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CHAPTER 1:

INTRODUCTION

ATHANASE PAPADOPOULOS

Abstract. This is a detailed overview of the content of all the chapters that constitute this
book. At the same time, it is a survey of the mathematical world of Norbert A’Campo

AMS codes: 01-02, 01-06, 01A70, 57K20, 57R45, 32S05, 57K45, 57K30, 57R30, 00A30,
57K10, 57K16, 51M15, 53C70

The present volume consists of a collection of essays dedicated to Norbert A’Campo on the
occasion of his 80th birthday. The topics discussed include hyperbolic and super hyperbolic
geometry, 3-manifolds, metric geometry, mapping class groups, linear groups, Riemann sur-
faces, Teichmüller spaces, high-dimensional complex geometry, differential topology, symplec-
tic geometry, singularity theory, number theory, algebraic geometry, dynamics, mathematical
physics and philosophy of mathematics. These topics are very diverse, but they are all part
of Norbert’s interests, and the whole set is a sign of the broadness of his mind.

I often say, with Norbert, that as mathematicians, we have the chance of choosing the topics
on which we work, and, perhaps more importantly, the people with whom we work. Most of
the chapters that constitute this book are written by friends of Norbert or friends of mine,
and several among them are common friends. Independently of this fact, I am pleased that
this collective volume turns out to be a glimpse into a good number of interesting geometrical
topics, old and new.

I will now give a rather detailed overview of these chapters. I have tried to organise them
in sections, but this was not easy to realize. There is however a certain logic in the order I
chose.

Chapter 2, which immediately follows this introduction, is a Vita of Norbert, in the form of
recollections of facts I learned on him, during conversations we had, spread over a long period
of friendship. About this friendship, only one thing I want to say here: it was constantly at
the same level, there were never ups and downs.

The next three chapters contain personal recollections and thoughts on mathematics, by
three mathematicians.

Chapter 3, by Dennis Sullivan, is titled Learning about dynamics, Kleinian groups, qua-

siconformality, and period doubling universality: Orsay Chapter. In this chapter, Sullivan
recounts a series of episodes that were important in his mathematical life and that took place
in Orsay or Bures-sur-Yvette in the 1970s, which is the epoch where Norbert was present
there. I would like to emphasize, without further comment, the word “learning” in the title.
The topics that Dennis touches upon include foliations, dynamics, monodromy of isolated
singularities, quasiconformality, circle diffeomorphisms, period doubling, universality, ergod-
icity, KAM theory, Thurston’s theory of surface diffeomorphisms and the Ahlfors–Bers theory
of quasiconformal deformations of Kleinian groups. Sullivan also mentions animal vision and
works by physicists.
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2 ATHANASE PAPADOPOULOS

This overview, showing only one part of Sullivan’s broad interests, is intended to give a
taste of the questions that were discussed in Orsay and Bures between him, Norbert and
others.

Valentin Poénaru was another colleague of Norbert at Orsay. In Chapter 4, titled My

mathematical world, he gives a personal account, written in an informal philosophical tone,
of his approach to the two problems that are haunting him since his youth: the 3-dimensional
Poincaré conjecture and the 4-dimensional Schoenflies problem. At the same time, he reviews
some important notions he encountered in his mathematical life and he mentions a few
conjectures (which are still open) that he proposed while he was working on the two major
problems we mentioned. These notions include simple connectivity at infinity, the QSF
(quasi-simply filtered) and GSC (geometric simply connected) properties for groups. About
the latter, he writes: “I feel that the ubiquity of GSC gives a certain sense of unity to
that mathematical world of mine.” Poénaru, all along this short article, mentions several
mathematicians with whom he interacted and who played a significant role in his life.

