism. The set of interim-optimal mechanisms that we define next is robust to

such alternative credible mechanism-belief pairs.

Definition 4 (IO mechanisms) A mechanism µ : T → ∆(A) is interim optimal (IO) iff

µ is incentive-compatible and no mechanism ν and belief q exist, such that ν is q-IC

and U0(ν | t) > U0(µ | t) for every t ∈ supp[q] .

The notion of interim optimality is strong for two reasons. First, the definition of

IO implies that the continuation equilibrium of any alternative mechanism ν (given

belief q) is optimally selected. This property makes interim optimality comparable to

ex ante and ex post optimality. In particular, if only one possible designer type exists

(|T| = 1), the definition of interim optimality coincides with the definition of ex ante

and ex post optimality. Second, the designer is able to choose any belief q that satisfies

the credibility requirement.
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The second property of IO mechanisms implies they are robust to evidence disclosure.

If a mechanism is IO, no subset S of designer types exists such that all types in S strictly

benefit from disclosing S to the agents, whatever the agents’ consistent inference. The

fact that interim optimality is a strong selection of IC mechanisms implies positive res-

ults are strong as well: Theorem 1 below shows that an IO mechanism always exists.

When an EAO mechanism turns out to be IO (Proposition 1 and Proposition 4 below),

the ex ante commitment solution of standard information design is implementable as

a PBE of the informed-designer game and the designer cannot credibly select a bet-

ter mechanism.21 Likewise, when an EPO mechanism (the unraveling outcome) is IO

(see Corollary 1), it satisfies the properties mentioned above. Theorem 2 shows that

an IO mechanism also has a solid game-theoretic foundation because it is a PBE of an

informed-designer game.

The next proposition shows that if the EPO payoff vector is EAO, it is the unique IO

payoff vector. In this sense, interim optimality is an in-between notion consistent with

ex ante and ex post optimality.

Proposition 1 If the ex post optimal payoff vector is ex ante optimal, then it is the unique

interim-optimal payoff vector.

In other words, Proposition 1 shows that if an EAO payoff vector can be obtained by a

fully revealing mechanism, this fully revealing mechanism is IO and the correspond-

ing payoff vector is the unique IO payoff vector.22 In particular, the IO payoff vector is

unique when for every t, a correlated equilibrium of the complete-information game

at t exists that gives the first-best payoff to the designer.

Theorem 1 establishes the existence of IO mechanisms for every Bayesian incentive

problem Γ. In other words, the statement of Theorem 1 does not impose any additional

assumptions on any of the elements of Γ.

Theorem 1 (IO mechanisms exist) For any Bayesian incentive problem Γ, at least one interim-

optimal mechanism exists.

We prove this result in Appendix A.1. The idea of the proof lies in establishing that

a neutral optimum (as defined in Myerson, 1983, but without truth-telling conditions

for the designer) is IO. Neutral optima exist by the same arguments as in the proof of

Theorem 6 in Myerson (1983). To relate interim optimality with neutral optimum, we

define interim optimality in terms of “blocked payoff vectors” as follows.

Let BIO(Γ) be the set of payoff vectors U ∈ R
T such that a belief q ∈ ∆(T) and a q-IC

payoff vector U′ exist such that U′(t) > U(t) for every t ∈ supp[q]. By definition, a

payoff vector U is an IO payoff vector if it is IC and U /∈ BIO(Γ). The proof shows

BIO(Γ) satisfies the axioms of Domination, Openness, Extensions, and Strong solutions,

which establishes that the set of neutral optima is included in the set of IO payoff vec-

tors, and thus, the set of IO payoff vectors is non-empty. These axioms are defined

in Myerson (1983) and, for completeness, we include their formal definitions in Ap-

pendix A.1.

21As already discussed, many PBEs could exist that are based on adversarial beliefs and continuation
equilibria.

22Observe that the EPO payoff vector is always unique but multiple EAO payoff vectors may exist.
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We establish our second main result, Theorem 2, that shows an IO mechanism is a PBE

mechanism of the informed-designer game.

Theorem 2 (IO mechanisms are PBE) If µ is an interim-optimal mechanism, then µ is a

perfect Bayesian equilibrium mechanism of the informed-designer game.

Example 1 is a binary-state, binary-action setting with a single agent in which the EAO

mechanism is not a Nash equilibrium of the informed-designer game. Consequently,

by Theorem 2, this mechanism is not IO. In this example, neither the EAO payoff vec-

tor U = (1, 0) nor the EPO payoff vector (0, 0) are IO because they are not equilibrium

payoff vectors.23 The payoff vector U = (0, 1), which is simply obtained by a non-

revealing experiment, is an IO payoff vector and a PBE payoff vector by Theorem 2.

Ex ante preferred IO The set of IO payoff vectors has a nice mathematical structure

and, given a prior, we can identify an IO vector that is ex ante preferred, which we

call IO∗. More precisely, the set of IO payoff vectors of Bayesian incentive problem Γ,

U
IO(Γ), is the intersection of the set of BCE payoff vectors U (p) and the IO-unblocked

payoff vectors R
T\BIO(Γ), that is, U IO(Γ) = U (p) ∩ (RT\BIO(Γ)), which is compact

(U (p) is compact and R
T\BIO(Γ) is closed). Then, an IO∗ payoff vector solves

max
U∈U IO(Γ)

∑
t∈T

p(t)U(t).

This program has a solution because the objective is linear and the choice set is com-

pact.

Informed prosecutor revisited To illustrate the notions of interim optimality and of

IO∗, consider again the informed prosecutor example of Section 2, where we have seen

that, regardless of the prior, all IC mechanisms are PBE mechanisms. In the two-action

variation, first observe that the payoff vector (2, 0) is q-IC for q = 1 together with a

fully revealing mechanism. This implies that in every IO mechanism, designer type

tG should get their first-best payoff (2). Second, every IC mechanism that gives payoff

2 to type tG is IO because, starting from such candidate mechanism, belief credibility

in Definition 4 implies q = 0, and the only q-IC payoff when q = 0 is 0. In particular,

whatever the prior, the EPO mechanism (full information disclosure) is IO because it

induces the payoff vector (2, 0). The EAO mechanism is also IO in this version of the

example because the EAO mechanism always gives payoff 2 to type t = tG. More

generally, an EAO payoff vector is IO in every single-agent setting with binary actions

and state-independent preferences for the designer (see Proposition 4). In this version

of the example, the set of IO payoff vectors is the convex hull of the EPO payoff vector,

(2, 0), and the EAO payoff vector, (2, min{ 4p
1−p , 2}).

Next, consider the three- and four-action variations. Observe that the payoff vector

(3, 3) is q-IC (with a non-revealing mechanism that recommends action a3 with prob-

ability 1) for every belief q in [ 2
3 , q̄]. This implies that in every IO mechanism, at least

23This finding is in contrast to the setting in De Clippel and Minelli (2004), where the EPO payoff vector
(and any IC payoff vector that gives higher payoff to each designer type) is a PBE payoff vector. The
difference stems from the fact that in De Clippel and Minelli (2004), the agent simply accepts or rejects
the mechanism proposed by the informed principal.
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one designer type should get their first-best payoff (3). Hence, in both these versions

of the example, the EAO mechanism is IO if p ≥ 2
3 . It also implies that the fully re-

vealing mechanism is not IO when there are four actions because it induces the payoff

vector (0, 0). When the prior is p = 1
6 , in both the three- and four-action variations

the set of IO payoff vectors is the set of payoff vectors U such that U(tG) = 3 and

U(tI) ∈ [0, 3
10 ]. The IO∗ payoff vector is (U(tG), U(tI)) = (3, 3

10) and is obtained from

the following direct recommendation mechanism:24

tG

0

0

1

a0

a2

a3

tI

9
10

0
1
10

a0

a2

a3

Figure 2: Direct recommendation mechanism yielding the IO∗ payoff vector(U(tG), U(tI)) = (3, 3
10 ).

This mechanism splits the prior to the posterior 2
3 with probability 1

4 and to the pos-

terior 0 with probability 3
4 . The corresponding ex ante expected payoff for the designer

is 3
4 , which is strictly lower than the EAO payoff cav V( 1

6) = 1.

We return to this example in Section 5 after we provide a belief-based characterization

of interim optimality.

Interim optimality and other concepts Conceptually and in terms of motivation, in-

terim optimality is related to the axiomatic notion of neutral optimum defined in My-

erson (1983). It is also related to other notions in the informed-principal literature that

identify specific subsets of incentive-compatible mechanisms as we elaborate in Ap-

pendix C. Interim optimality is most closely related to the notion of mechanisms with

no weak objection defined in De Clippel and Minelli (2004) in a single-agent setting

with double-sided verifiable information and no moral hazard. The set of interim-

optimal payoff vectors is a subset of core payoff vectors (Myerson, 1983); see Pro-

position C.1. On the other hand, it is a superset of the set of strong neologism-proof

payoff vectors (Mylovanov and Tröger, 2012, 2014; Wagner et al., 2015); see Proposi-

tion C.2. The difference in the sets of core payoff vectors (Myerson, 1983) and those

of interim-optimal payoff vectors stems from the beliefs that can accompany altern-

ative mechanism proposals. The set of strong neologism-proof payoff vectors and

that of strong unconstrained Pareto optimal payoff vectors (Maskin and Tirole, 1990)

both differ from the set of interim-optimal payoff vectors because both concepts al-

low types that weakly (rather than strictly) benefit from blocking. Within the context

of information design, the set of core payoff vectors may contain vectors that are not

perfect Bayesian (and even Nash) equilibrium payoff vectors (see Example 1). At the

same time, strong neologism-proof and strong unconstrained Pareto optimal payoff

vectors may fail to exist in our setting (see Example 4). Thus, in general, the concepts

24In this example, the IO∗ payoff vector is uniformly preferred to all IO payoff vectors by all designer
types. There are examples in which some IO vector other than the IO∗ payoff vector is preferred by some
designer types.

16



of core, strong neologism proofness, and strong unconstrained Pareto optimality are

not suitable for informed-designer games.25

Interim optimality and equilibrium refinements Interim optimal mechanisms are a

subset of BCE mechanisms, and as such, the definition of interim optimality does not

hinge on the informed-designer game or on its PBE strategy profiles and belief sys-

tems. However, Theorem 2 implies interim optimality is de facto a refinement of PBE.

Indeed, the informed prosecutor example illustrates that the set of IO mechanisms can

be much smaller than the set of PBE mechanisms. A natural question pertains to how

the set of IO mechanisms compare with mechanisms selected by common refinements

in signaling games in the spirit of the intuitive criterion (Cho and Kreps, 1987) or di-

vinity criterion (Banks and Sobel, 1987). Strictly speaking, the aforementioned PBE

refinements are not formally defined for informed-designer games and may, a priori,

not exist.26 Even if we could define those refinements, they would not select IO mech-

anisms, and in fact, in some informed designer settings, they have no power to select

equilibria. For instance, in settings analogous to that of four-action variation of the

informed prosecutor example, every incentive compatible payoff vector, in particular,

the worst payoff vector (0, 0), would survive such refinements regardless of the prior.

These refinements are harder to adapt to multi-agent settings, and even if we did adapt

them, they would result in different predictions. To illustrate this point in the simplest

possible setting, consider a designer with only one possible type (or multiple payoff-

irrelevant types) facing multiple agents. Assume a ∈ A is a Nash equilibrium in

the complete-information game played by the agents, and that a is the least-preferred

action profile for the designer. In such a situation, the IO mechanism boils down

to the designer-optimal correlated equilibrium, exactly as the EAO mechanism: The

designer privately recommends that players play according to this correlated equilib-

rium, which is IC. By contrast, every correlated equilibrium, in particular, the one that

induces the worst outcome a for the designer with probability one, constitutes a PBE

and survives all refinements as, trivially, with one type off-path beliefs play no role.

5 Belief-based characterization of interim optimality in pure

persuasion settings

In Bayesian persuasion, Kamenica and Gentzkow (2011) write the designer’s ex ante

payoff V as a function of beliefs by incorporating the agent’s optimal action, which

is a function of beliefs. The concavification of the resulting value function, denoted

by cav V, yields an EAO mechanism in terms of an optimal splitting (a distribution

of posterior beliefs that average to the prior) without explicitly using the revelation

25 The notions of Rothschild-Stiglizt-Wilson payoff vectors of Maskin and Tirole (1992) and those of as-
sured payoff vectors of Balkenborg and Makris (2015) do not seem to have analogous versions in our
setting. Both concepts are defined in settings in which all decisions are contractible, there are transfers,
and types are ordered.

26Even if we adapted their definition they may not be tractable because to identify the set of beliefs
consistent with each refinement, it would be necessary to consider each deviating (possibly non-direct)
mechanism and belief-continuation pair and then compare, for each type of the designer, the set of beliefs
that could benefit this type compared with the candidate PBE.
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principle and obedience constraints. This elegant approach, based on Aumann and

Maschler (1995), has proved powerful and has been broadly applied.

In this section, we provide an analogous belief-based characterization of interim op-

timality. We assume a single agent is present.27 We also assume the payoff of the

designer is state independent: For every state t and action a, the payoff of the designer

is equal to u0(a).28

For every q ∈ ∆(T), let A∗(q) be the agent’s optimal set of actions when their belief is

q:

A∗(q) := arg max
a∈A

∑
t∈T

q(t)u1(a, t).

For every q ∈ ∆(T), let a∗(q) ∈ arg maxa∈A∗(q) u0(a); that is, a∗(q) is a designer-

preferred selection among the agent’s optimal actions at belief q. For every q ∈ ∆(T),

let V(q) be the highest payoff of the designer when the agent’s belief is q:

V(q) := u0(a
∗(q)).

The next proposition provides a belief-based characterization of interim optimality.

Proposition 2 (Belief-based characterization of interim optimality) Assume that there

is a single agent and that the payoff of the designer is state independent. Then, an incentive-

compatible payoff vector U ∈ R
T is interim optimal iff

There is no q ∈ ∆(T) such that V(q) > U(t) for every t ∈ supp[q]. (1)

Proposition 2 implies that to check whether an IC payoff vector U is IO, it suffices to

check a finite number of inequalities that only rely on (1), that is, on the comparison of

U to the value function V. To see that condition (1) can be rewritten as a finite number

of inequalities, for every S ⊆ T, let u∗(S) be the highest payoff of the designer from

an action that is optimal for the agent for some belief with support S. Formally,

u∗(S) = max{u0(a) : ∃ q ∈ ∆(T), such that supp[q] = S and a = a∗(q)}.

Then, (1) is equivalent to the following:

for every S ⊆ T, there exists t ∈ S such that U(t) ≥ u∗(S). (IOC)

In addition, as in Kamenica and Gentzkow (2011), when the agent breaks ties in favor

of the designer (as is the case in an IO mechanism), any IC payoff vector U can be

fully characterized in terms of a splitting of the prior, that is, a probability distribution

σ over the set of posteriors ∆(T) such that the expected value of the posterior is equal

to the prior. Because the set of actions is finite, focusing on splittings (distributions of

posteriors) with finite support (of cardinality at most |A|) does not sacrifice generality.

27The characterizations we provide apply to settings with multiple agents when the designer is restricted
to public disclosures. In that case, the same belief-based approach applies by replacing V with the highest
payoff the designer can get when agents play a Nash (instead of Bayes correlated) equilibrium of the
symmetric-information game given belief q.

28State-independent payoff for the designer is a common assumption in the literature; see, for example,
Dworczak and Martini (2019) and Lipnowski and Ravid (2020). The characterizations below readily
extend to settings in which only the ordinal preference of the designer is state independent.
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Any such splitting of p can be represented by σ = (λk, qk)k, where for every k =

1, . . . , |A|, λk is the probability of posterior qk ∈ ∆(T), and ∑k λkqk = p. Let Σ(p) be

the set of all such splittings of p. By Bayes’ rule, we get for every t ∈ T

U(t) = ∑
k

λkqk(t)

p(t)
u0(a

∗(qk)).

Therefore, we can leverage Proposition 2 to build the following constrained information-

design program that characterizes the IO∗ mechanism:

max
σ∈Σ(p)

Eσ[V(q)] subject to (IOC). (P)

This program is a constrained concavification problem, that is, an optimal splitting prob-

lem under the interim-optimality constraints (IOC). Without the (IOC) constraints,

this is simply the program characterizing EAO mechanisms, which yields

max
σ∈Σ(p)

Eσ[V(q)] = cav V(p).

For illustration, let us consider the informed prosecutor example with four actions.

We have

u∗({tG}) = u∗({tI}) = 0 and u∗({tG , tI}) = 3.

Hence, the set of IO payoff vectors is the set of payoff vectors induced by some split-

ting of the prior such that U(t) = 3 for some t ∈ {tG, tI}. This condition implies that at

least one of the designer’s type induces posteriors only in the interval [ 2
3 , q̄]. By Bayes’

rule, this type can only be tG if p <
2
3 , and tI if p > q̄. If the other designer type t

induces some posterior q outside this interval with positive probability, the designer’s

type is revealed to the agent: The posterior is q = 1 if t = tG and q = 0 if t = tI .

Whatever the (interior) prior p, the EPO payoff vector (0, 0) is not IO, and the EAO

payoff vector is IO if p ≥ 2
3 . In Figure 3, we depict in dotted lines the ex ante payoff of

the designer at the IO∗ mechanism.

1

2

3

1

p

cav V

V

1
3

2
3

q̄

Figure 3: Designer ex ante payoff at the EAO mechanism (dashed lines) and the IO∗ mechanism (dotted
lines) in the four-action informed prosecutor example.

We now proceed to provide simpler necessary and sufficient conditions for interim

optimality for settings in which the designer’s value function V(·) = u0(a∗(·)) is
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quasiconvex.29 When there are two possible types, quasiconvexity of V (written as

a function of the probability of one of the two types) means V is weakly increasing,

weakly decreasing, or weakly decreasing and then weakly increasing. More gener-

ally, when V(q) only depends on the mean of t ∈ T ⊆ R
K (as in, e.g., Dworczak and

Martini, 2019)—that is, it can be written as V(q) = g(Eq(t))—V is quasiconvex if g is

quasiconvex. Note that in the informed prosecutor example, V is quasiconvex in the

two-action and three-action cases, but not in the four-action case. As discussed in the

introduction, quasiconvexity of V naturally arises in many economic environments.