Chapter 5, by Alexey Sossinsky, is written in French, and is titled Le Diable, le Bon Dieu

et la Sphère de dimension n (The Devil, the Good Lord and the n-dimensional Sphere). It
consists of variations on the theme: Why is it so hard to see any logic or any beauty in the

sequences of integers associated with constructions involving n-dimensional spheres? Indeed,
one may wonder why, for instance, the sphere packing problem is solved in only five cases:
dimensions 1, 2, 3, 8, and 24. We recall that this problem is part of Hilbert’s Problem VIII
(which contains 3 distinct questions); in fact, Hilbert asks for the densest packing of solids
of an unspecified shape, but it is usually assumed that it concerns packings of spheres. The
problem goes back at least to Kepler. In fact, Sossinsky discusses not exactly this problem,
but a related one, viz. the problem of calculating the maximum number of spheres of the
same diameter that can be arranged around an n-dimensional sphere (again of the same
diameter) in the Euclidean (n + 1)-dimensional space. This is the famous “kissing number”
in which, as Sossinsky recalls, Isaac Newton and David Gregory were interested towards the
end of the 17th century. This sequence of numbers, the kissing numbers in dimension n, is
known for its very first terms: n =1, 2, 3, 4, and then only for n = 8 and 24. Isn’t that
awkward? Among the other sequences of integers that arise in geometry with no apparent
reason, Sossinsky mentions the set of integers n such that the n-dimensional sphere admits
a unique triangulation up to PL-equivalence. Here, the set of integers satisfying the given
property includes n = 1, 2 and 3, it does not include any n ≥ 5, and the problem is still
open in the case n = 4, a case which turns out to be much more difficult than all the others.
Any human being with some sense of order would have asked: Why these numbers? Where
is the logic behind this? There is also the sequence of integers n such that the n-sphere
admits an exotic differentiable structure: It is known that the 7-dimensional sphere admits
28 different differentiable structures, while the 8-dimensional sphere admits only two and the
9-dimensional sphere eight different such structures; we also know that the 12-dimensional
sphere admits a unique differentiable structure, that the sphere of dimension 15 has more than
16 000 such structures, and there are a few more other known cases, where some numbers
occur for no apparent reason. There is no clear logic in that anarchy. Another problem
that puzzles the author is the apparent lack of order in the sequence of homotopy groups of
n−spheres. In view of this persistent disorder, Sossinsky addresses the philosophical question
of the existence of order and beauty in Creation. This is the main problem addressed in
Chapter 5.

When Sossinsky sent me a first version of his paper, in French, I asked him whether he
wanted it to be published in French. He said yes, because of the title—a reference to a play by
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Sartre. This play, titled Le Diable et le Bon Dieu, is a drama in which the French philosopher
puts into action the dilemma between good and evil, which, in fact, he considers to be a false
dilemma, because of man’s inability to do either one or the other. The main character of
the play, in his attempts to do either good or evil, ends up, in both cases, destroying human
lives.

I know another reason for which Sossinsky prefers French; this is because this article is
also a piece of literature, and his French is superb, more suitable than his English (which by
the way is excellent) for such an exercise.

The mention of n-dimensional spheres also reminds us of Norbert’s first important result,
namely, his construction of a foliation on the 5-sphere (Un feuilletage de S5, 1971).

Chapter 6, by Bob Penner, titled Super Hyperbolic Law of Cosines: same formula with

different content, is an immersion into the world of supergeomety, a modern generalization of
differential and algebraic geometry which is also the geometry of the Standard Model of high
energy physics. The word supersymmetry, which appeared in physic in the 1970s, is only one
predecessor of several other words with the prefix “super” (super-gauge transformation, su-
peralgebra, supermanifold, super Minkowski space, super Teichmüller space, super Lie group,
etc.). I know that Bob is unhappy with the attribute super for such a geometry. He tells me
(half seriously and half humorously) that the reason is the perhaps pejorative connotation it
gives to the “ordinary” non-super case! For him, supergeometry is just geometry. But the
word became standard.