Regardless of the properties of V, a necessary condition for U to be IO is that each

type gets at least their EPO payoff vector. This necessary condition is obtained from

Proposition 2 by noting V(δt) is the EPO payoff of type t, and we must have U(t) ≥

V(δt) for every t. The next proposition shows this condition is also sufficient when V

is quasiconvex. As a consequence, in settings with quasiconvex V, the characterization

of IO payoff vectors drastically simplifies.

Proposition 3 (Belief-based characterization of interim optimality: quasiconvex V)

Assume that there is a single agent, that the payoff of the designer is state independent, and

that V(q) is quasiconvex. Then, an incentive-compatible payoff vector U ∈ R
T is interim

optimal iff U(t) ≥ V(δt) for all t ∈ T. That is, an incentive-compatible payoff vector U is

interim optimal iff each type of the designer gets at least their ex post optimal payoff vector. In

particular, the ex post optimal payoff vector is interim optimal.

In Grossman (1981), and in the persuasion game of Milgrom (1981), the sender’s (de-

signer’s) payoff is increasing in the mean of the distribution of the state of the world,

so their value function V is quasiconvex in beliefs. An immediate, but important, im-

plication of Proposition 3 and Theorem 2 is the following Corollary 1, which connects

interim information design with evidence-disclosure games.

Corollary 1 (Interim optimality of full disclosure) Assume that there is a single agent,

that the payoff of the designer is state independent, and that V(q) is quasiconvex. Then an ex

post optimal mechanism is interim optimal. Consequently, full disclosure is a perfect Bayesian

equilibrium of the informed-designer game.

The key prediction of the large and influential literature on games of evidence disclos-

ure, stemming from the seminal contributions of Grossman (1981) and Milgrom (1981),

is that full disclosure, the unraveling outcome, is the unique equilibrium outcome. Co-

rollary 1 shows the unraveling outcome is not only a perfect Bayesian outcome when

the designer can choose, and therefore deviate to, any stochastic evidence disclosure,

but is also IO. In our setting though, the unraveling outcome is not unique and other

perfect Bayesian outcomes exist.

Proposition 3 implies that in settings in which V is quasiconvex, the interim optimality

constraints (IOC) simplify to the following system of |T| linear constraints:

for every t ∈ T, U(t) ≥ u0(a
∗(δt)). (IOC-QC)

29The function V : ∆(T) → R is quasiconvex if its lower contour sets {q ∈ ∆(T) : V(q) ≤ y} are convex
sets.
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Hence, IO∗ solves the following simplified version of Program (P):30

max
σ∈Σ(p)

Eσ[V(q)] subject to (IOC-QC). (P-QC)

We illustrate this program in the following two examples. The first example is a sim-

plified version of the lobbyist example in Kamenica and Gentzkow (2011) with a dis-

crete action space that generalizes the three-action version of the informed prosecutor

example. In general, the EAO payoff vector is not IO. When the number of actions

increases, the EAO payoff vector tends toward no disclosure, whereas every IO pay-

off vector tends toward full disclosure. Hence, the predictions of ex ante information

design dramatically differ from those of interim information design. The second ex-

ample is the think-tank example in Lipnowski and Ravid (2020). In this example, the

EAO mechanism coincides with IO∗.

Example 2 (Lobbying) Consider the following simplified version of the lobbyist ex-

ample in Kamenica and Gentzkow (2011). There are two states, T = {1, 0}, where

t = 1 corresponds to the good state, and p(1) = p ∈ (0, 1) is the prior probability that

the state is good.31 The action space is

A =

{
0,

1

K
,

2

K
, . . . ,

K − 1

K

}
, with K ≥ 3.

The designer is a lobbyist and the agent is a politician. The lobbyist wants the politi-

cian to choose the highest possible action. The higher the politician’s belief that the

state is good, the higher the action they choose. The value function of the designer is

V(q) = f (k) for q ∈

[
k

K
,

k + 1

K

)
, k = 0, . . . , K − 1, and V(1) = f (K − 1),

where f is assumed to be strictly increasing and concave.

It is clear that the EAO mechanism (the optimal splitting obtained by concavification)

is as follows: for every k, if p ∈ [ k
K , k+1

K ), it splits the prior p to the posteriors k
K and k+1

K .

In line with the predictions of Kamenica and Gentzkow (2011), when K tends toward

infinity, the EAO mechanism converges to no disclosure. By contrast, the IO mechan-

ism obtained from the constrained concavification of Program (P-QC) splits any prior

p ≤ K−1
K to the posteriors 0 and K−1

K . For every K ≥ 3 and p <
K−1

K , IO∗ is Blackwell

more informative than the EAO solution. When K tends toward infinity, this mechan-

ism and every IO mechanism converge to full disclosure. It follows that an informed

lobbyist always reveals favorable information at the interim stage and information

unravels (see left panel of Figure 4). Note that if we assume f is convex instead of

concave, the EAO mechanism coincides with the IO∗ mechanism of Program (P-QC)

and converges to full disclosure (see right panel of Figure 4).

Example 3 (Think tank) Consider the think-tank example in Lipnowski and Ravid

(2020). The state space is the same as in the previous example. The agent is the gov-

30See Doval and Skreta (2023) for a solution approach.
31The example can be extended to any state space T ⊆ R if the value function of the designer only
depends on the expected value of the state. It can also be interpreted as a generalization of the informed
prosecutor example in which the prosecutor has uncertainty about the conviction threshold of the judge.
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Figure 4: Lobbying: Designer ex ante payoff at the EAO mechanism (dashed lines) and the IO∗ mech-
anism (dotted lines) in Example 2 with K = 4. Left panel: concave f . Right panel: convex f .
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(Lipnowski and Ravid, 2020)

Figure 5: Think tank: Designer ex ante payoff at the EAO mechanism and the IO∗ mechanism (dashed
lines) and the quasiconcave envelope (dotted lines)

ernment and the designer is the think tank that wants to implement an agenda. The

government can choose one of three actions: implement reform 1, implement reform

2, or keep the status quo. Reform 1 yields a payoff of 1 to the think tank and is op-

timal for the government when q ≤ 1
3 , the status quo yields 0 for the think tank and is

optimal for the government when q ∈ [ 1
3 , 2

3 ], and reform 2 yields a payoff of 2 to the

think tank and is optimal for the government when q ≥ 2
3 .

The resulting value function is quasiconvex and IO∗ coincides with the EAO mechan-

ism.32 Splitting p to 0 and 2
3 when p <

2
3 , and disclosing no information when p ≥ 2

3 ,

is IO and EAO. Figure 5 illustrates these points and also shows that interim optimality

differs from the quasiconcave envelope of V, which is the highest payoff of the think

tank under cheap talk (see Lipnowski and Ravid, 2020). This observation implies the

ability to disclose verifiable information at the interim stage strictly benefits the think

tank compared with cheap talk, even though the sender cannot commit ex ante to it.

Interestingly, the reverse observation might apply to the lobbying example. In that

example, the unique equilibrium mechanism under cheap talk is the non-revealing

mechanism. Hence, when f is concave, there are intervals of priors such that the

cheap-talk solution is ex ante better for the designer than every IO mechanism. For

instance, in the left panel of Figure 4, the cheap-talk solution is ex ante better than

every IO mechanism for all priors for which the dotted lines are above the plain bold

32If we extend the example by allowing more than two possible reforms for the government, the EAO
mechanism may no longer be IO. The IO∗ mechanism will be similar to the solution with two reforms
(it splits the prior to 0 and to the lowest posterior inducing the favorite reform), but the structure of the
EAO mechanism will depend on the shape of V as in the previous example (Example 2).
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lines. When K tends to infinity, the cheap-talk solution is ex ante better than every IO

mechanism for almost all priors.

6 Interim optimality in multi-agent binary-action settings

In this section, we consider multi-agent Bayesian incentive problems in which each

agent has only two actions: Ai = {0, 1} for every i ∈ I. We first provide general suf-

ficient conditions under which EAO mechanisms are IO∗. Then, we characterize IO

mechanisms and compare them with EAO mechanisms in a class of parametrized en-

vironments similar to those studied by Bergemann and Morris (2019), Taneva (2019),

and Mathevet et al. (2020).

6.1 Coordinating complementary investments: EAO mechanism is IO∗

We provide a condition, Assumption 1 below, under which every EAO mechanism

is IO. Assumption 1 is always satisfied if there is a single agent, the designer’s ideal

action is state independent, and there are binary actions, as in the leading example in

Kamenica and Gentzkow (2011). Assumption 1 is also satisfied in many applications

with multiple agents in the information-design literature: Alonso and Câmara (2016),

Bardhi and Guo (2018), and Chan et al. (2019) consider voting settings, whereas Arieli

and Babichenko (2019) consider a setting that encompasses technological adoption.

Assumption 1 is also satisfied in the leading applications in Bergemann and Morris

(2019) and Taneva (2019).

With some abuse of notation, let (ai, 1−i) denote the action profile where player i plays

action ai and all other players play action 1.

Assumption 1 A subset of types T∗ ⊆ T exists such that

(ia) For every t ∈ T∗ and a ∈ A, u0(1, . . . , 1, t) ≥ u0(a, t).

(ib) For every t ∈ T\T∗ and a ∈ A, u0(a, t) ≥ u0(0, . . . , 0, t).

(iia) For every i ∈ I, t ∈ T∗, ui(1, 1−i, t)− ui(0, 1−i, t) ≥ 0 and for every a−i ∈ A−i

ui(1, 1−i, t)− ui(0, 1−i, t) ≥ ui(1, a−i, t)− ui(0, a−i, t).

(iib) For every i ∈ I, t ∈ T\T∗, ui(0, a−i, t) > ui(1, a−i, t) for every a−i ∈ A−i.

Condition (ia) means for every state in T∗, the best outcome for the designer is that

every agent chooses action 1. Condition (ib) means that for every state outside T∗, the

worst outcome for the designer is that every agent chooses action 0. In particular, these

two assumptions are satisfied when the designer’s payoff is increasing in the number

of agents choosing action 1, as in Arieli and Babichenko (2019). Condition (iia) means

for every state in T∗, every agent has the highest incentive to choose action 1 when

all the other agents also choose action 1. In particular, this assumption is satisfied

when for every state in T∗, the complete-information game (I, (Ai)i∈I , (ui(·, t))i∈I) has

strategic complements and a = (1, . . . , 1) is a Nash equilibrium of that game. Finally,
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condition (iib) indicates that action 0 is strictly dominant when the state is outside

T∗ and commonly known. This last part implies a = (0, . . . , 0) is the unique Nash

equilibrium of the complete-information game (I, (Ai)i∈I , (ui(·, t))i∈I) when t ∈ T\T∗.

The set T∗ is set of states in which, under complete information, the designer is able to

get, at some Nash equilibrium, their first-best. The complement of T∗ is the set of states

in which the designer always gets their worst outcome under complete information.

Proposition 4 Consider a Bayesian incentive problem with binary actions satisfying As-

sumption 1. Then, an ex ante optimal mechanism is interim optimal and therefore a perfect

Bayesian equilibrium of the informed-designer game.

Assumption 1 provides sufficient conditions under which the EAO mechanism is IO∗.

In settings that satisfy Assumption 1, the EAO mechanism is robust at the interim

stage and the ex ante commitment assumption is without loss of generality. This pos-

itive result is strong given the prevalence of settings that satisfy Assumption 1.33

6.2 Interim optimality in parametrized binary environments

We characterize IO mechanisms in a class of parametrized environments similar to

the class of environments studied by Bergemann and Morris (2019), Taneva (2019),

and Mathevet et al. (2020). We also illustrate the relevance of Assumption 1 within

this class and illustrate how IO mechanisms differ from EAO ones when Assumption

(iia) is not satisfied.

Consider two agents, two possible actions for each agent, Ai = {0, 1}, and two types

for the designer, T = {0, 1}. For example, the agents are firms involved in a game of

investment in a project, and the designer is privately informed about the profitability

of the project. Use p to denote the prior probability of type t = 1. As in Taneva (2019),

the payoffs of the agents are given by the following tables, where c, d > 0:

t = 0 a2 = 0 a2 = 1

a1 = 0 c, c d, 0

a1 = 1 0, d 0, 0

t = 1 a2 = 0 a2 = 1

a1 = 0 0, 0 0, d

a1 = 1 d, 0 c, c

Each agent would like to match the state. If c > d, they prefer to match the state jointly

(strategic complements), and if c < d they prefer to match the state alone (strategic

substitutes). The designer would like both agents to choose action 1: the designer’s

payoff function is

u0((1, 1), 0) = V0 > 0, u0((1, 1), 1) = V1 > 0,

and u0(a, t) = 0 if a 6= (1, 1). This Bayesian incentive problem satisfies Assumption 1

iff c ≥ d. The introductory example of Taneva (2019, Section 2), where the designer is

a policy-maker who would like to convince two of their peers to vote for a motion, is

a special case obtained for p = 3
10 , c = 2 ≥ d = 1, and V0 = V1 = 1, and hence, it

33However, binary-action settings exist in which ex ante optimality does not imply interim optimality
(recall Example 1).
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satisfies Assumption 1. It then follows from Proposition 4 that the EAO mechanism

characterized in Taneva (2019) is IO.34

The following observation is immediate from the definition of interim optimality:

Observation 1 A mechanism µ is interim optimal iff µ is incentive compatible and µ((1, 1) |

t = 1) = 1.

We describe the EAO mechanism below and illustrate that it may not be IO when

c < d. Because agents are symmetric, we can focus on symmetric IC mechanisms,

summarized by the following parameters µ = (γt, βt, αt)t=0,1 with 0 ≤ γt, βt, αt ≤ 1

and γt + 2βt + αt = 1:

t = 0 a2 = 0 a2 = 1

a1 = 0 γ0 β0

a1 = 1 β0 α0

t = 1 a2 = 0 a2 = 1

a1 = 0 γ1 β1

a1 = 1 β1 α1

The incentive constraints are the following:

(1 − p)(γ0c + β0d) ≥ p(γ1d + β1c),

p(β1d + α1c) ≥ (1 − p)(β0c + α0d).
(2)

These constraints characterize the set of IC mechanisms µ that correspond to symmet-

ric Bayes correlated equilibria. By definition, the EAO mechanism maximizes the ex

ante expected payoff of the designer under these constraints. By Observation 1, the

IO∗ mechanism solves

max
µ

pα1V1 + (1 − p)α0V0 subject to (2) and α1 = 1.

This program simplifies to max α0 subject to pc ≥ (1 − p)(β0c + α0d), leading to the

following observation:

Observation 2 The designer ex ante preferred interim-optimal mechanism is characterized

by α0 = min{1,
pc

(1−p)d}, α1 = 1, and β1 = γ1 = β0 = 0.

From Proposition 4, this solution coincides with the EAO mechanism when c ≥ d. For

instance, in the introductory example of Taneva (2019) mentioned above, we get the

EAO mechanism α0 = pc
(1−p)d = 6

7 and α1 = 1, which coincides with IO∗. However,

when c < d, the EAO mechanism may not be IO. To illustrate, consider the following

alternative numerical example with strategic substitutes: c = 2, d = 7, V0 = 6, V1 = 1,

and p = 0.3. It can be checked that the EAO mechanism is

t = 0 a2 = 0 a2 = 1

a1 = 0 11
14 0

a1 = 1 0 3
14

t = 1 a2 = 0 a2 = 1

a1 = 0 0 1
2

a1 = 1 1
2 0

34Our parametrized class of games, although similar, is not a special case of the parametrized class
of games considered in Taneva (2019, Section 4), because in that section she assumes u0((0, 0), 0) =
u0((1, 1), 1) and p = 1

2 .
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The resulting ex ante expected payoff of the designer is 9
10 , but the mechanism is not

IO because α1 = 0 6= 1. From Observation 2, the IO∗ mechanism is

t = 0 a2 = 0 a2 = 1

a1 = 0 43
49 0

a1 = 1 0 6
49

t = 1 a2 = 0 a2 = 1

a1 = 0 0 0

a1 = 1 0 1

The resulting ex ante expected payoff of the designer is 57
70 , which is strictly lower than

at the EAO mechanism.

In this example, the information designer wants agents’ actions to be fully (and posit-

ively) correlated. Yet, despite this assumption, when the designer has ex ante commit-

ment power and agents’ actions are strategic substitutes, the designer induces negat-

ive correlation and the probability that both invest is 0 in state t = 1. This negative

correlation relaxes the obedience constraints in state t = 0, and thus arises for instru-

mental reasons (see Bergemann and Morris, 2019, for a related discussion). When the

designer is informed, the ability to leverage this instrumental role of information is

reduced because the designer of type t = 1 requires a payoff of at least V1, which only

arises when both agents invest.

7 Concluding remarks

In this paper, we identified a class of disclosure mechanisms, which we termed interim-

optimal mechanisms. These mechanisms are optimal in the sense that the informed de-

signer cannot credibly find an alternative mechanism that strictly improves their in-

terim payoff. We established that the notion of interim optimality is well founded be-

cause an interim-optimal mechanism always exists, and every interim-optimal mech-

anism is implementable as a PBE of the informed-designer game. Interim-optimal

mechanisms can be tractably characterized in common settings using Kamenica and

Gentzkow’s (2011) belief-based approach and other state-of-the-art tools.

By definition, interim optimal disclosure mechanisms identify mechanisms robust to

information unraveling (when news is good); to obfuscation (when news is bad); and

to any other disclosure mechanism (paired with credible beliefs). In mechanism and in

information design we seek institutions that perform well in expectation (from an ex

ante perspective) and that are equilibrium feasible for agents. This latter requirement

is captured by the incentive compatibility constraints. When designers are informed,

or more broadly, when entities employing the mechanism have private information,

they may benefit from switching to another mechanism. Interim optimal mechanisms

are robust to such re-optimization. As we have illustrated, our results enable one

to check whether an EAO mechanism—the commitment solution in Kamenica and

Gentzkow (2011)—is interim optimal and thus robust in this strong sense. Given how

crucial credible communication and information disclosure are for settings ranging

from monetary policy to public health announcements and to financial, conflict of in-

terest or product characteristic disclosures, the scope and relevance of interim optimal

mechanisms are broad and important.

Given the generality of our setting, our results open the door to an array of problems

in information design in which the assumption of ex ante commitment to a mechanism
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is not compelling and it is more natural to assume the designer possesses some private

information when selecting the informativeness of a procedure, as in the settings we

mentioned in the introduction.