Working in the super Minkowski model, Penner answers a purely geometrical question:
“What are the Laws of Cosines and Sines for triangles in the hyperbolic superplane?” It
is good to remember here that the trigonometric formulae, in any geometry, constitute the
heart of that geometry. This was particularly stressed by Nikolay Lobachevsky who, in his
Pangeometry and in other writings, deduced all the basic theorems of his new geometry from
the trigonometric formulae he first established. This makes me say that the result of this
chapter is a fundamental step toward understanding super Minkowski geometry.

The next six chapters are concerned with various aspects of surfaces, their mapping class
groups, their complex moduli and their Teichmüller spaces.

Chapter 7, by Hugo Parlier, is titled The topological types of length bounded multicurves. In
this chapter, the author presents inequalities involving lengths of closed geodesics or systems
of disjoint closed geodesics on hyperbolic surfaces. There are two classical such inequalities,
namely, an upper bound on systoles (the lengths of a shortest curve on the surface), and the
so-called Bers inequality, which is an existence theorem for “short pants decompositions”.
More precisely, the Bers inequality says that an arbitrary closed hyperbolic surface carries a
pair of pants decomposition by closed geodesics whose lengths are bounded above by a certain
constant (the “Bers constant”) which depends only on the topological type of the surface.
The results discussed in Chapter 7 follow this tradition. They include a characterization of
the topological types of closed curves and systems of closed curves that are homotopic to a
closed geodesics or systems of closed geodesics satisfying certain given length inequalities.

Chapter 8, by Öykü Yurttaş, titled A recipe for the dilatation of families of pseudo-Anosov

braids, is a survey of the author’s work on the computation of the dilatation and the charac-
terization of the invariant measured foliations of each member of a certain family of pseudo-
Anosov braids. The methods use what she calls the Dynnikov coordinates. The author notes
that the family of braids considered is of interest in the study of braids with low dilatations.
Results on the dilatations of this family were previously obtained by E. Hironaka and E. Kin,
using the more familiar train track techniques, in their paper A family of pseudo-Anosov
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braids with small dilatation (2006). The author, in Chapter 8, gives an alternative way of
computing these dilatations.

Chapter 9, by Marc Burger and Alessandra Iozzi, is titled ℓ2-stability and homomorphisms

into the mapping class group. In this chapter the authors formulate a new cohomological
vanishing condition, in the bounded cohomology of a group, which they call ℓ2-stability and
which implies a superrigidity type result for homomorphisms from that group into a map-
ping class group. We recall that the term “superrigidity” designates the fact that a certain
homomorphism (e.g., a linear representation of a discrete group in an algebraic group) can,
under certain circumstances, be enhanced to (for instance) a representation of the algebraic
group itself. The first typical situation where the term “superrigidity” was used is the case
where the famous Margulis theorem holds. This is in the context of homomorphisms from
irreducible lattices in real semisimple Lie groups of rank ≥ 2 into simple Lie groups. The term
was extended later to the setting of surface mapping class groups, when a fruitful analogy
between algebraic properties of these groups and results on lattices in higher rank groups
was exploited. In Chapter 9, Burger and Iozzi give new examples of ℓ2-stable groups. At the
same time they provide a unifying setting for some existing superrigidity results for mapping
class groups. Talking about superrigidity, I take this opportunity to mention the paper by
Marc Burger and Norbert A’Campo, Réseaux arithmétiques et commensurateur d’après G.

A. Margulis (1994).

Chapter 10, by Christian Blanchet, is titled Heisenberg homology of surface configurations

via ribbon graphs. In this chapter, the author reviews the Heisenberg homology of the config-
uration space of unordered points on an oriented surface with boundary. This is a homology
with local coefficients that arises from a representation of the Heisenberg group. In the case of
a surface with one boundary component, the topic was introduced and studied in a previous
joint paper by Blanchet, Martin Palmer and Awais Shaukat (Heisenberg homology on surface

configurations, 2021). One interesting feature of this homology is that it carries a twisted
action of the mapping class group of the surface.