We also shed new light on the information-unraveling prediction, which is focal in the

large and influential literature on disclosure games stemming from the classical works

of Milgrom (1981) and Grossman (1981). We showed that the unraveling outcome is

interim optimal and thus a robust prediction even when the informed designer can

choose any disclosure mechanism. By contrast, in the settings of Milgrom (1981) and

Grossman (1981), if the designer’s value function is concave in beliefs, the EAO mech-

anism is no disclosure. One may then wonder whether an interim-optimal mechanism

is always more informative than an EAO one. The answer is no. Recall Example 1 in

which the interim-optimal mechanism is to reveal no information at all. There, at the

interim, the designer wants to keep the agent in the dark, whereas the EAO mechan-

ism reveals information.

Our setting is general, yet our results apply even more broadly: Straightforward ex-

tensions include allowing for private information on the side of the agents and for

non-contractible actions for the designer. Other interesting, but not immediate, exten-

sions include the relaxation of the verifiability assumption on the part of the designer

as well as the assumption that the informed designer cannot tamper with the mech-

anism’s input, as in Perez-Richet and Skreta (2022), or the mechanism’s output, as in

Lipnowski et al. (2022).

Appendix

A Imperfectly informed designer and contracts

We extend the model of Section 3 by allowing the designer to be partially informed

about the state of the world and by adding a set of enforceable actions (such as fines

and bonuses) for the designer. The designer has a non-empty and finite set of enforce-

able actions A0 and we denote by A = ∏
n
i=0 Ai the set of action profiles. The designer

is privately informed about their type t ∈ T. The state is now (t, ω) ∈ T × Ω, where Ω

is non-empty and finite. No player observes ω ∈ Ω. The marginal probability distri-

bution of T is p ∈ ∆(T) and has full support. The conditional probability distribution

of Ω is given by π : T → ∆(Ω), and π(ω | t) denotes the probability of ω given t.

The payoff of each player i = 0, 1, . . . n is ui(a, t, ω). A Bayesian incentive problem is

now given by Γ = ((Ai)
n
i=0, (ui)

n
i=0, T, Ω, p, π). We get a Bayesian incentive problem

as defined in the main text as a particular case in which |A0| = |Ω| = 1.

A direct mechanism is a mapping µ : T × Ω → ∆(A), where µ(a0, a1, . . . , an | t, ω) is

the probability that the mechanism implements the enforceable action a0 and privately

recommends ai to each agent i when the state is (t, ω). The notion of incentive com-

patibility directly extends to this more general setting. Let q ∈ ∆(T) denote the agents’

beliefs about the designer’s type. The mechanism µ is q-IC iff for every i in I, and ai

and a′i in Ai,

∑
a−i∈A−i

∑
t∈T

∑
ω∈Ω

q(t)π(ω | t)µ(a | t, ω)
[
ui(a, t, ω)− ui((a

′
i, a−i), t, ω)

]
≥ 0,
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and it is IC if it is p-IC

The interim expected payoff of the designer’s type t from mechanism µ is U0(µ | t) =

∑a∈A ∑ω∈Ω π(ω | t)µ(a | t, ω)u0(a, t, ω). The definitions of ex post, interim, and ex

ante optimality are exactly the same as their counterparts in Section 3 and Section 4.

When the designer has no private information (|T| = 1), the interim-design problem

is equivalent to the standard ex ante design problem, and a mechanism is IO if it is

EAO or EPO.

For this generalized model, the informed-designer game is the same as in Section 3

except that in the third stage, the designer chooses a mechanism ν : T × Ω → ∆(X),

where X = A0 × X1 × · · · × Xn; in the fifth stage, ν(a0, x1, . . . , xn | t, ω) is the prob-

ability of implementing the enforceable action a0 and sending message xi privately to

each agent i when the state is (t, ω).

We prove Theorem 1 and Theorem 2 for this setting. We prove Proposition 1 last, as

its proof relies on concepts defined in the proof of Theorem 1.

To prove Theorem 1, we rely on the notion of strong solution defined in Myerson

(1983). Strong solution is used in one of the axioms of Myerson (1983) in Appendix

A.1 and to connect EAO, EPO, and IO mechanisms in Proposition 1. The definition of

a strong solution relies on the concept of undominated mechanisms, which we define

next.

Definition A.1 A mechanism µ is dominated by ν iff U0(µ | t) ≤ U0(ν | t) for every

t ∈ T, with a strict inequality for at least one t. A mechanism µ is strictly dominated

by ν iff U0(µ | t) < U0(ν | t) for every t ∈ T. A mechanism µ is undominated iff

µ is incentive compatible and µ is not dominated by any other incentive-compatible

mechanism.

An EAO mechanism is undominated. An EPO mechanism, however, may be domin-

ated; if it is not, it is a strong solution.

Definition A.2 A mechanism µ is a strong solution iff it is ex post incentive compatible

and undominated.

A.1 Proof of Theorem 1

We first present the axiomatic definition of neutral optimum in Myerson (1983), ad-

apted to our setting with verifiable information. Let U0(µ) := (U0(µ | t))t∈T ∈ R
T

be the payoff vector of the designer from mechanism µ. Given a Bayesian incentive

problem Γ, B(Γ) ⊆ R
T is a set of blocked payoff vectors. As mentioned right after The-

orem 1 in the main text, we let BIO(Γ) be the set of payoff vectors U ∈ R
T such that

a belief q ∈ ∆(T) and a q-IC payoff vector U′ exist such that U′(t) > U(t) for every

t ∈ supp[q]. By definition, a payoff vector U is an IO payoff vector iff it is IC and

U /∈ BIO(Γ).

The first axiom requires that if a payoff vector U is blocked and U′ is strictly dominated

by U, U′ is blocked as well:

Axiom 1 (Domination) For every U, U′ ∈ R
T, if U ∈ B(Γ) and U′(t) < U(t) for every t,

then U′ ∈ B(Γ).
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The next axiom requires that if U is blocked, a neighborhood of U exists such that

every payoff vector in that neighborhood is blocked too.

Axiom 2 (Openness) B(Γ) is an open set of R
T.

A Bayesian incentive problem Γ = ((A0, (Ai)
n
i=1), (u0, (ui)

n
i=1), T, Ω, p, π) is an exten-

sion of the Bayesian incentive problem Γ = ((A0, (Ai)
n
i=1), (u0, (ui)

n
i=1), T, Ω, p, π) if

A0 ⊆ A0 and

ui(a, t, ω) = ui(a, t, ω), for every i = 0, 1, . . . , n, t ∈ T, ω ∈ Ω and a ∈ A.

That is, an extension Γ of Γ is a Bayesian incentive problem in which, compared with Γ,

the designer can commit to additional enforceable actions. The idea of the next axiom

is that in Γ, more payoff vectors could therefore be blocked.

Axiom 3 (Extensions) If Γ is an extension of Γ, then B(Γ) ⊆ B(Γ).

The last axiom requires that a strong solution should never be blocked.

Axiom 4 (Strong solutions) If µ is a strong solution of Γ, then U0(µ) /∈ B(Γ).

Let H be the set of all functions B(·) satisfying the four axioms, and for every Γ, let

B∗(Γ) =
⋃

B∈H

B(Γ).

Note that B∗ satisfies the four axioms. The set of neutral optima is the smallest possible

set of unblocked IC mechanisms:

Definition A.3 A mechanism µ is a neutral optimum iff µ is incentive compatible and

U0(µ) /∈ B∗(Γ).

Lemma A.1 (Myerson, 1983) For any Bayesian incentive problem Γ, at least one neutral

optimum exists.

The proof Lemma A.1 is the same as the proof of Theorem 6 in Myerson (1983). The ne-

cessary and sufficient conditions that characterize the neutral optima in Theorem 7 in

Myerson (1983) are simpler in our setting because incentive compatibility conditions

are simply the agents’ obedience constraints, whereas in Myerson (1983) truth-telling

constraints are also in place. Formally, in Theorem 7 in Myerson (1983), the shadow

price for the constraint that type t of the designer should not be tempted to claim to

be type s is always zero.

The next step is to show that BIO(Γ) satisfies the axioms of Domination, Openness, Ex-

tensions, and Strong solutions.

Domination. Let U ∈ BIO(Γ); that is, q ∈ ∆(T) and a q-IC payoff vector U′ ∈ U (q)

exist such that U′(t) > U(t) for every t ∈ supp[q]. If Ũ(t) < U(t) for every t ∈ T,

then U′(t) > U(t) > Ũ(t) for every t ∈ supp[q]. Hence, Ũ is blocked by U′; that is,

Ũ ∈ BIO(Γ).
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Openness. For every t ∈ T, let ε(t) ∈ R, ε(t) 6= 0, and Ũ(t) = U(t) + ε(t). For

every t ∈ supp[q], we have U′(t) > U(t), so for ε(t) close enough to zero, we get

U′(t) > Ũ(t). Hence, Ũ is blocked by U′; that is, Ũ ∈ BIO(Γ).

Extensions. If U′ is q-IC in Γ, it is also q-IC in an extension Γ of Γ. Hence, if U is blocked

by U′ in Γ, it is also blocked by U′ in Γ. Therefore, BIO(Γ) ⊆ BIO(Γ).

Strong solutions. To show that BIO(Γ) satisfies the strong solution axiom (which we

state as a proposition below, see Proposition A.1), we start with an auxiliary lemma.

Lemma A.2 If ν is q-IC and ν′ is q′-IC, then for every α ∈ [0, 1], the mechanism ν∗, defined

by

ν∗(a | t, ω) =
αq(t)

q∗(t)
ν(a | t, ω) +

(1 − α)q′(t)

q∗(t)
ν′(a | t, ω),

for every a ∈ A, t ∈ supp[q∗] and ω ∈ Ω, with q∗(t) = αq(t) + (1 − α)q′(t) for every

t ∈ T, is q∗-IC.

Proof. The mechanism ν∗ is q∗-IC iff for every ai and a′i in Ai

∑
a−i∈A−i

∑
t∈T

∑
ω∈Ω

q∗(t)π(ω | t)ν∗(a | t, ω)[ui(a, t, ω)− ui((a
′
i, a−i), t, ω)] ≥ 0,

that is,

∑
a−i∈A−i

∑
t∈T

∑
ω∈Ω

(
αq(t)π(ω | t)ν(a | t, ω) + (1 − α)q′(t)π(ω | t)ν′(a | t, ω)

)

× [ui(a, t, ω)− ui((a
′
i, a−i), t, ω)] ≥ 0,

or, equivalently,

α ∑
a−i∈A−i

∑
t∈T

∑
ω∈Ω

q(t)π(ω | t)ν(a | t, ω)[ui(a, t, ω)− ui((a
′
i, a−i), t, ω)]

+ (1 − α) ∑
a−i∈A−i

∑
t∈T

∑
ω∈Ω

q′(t)π(ω | t)ν′(a | t, ω)[ui(a, t, ω)− ui((a
′
i, a−i), t, ω)] ≥ 0.

The first term is positive for every ai and a′i in Ai because ν is q-IC, and the second

term is positive for every ai and a′i in Ai because ν′ is q′-IC. Hence, ν∗ is q∗-IC.

The intuition for Lemma A.2 is as follows. If ν is q-IC and ν′ is q′-IC, and q∗ = αq +

(1 − α)q′, then when the prior belief is q∗, the designer can first use an information-

disclosure policy that splits the prior belief q∗ to the posterior belief q with probability

α and to the posterior belief q′ with probability 1 − α. By Bayes’ rule, the probability

that the posterior is q conditional on t is
αq(t)
q∗(t) , and the probability that the posterior is

q′ conditional on t is
(1−α)q′(t)

q∗(t)
. Then, the designer uses the q-IC mechanism ν when the

posterior is q, and the q′-IC mechanism ν′ when the posterior is q′.

Proposition A.1 If µ is a strong solution, then µ is interim optimal.

Proof. Assume by way of contradiction that µ is a strong solution but not IO. Then,

q ∈ ∆(T) and a q-IC mechanism ν exist such that U0(ν | t) > U0(µ | t) for every

t ∈ supp[q].
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For every t ∈ T, let

q′(t) =
p(t)− αq(t)

1 − α
,

where α ∈ (0, 1) is small enough that p(t) > αq(t); that is, q′(t) > 0 for all t ∈ T. This is

possible because p is assumed to have full support. Note ∑t∈T q′(t) = ∑t∈T
p(t)−αq(t)

1−α =

1, so q′ ∈ ∆(T) is a full-support belief: supp[q′] = T.

Define the following mechanism ν∗:

ν∗(a | t, ω) :=
αq(t)

p(t)
ν(a | t, ω) +

(1 − α)q′(t)

p(t)
µ(a | t, ω),

for every t ∈ T, ω ∈ Ω, and a ∈ A. Note p(t) = αq(t) + (1 − α)q′(t) for every t ∈ T, ν

is q-IC and µ is q′-IC because µ is ex post IC. Hence, from Lemma A.2, the mechanism

ν∗ is IC for the prior p. In addition, for every t ∈ T, we have by construction

U0(ν
∗ | t) =

αq(t)

p(t)
U0(ν | t) +

(1 − α)q′(t)

p(t)
U0(µ | t).

We get U0(ν∗ | t) ≥ U0(µ | t) for every t ∈ T, with a strict inequality for every

t ∈ supp[q]. It follows that ν∗ is IC and dominates µ, a contradiction to the assumption

that µ is a strong solution.

We conclude BIO(Γ) ⊆ B∗(Γ), and therefore, a neutral optimum is IO. Hence, an IO

payoff vector exists because a neutral optimum exists (Lemma A.1). This completes

the proof of Theorem 1.

A.2 Proof of Theorem 2

To prove Theorem 2, we first adapt some auxiliary definitions and results developed

in Myerson (1983).

Revelation and inscrutability principles Following Myerson (1983), we can rely on

the revelation and the inscrutability principles, which allow us to conclude that for

every equilibrium in which the designer uses a generalized mechanism νt : T × Ω →

∆(X) when their type is t ∈ T, an outcome-equivalent equilibrium exists in which all

designer types offer the same direct mechanism µ : T × Ω → ∆(A) (so agents’ beliefs

at the beginning of Stage 6 are the same as the prior) and agents are obedient along the

equilibrium path.

Continuation equilibrium In a PBE, for every off-path mechanism ν and belief q,

agents are required to be sequentially rational in Stage 6 of the informed-designer

game. Each agent i chooses a function γi : Xi → ∆(Ai) that determines the probability

that i chooses action ai ∈ Ai as a function of the signal xi ∈ Xi. Sequential rationality

for the agents requires the strategy profile (γi)i∈I to constitute a continuation equilib-

rium given q and ν. For every x ∈ X and a ∈ A, let

γ(a | x) =

{
∏i∈I γi(ai | xi) if x0 = a0

0 otherwise,
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be the probability that the action profile a is played when agents play the strategy

profile (γi)i∈I and the outcome of the mechanism is x.

Let W0(ν, (γi)i∈I | t) be the interim expected payoff of the designer given t, the mech-

anism ν, and the agents’ strategy profile (γi)i∈I :

W0(ν, (γi)i∈I | t) = ∑
ω∈Ω

∑
x∈X

∑
a∈A

π(ω | t)ν(x | t, ω)γ(a | x)u0(a, t, ω).

Let Wi(ν, (γi)i∈I | q) be the expected payoff of agent i given belief q ∈ ∆(T), the

mechanism ν, and the strategy profile (γi)i∈I of the agents:

Wi(ν, (γi)i∈I | q) = ∑
ω∈Ω

∑
t∈T

∑
x∈X

∑
a∈A

q(t)π(ω | t)ν(x | t, ω)γ(a | x)ui(a, t, ω).

Definition A.4 (γi)i∈I is a continuation equilibrium for ν : T × Ω → ∆(X) given q iff for

every i ∈ I and γ′
i : Xi → ∆(Ai), we have

Wi(ν, (γi)i∈I | q) ≥ Wi(ν, (γ′
i, γ−i) | q).

Because agents have symmetric information at the beginning of Stage 6 of the ex-

tensive form defined in Section 3, we require that they have a common belief q at this

stage, even off the equilibrium path. This reason is also why we formulated the notion

of incentive compatibility for a common belief.

Note the game induced by ν with prior q has finite sets of pure strategies, so a con-

tinuation equilibrium for ν given q always exists. The non-empty and compact set

of continuation equilibrium payoff vectors for ν given q is denoted by U(ν, q). It is

the set of all U ∈ R
T such that a continuation equilibrium (γi)i∈I for ν given q exists

such that (W0(ν, (γi)i∈I | t))t∈T = U. By the revelation principle, every continuation

equilibrium payoff vector for ν given q is q-IC:

U(ν, q) ⊆ U (q).

These observations lead to the definition of PBE in Definition 1 in the main text, which

is what Myerson (1983) calls an expectational equilibrium. In particular, the set of

equilibrium payoff vectors is a subset of the set of IC payoff vectors U (p).

Remark A.1 (Definition of equilibrium) Requiring that agents have a common belief

at the beginning of Stage 6 is in the spirit of the belief-consistency requirement of the

sequential equilibrium of Kreps and Wilson (1982) and the strong version of PBE in

Fudenberg and Tirole (1991), and it is standard in the literature. We follow Myerson

(1983) because two important difficulties emerge in defining sequential equilibrium

or a strong version of PBE directly in our setting. First, the informed-designer game

is not a finite game because the set of possible mechanisms is not finite and not even

countable. Second, the definition of sequential equilibrium requires that nature moves

at the start of the game with a full-support probability distribution. Whereas nature

moves at the start of the informed-designer game to determine the state (t, ω) with a

full-support probability distribution, nature also moves later in the game to determine

the mechanism’s output x, and at that point the mechanism may not have full support.
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Let µ be an IO mechanism. By definition, it is IC. Fix a deviation of the designer to ν

and consider the following fictitious (n + 1)-player extensive-form game G(ν, µ). In

the first stage, player 0 chooses t ∈ T. In the second stage, nature draws ω ∈ Ω with

probability π(ω | t). In the third stage, (a0, x1, . . . , xn) ∈ X is drawn with probability

ν(a0, x1, . . . , xn | t, ω). In the fourth stage, each player i ∈ I is privately informed about

xi and chooses an action ai. The payoff of player 0 is u0(a0, a1, . . . , an, t) − U0(µ | t),

and for each i ∈ I, the payoff of player i is ui(a0, a1, . . . , an, t).

The fictitious game G(ν, µ) has an equilibrium in behavioral strategies because it is a

finite extensive-form game. Take such an equilibrium profile of behavioral strategies:

q ∈ ∆(T) for player 0, and γi : Xi → ∆(Ai) for each player i ∈ I. The corresponding

expected payoff for player 0 is

∑
t∈T

q(t)(W0(ν, (γi)i∈I | t)− U0(µ | t)),

and the expected payoff of player i ∈ I is

Wi(ν, (γi)i∈I | q).

By construction, (γi)i∈I is an equilibrium for ν : T × Ω → ∆(X) given q according to

Definition A.4, so by the revelation principle U = (U(t))t∈T = (W0(ν, (γi)i∈I | t))t∈T

is a q-IC payoff vector; that is, U ∈ U (q). Let

S = {t ∈ T : U(t) > U0(µ | t)}.

If S is non-empty, the equilibrium strategy q of player 0 should assign strictly positive

probability to actions in S only, namely, supp[q] ⊆ S. That is, we have U(t) > U0(µ | t)

for every t ∈ supp[q]. Hence, µ is not an IO mechanism, a contradiction. Therefore,

S is empty, which means the belief q and continuation equilibrium payoff vector U

given ν and q constructed in the fictitious game above satisfy U0(µ | t) ≥ U(t) for

every t. Hence, for every designer’s type, the deviation from µ to ν is not profitable

for the designer. Because this construction can be done for every ν, µ is a PBE. This

completes the proof of Theorem 2.

A.3 Proof of Proposition 1

To prove a payoff vector U∗ that is both EPO and EAO is also IO, we use several auxil-

iary results in Appendix A.1. Because the payoff vector U∗ is EAO, it is undominated

(Definition A.1). Hence, if it is EPO, it is ex post IC, and therefore, it is a strong solution

(Definition A.2). We conclude from Proposition A.1 that U∗ is IO. To show uniqueness

of the IO payoff vector, let U IO be an IO payoff vector, and assume by way of contra-

diction that U IO 6= U∗. Because U∗ is EAO, t exists such that U IO(t) < U∗(t). But U∗

is also EPO, so by definition of interim optimality, we have U IO(t) ≥ U∗(t) for every

t, a contradiction.
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B Proofs of Section 5

To prove the results of Section 5 we start with a preliminary lemma.

Lemma B.1 If U is a q-IC payoff vector, then there exists q̃ ∈ ∆(T) with supp[q̃] ⊆ supp[q]

such that U(t) ≤ V(q̃) for all t ∈ supp[q].

Proof. Let U be a q-IC payoff vector and let µ be the corresponding mechanism. Let

ā ∈ arg max
a∈

⋃
t∈T supp[µ(·|t)]

u0(a). (3)

Let q̃ ∈ ∆(T) be the posterior belief of the agent when they get recommendation ā

under the mechanism µ: for every t,

q̃(t) =
µ(ā | t)q(t)

∑t̃ µ(ā | t̃)q(t̃)
,

and we have supp[q̃] ⊆ supp[q]. Because µ is q-IC, we have ā ∈ A∗(q̃). Hence,

u0(ā) ≤ max
a∈A∗(q̃)

u0(a) = V(q̃).

Then, together with Equation (3), this implies

U(t) = ∑
a

µ(a | t)u0(a) ≤ u0(ā) ≤ V(q̃),

for every t ∈ supp[q].

B.1 Proof of Proposition 2

(⇒) Let U ∈ R
T be an IC payoff vector and assume a q ∈ ∆(T) exists such that

V(q) > U(t) for every t ∈ supp[q]. Then, the payoff vector U′, with U′(t) = V(q) for

every t ∈ T, is q-IC. It corresponds to a non-revealing mechanism in which action a∗(q)

is chosen by the agent for every t ∈ T. Hence, U′(t) > U(t) for every t ∈ supp[q],

which implies U is not IO.

(⇐) Let U ∈ R
T be an IC payoff vector and assume it is not IO; that is, q̃ and a q̃-IC

payoff vector U′ exist such that U′(t) > U(t) for every t ∈ supp[q̃]. The fact that U′

is q̃-IC implies by Lemma B.1 that q ∈ ∆(T) with supp[q] ⊆ supp[q̃] exists such that

V(q) ≥ U′(t) for all t ∈ supp[q̃]. Hence, V(q) > U(t) for every t ∈ supp[q].

B.2 Proof of Proposition 3

It suffices to show U = (V(δt))t∈T is IO. Assume it is not. Then, q ∈ ∆(T) and a

q-IC payoff vector U′ exist such that U′(t) > V(δt) for every t ∈ supp[q]. Let y =

maxt̃∈supp[q] U′(t̃) so that V(δt) < y for all t ∈ supp[q]. By quasiconvexity of V, we get

V(q̃) < y for all q̃ with supp[q̃] ⊆ supp[q]. But because U′ is q-IC, Lemma B.1 implies

U′(t) < y for all t ∈ supp[q], a contradiction.
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B.3 Proof of Proposition 4

To prove Proposition 4 we use the following lemma, which shows that under As-

sumption 1, at an EAO payoff vector, the designer gets their first-best payoff for every

t ∈ T∗.

Lemma B.2 Consider a Bayesian incentive problem with binary actions satisfying Assump-

tion 1.35 If U∗ is an EAO payoff vector, then U∗(t) = u0(1, . . . , 1, t) for every t ∈ T∗.

Proof. Let µ be an EAO mechanism, and consider the mechanism µ∗ such that µ∗(1, . . . , 1 |

t) = 1 for every t ∈ T∗, and µ∗(a | t) = µ(a | t) for every a ∈ A and t ∈ T\T∗. To

prove the lemma, it suffices to show that µ∗ is IC and it raises weakly higher payoff

than µ. From Condition (ia), for every t ∈ T, the designer is not worse off under µ∗

than under µ. Hence, it remains to show that µ∗ is IC. Incentive compatibility for agent

i is equivalent to

∑
t∈T∗

p(t)[ui(1, 1−i, t)− ui(0, 1−i, t)]

+ ∑
t∈T\T∗

p(t)∑
a−i

µ(1, a−i | t)[ui(1, a−i, t)− ui(0, a−i, t)] ≥ 0

and

∑
t∈T\T∗

p(t)∑
a−i

µ(0, a−i | t)[ui(0, a−i, t)− ui(1, a−i, t)] ≥ 0.

The first inequality follows from Condition (iia) and the fact that µ is IC. The second

inequality follows from Condition (iib).

We now prove Proposition 4:

Let U∗ be an EAO payoff vector. By Lemma B.2, U∗(t) = u0(1, . . . , 1, t) for every

t ∈ T∗. Assume by way of contradiction that U∗ is not IO. Then, a q-IC mechanism ν

exists such that

U0(ν | t) > U∗(t) for every t ∈ supp[q].

By Condition (ia), supp[q] ⊆ T\T∗. Hence, by Condition (iib) and the fact that ν is

q-IC we have ν(0, . . . , 0 | t) = 1 for every t ∈ T\T∗. Finally, Condition (ib) implies

U0(ν | t) = u0(0, . . . , 0, t) ≤ U∗(t) for every t ∈ T\T∗, a contradiction.

C Interim optimality and other solution concepts

In this section, we discuss the relationship of IO mechanisms with some key concepts

of the informed-principal literature. We do so for the baseline model of a perfectly

informed designer presented in the main text.

35Condition (ib) is not required for this lemma.
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C.1 Core

We say the mechanism µ is IC given R, where R ⊆ T, iff it is q-IC for q(·) = p(· | R);

that is, for each agent i we have the following:

∑
a−i∈A−i

∑
t∈R

p(t)µ(a | t)[ui(a, t)− ui((a
′
i, a−i), t)] ≥ 0, for every ai and a′i in Ai. (4)

Let

S(ν, µ) := {t ∈ T : U0(ν | t) > U0(µ | t)},

be the set of designer types who strictly prefer the mechanism ν over µ. A core mech-

anism is defined by Myerson (1983) as follows:

Definition C.1 A mechanism µ : T → ∆(A) is a core mechanism iff µ is incentive com-

patible, and no mechanism ν exists such that S(ν, µ) 6= ∅ and such that ν is incentive

compatible given S for every S ⊇ S(ν, µ).

To establish that IO payoff vectors are core payoff vectors, we rely on an alternative,

simpler definition of core mechanisms in Lemma C.1 below. To show this equivalence,

we use the fact that an ex post IC mechanism always exists, because in information-

design settings no truth-telling conditions exist for the designer.

Lemma C.1 A mechanism µ : T → ∆(A) is a core mechanism iff µ is incentive compatible

and no mechanism ν exists such that S(ν, µ) 6= ∅ and such that ν is incentive compatible

given S(ν, µ).

Proof. The “if” part is obvious by definition. To establish the “only if” part, we show

that if µ is IC and a mechanism ν exists such that S(ν, µ) 6= ∅ and such that ν is IC

given S(ν, µ), then µ is not a core mechanism; that is, a mechanism ν̃ exists such that

S(ν̃, µ) 6= ∅ and such that ν̃ is IC given S for every S ⊇ S(ν̃, µ). Consider the following

mechanism:

ν̃(t) =

{
ν(t) if t ∈ S(ν, µ)

ν′(t) if t /∈ S(ν, µ),

where ν′ is any ex post IC mechanism. It is straightforward to show ν̃ is IC given S for

every S ⊇ S(ν̃, µ).

A core mechanism has a natural interpretation in terms of deviations of “coalitions” of

designer types. Such deviations could also be interpreted as deviations of a partially

informed designer. An IC mechanism µ is not a core mechanism iff a set of types

S ⊆ T and mechanism ν that is IC given S exist, such that all types in S strictly benefit

from ν compared with µ. Note the belief of the agents after the deviation can either be

interpreted as coming from a strategic inference that t ∈ S or as a direct inference from

a verifiable disclosure of the set S. An IO mechanism is similar to a core mechanism

but allows for more blocking mechanisms. The definition of IO mechanism does not

require the blocking mechanism ν to be IC given S(ν, µ); the blocking mechanism

could be IC for some belief q whose support is included in S(ν, µ) (i.e., supp[q] ⊆

S(ν, µ)). This definition allows for more flexibility. Agents can arbitrarily modify the

relative likelihoods of the different types in S(ν, µ), whereas in the definition of the

core mechanism, beliefs are “passive” because they keep the relative likelihoods of
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the different types in S(ν, µ) constant. In other words, interim optimality entails a

larger set of blocking mechanisms that constitute the driving force of the following

result:

Proposition C.1 If µ is an interim-optimal mechanism, then µ is a core mechanism.

Proof. Follows directly from the alternative definition of core in Lemma C.1 and the

definition of IO mechanisms (Definition 4).

The reverse of this proposition is not true. In the four-action variation of the informed

prosecutor example, for the prior p = 1
6 , every IC payoff vector is a core payoff vector.

In Example 1, the core payoff vector (1, 0) (which is EAO for the assumed prior) is not

IO. This last example also shows that a core payoff vector is not necessarily an equi-

librium payoff vector because, as seen previously, (1, 0) is not an equilibrium payoff

vector.

C.2 SUPO and SNP mechanisms

Maskin and Tirole (1990) introduced the notion of a strong unconstrained Pareto op-

timal mechanism, which exists and is an equilibrium of some informed-principal prob-

lems with private values and transfers.

Definition C.2 (Maskin and Tirole, 1990) A mechanism µ : T → ∆(A) is strong un-

constrained Pareto optimal (SUPO) iff it is incentive compatible and no belief q ∈ ∆(T)

together with a q-incentive-compatible mechanism ν exist such that U0(ν | t) ≥ U0(µ |

t) for every t ∈ T, with a strict inequality for some t ∈ T, and a strict inequality for all

t ∈ T if supp[q] 6= T.

As already observed by Mylovanov and Tröger (2012), SUPO mechanisms usually fail

to exist if there are no transfers. For instance, the informed prosecutor example has no

SUPO mechanism for p <
1
3 .

Mylovanov and Tröger (2012) also introduced a similar concept, called a strong neologism-

proof mechanism, which exists in more general private value adverse-selection envir-

onments and is also a PBE mechanism of the informed-principal game in such envir-

onments. Let

UFB
0 (t) = max{u0(a, t) : a ∈ A},

be the first-best payoff for type t of the designer, that is, the highest possible payoff of

the designer when their type is t.

Definition C.3 (Mylovanov and Tröger, 2012) A mechanism µ : T → ∆(A) is strong

neologism-proof (SNP) iff it is incentive compatible and there is no belief q ∈ ∆(T) such

that q(t) = 0 if U0(µ | t) = UFB
0 (t), together with a q-incentive-compatible mechanism

ν such that U0(ν | t) ≥ U0(µ | t) for every t ∈ supp[q], with a strict inequality for

some t ∈ supp[q].

In the next example, even SNP mechanisms do not exist. Failure of existence is related

to the fact that the set of blocked payoff vectors in the definitions of SUPO and SNP
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is not necessarily an open set. By contrast, the set of blocked payoff vectors in the

definition of an IO payoff vector is an open set.36

Example 4 (SUPO and SNP payoff vectors may not exist) Consider the following ex-

ample with a single agent, T = {1, 0} and A = A1 = {a1, a2, a3}:

a1 a2 a3

t = 1 0, 0 1, 1 2,−1

t = 0 0, 1 1, 0 0, 1

The first-best payoff vector is UFB
0 = (2, 1). If p(1) = p <

1
2 every IC payoff vector is

dominated by the payoff vector (1, 1), which is q-IC for q(1) ≥ 1
2 , so no SUPO or SNP

payoff vector exists. However, it is immediate that the set of IO payoff vectors is the

set of IC payoff vectors in which the payoff of type t = 1 is equal to 1. In particular,

the EPO payoff vector (1, 0) is IO whatever the prior.

Proposition C.2 If µ is a strong neologism-proof mechanism, then µ is an interim-optimal

mechanism and therefore a perfect Bayesian equilibrium of the informed-designer game.

Proof. Let µ be an IC mechanism that is not an IO mechanism; that is, q ∈ ∆(T)

and a q-IC mechanism ν exist such that supp[q] ⊆ S(ν, µ). By definition, for every

t ∈ S(ν, µ), we have U0(µ | t) < U0(ν | t) ≤ UFB
0 (t). Because supp[q] ⊆ S(ν, µ), we

get q(t) = 0 if U0(µ | t) = UFB
0 (t) and U0(µ | t) < U0(ν | t) for every t ∈ supp[q].

Hence, µ is not an SNP mechanism. We conclude by Theorem 2.

To summarize, we have the following relationships in our Bayesian incentive environ-

ment: neutral optima and SNP mechanisms are IO, IO mechanisms are PBE mechan-

isms, and IO mechanisms are core mechanisms. We have also observed that the sets

of SUPO and SNP mechanisms may be empty, that some core mechanisms may not

be equilibrium mechanisms, and that some PBE mechanisms are not IO. Whether IO

mechanisms are neutral optima in general or under specific assumptions is an open

and difficult question that is left for future research.

D Imperfectly informed designer: illustration

To illustrate how the precision of information of the designer affects IO mechanisms

beyond the extreme cases in which the designer is uninformed or perfectly informed

about the state, consider the informed prosecutor example with three actions A =

{a0, a2, a3}. Let Ω = {1, 0} and assume the payoff function of the agent only depends

on a ∈ A and ω ∈ Ω, where the payoff-relevant state is now ω instead of t, and ω = 1

corresponds to the state in which the defendant is guilty. That is, if π̄ is the belief of

the agent about ω = 1, their optimal action is a0 if π̄ <
1
3 , a2 if π̄ ∈ [ 1

3 , 2
3 ) and a3 if

π̄ ≥ 2
3 . The marginal probability of ω = 1 is 1

6 . The designer’s payoff only depends

on the agent’s action. The type of the principal is now a signal t ∈ {0, t̄} about the

payoff-relevant state, with

π(ω = 1 | t = 0) = 0 and π(ω = 1 | t = t̄) = t̄ ∈ [
1

6
, 1].

36See Appendix A.1.
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Hence, the prior marginal probability of type t = t̄ is p = 1
6t̄

, and type t of the principal

simply corresponds to their belief about state ω = 1. When the agent has belief q

about the designer’s type t = t̄, their belief about ω = 1 is qt̄ and their prior belief

about ω = 1 is pt̄ = 1
6 .

Because payoffs do not directly depend on t, the ex ante expected payoff of the de-

signer at the EAO mechanism does not depend on the precision of the designer’s in-

formation, t̄, and is the same as in the original example. However, the interim payoffs

of the designer at an EAO mechanism depend on t̄. They also depend on the EAO

mechanism that is used, except when t̄ = 1, in which case the EAO mechanism is

unique. Every EAO mechanism µ : T × Ω → ∆(A) satisfies the following:

Pr(a = a2 | ω = 1) = µ(a2 | t̄, 1) = 1,

and

Pr(a = a2 | ω = 0) = Pr(t = t̄ | ω = 0)µ(a2 | t̄, 0) + Pr(t = 0 | ω = 0)µ(a2 | 0, 0),

=
1 − t̄

5t̄
µ(a2 | t̄, 0) +

6t̄ − 1

5t̄
µ(a2 | 0, 0) =

2

5
.

Such a mechanism is IO iff the high-type designer gets at least their EPO payoff

UEPO
0 (t̄) = cav V(t̄). Hence, to characterize when an EAO mechanism is IO it suf-

fices to focus on the EAO mechanism µ that maximizes the payoff of type t̄. Such an

EAO mechanism is

µ(a2 | t̄, 1) = 1 and µ(a3 | t, ω) = 0 for every t and ω,

µ(a2 | t̄, 0) =

{
1 if 1−t̄

5t̄ ≤ 2
5 , i.e., t̄ ≥ 1

3 ,
2t̄

1−t̄ if t̄ ≤ 1
3 ,

µ(a2 | 0, 0) =

{
3t̄−1
6t̄−1

if t̄ ≥ 1
3 ,

0 if t̄ ≤ 1
3 .

If t̄ >
1
3 , we get U0(µ | t̄) = 2 < UEPO

0 (t̄) = cav V(t̄), so no EAO mechanism is IO.

If t̄ ≤ 1
3 , we get U0(µ | t̄) = 6t̄ = UEPO

0 (t̄) = cav V(t̄), so the EAO mechanism µ is

IO. To conclude, in this example, we have shown that if the precision of the designer’s

information is low (t̄ ∈ [ 1
6 , 1

3 ]), an EAO mechanism exists that is IO. Otherwise, if the

precision of the designer’s information is high (t̄ > 1
3 ), no EAO mechanism exists that

is IO.
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