After a review of the theory of Heisenberg homology for a surface with one boundary com-
ponent, Blanchet extends it to oriented compact surfaces with an arbitrary positive number
of boundary components. He then considers the surface associated with a ribbon graph and
shows that its Heisenberg homology can be extracted from this graph, and more generally
from what he calls a relative ribbon graph. Tête-à-tête twists appear in this theory. These are
mapping class group elements that generalize Dehn twists; they are associated with graphs in-
stead of simple closed curves. These objects were introduced by A’Campo as a combinatorial
tool for describing surface mapping classes of surfaces with boundary arising as monodromies
of curve singularities.

Chapter 11, by Hiroshige Shiga, is titled Quasicircles and Dirichlet finite harmonic func-

tions on Riemann surfaces. Here, a quasidisc is the image of the unit disc in the complex
plane by a quasiconformal self-mapping of this plane. A quasicircle is the image of the unit
circle by such a quasiconformal self-mapping. Quasicircles and quasidiscs admit several char-
acterizations. In particular, there is a classical characterization of quasidiscs involving the
existence of a double inequality on Dirichlet finite harmonic functions on a Jordan domain.
The author in Chapter 11 is interested in the extendability of such a characterization to qua-
sicircles on general Riemann surfaces, of finite or infinite type. In this setting, a simple closed
curve on a Riemann surface is called a quasicircle if one can find an annular neighborhood
of this curve and a conformal mapping from this annulus to the complex plane such that the
image of the curve by the mapping is a quasicircle in the complex plane. The author notes
that his work is motivated by a paper by Schippers and Staubach, Transmission of harmonic
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functions through quasicircles on compact Riemann surfaces (2020). The theory developed
in Chapter 11 works for general open Riemann surfaces including surfaces of infinite type.

Chapter 12 by Tadashi Ashikaga and Yukio Matsumoto, titled Universal degeneration of

Riemann surfaces and fibered complex surfaces, is concerned with the complex structure of
the Teichmüller space of a surface. The authors start by recalling a canonical construction
by Kodaira of elliptic surfaces with given monodromies and J-invariants (K. Kodaira, On

compact analytic surfaces II, 1963). Their aim is to generalize this construction to the case
of fibered complex surfaces of genus ≥ 2. In doing so, they introduce a new orbifold fiber
space, obtained by patching Kuranishi families of stable curves, which has the property
that any fibered complex surface can be pulled back from this fibering by a certain orbifold
moduli map which they construct. Because of this universal property, the authors call the
orbifold fibration they obtain the universal degenerating family of Riemann surfaces. Their
construction is inspired by a description given by Arbarello and Cornalba in their book
Geometry of Algebraic Curves (2011) of a bordification of Teichmüller space using real blow-
ups and methods of the so-called log geometry developed by Kato–Nakayama and Usui.

The work in Chapter 12 is based on previous work by Matsumoto in which he constructed
a new orbifold structure over the Deligne–Mumford compactification of the moduli space of
Riemann surfaces, using a certain bordification of Teichmüller space (The Deligne-Mumford

compactification and crystallographic groups, 2020).

The next two chapters are concerned with 3-manifolds.

Chapter 13, by Ken’ichi Ohshika, is titled Surface bundles in 3-dimensional topology. Sur-
face bundles over the circle play a very important role in 3-dimensional geometry and topol-
ogy. As Ohshika recalls, such manifolds already appear in the work of Poincaré who, in
his 1895 Analysis situs, studied torus bundles over the circle. By the middle of the 1970s,
Robert Riley and Troels Jørgensen gave examples (considered as the first examples) of hy-
perbolic surface bundles over the circle. Soon later, Thurston showed that in a precise sense
most of surface bundles over the circle admit such structures; for instance, mapping tori of
pseudo-Anosov homeomorphisms are all hyperbolic. By the end of the 1970s, Thurston made
the important conjecture that any closed hyperbolic 3-manifold has a finite-sheeted cover-
ing which is fibered over the circle. This conjecture, which became known as the “virtually
fibered conjecture”, was proved in several steps over a period of a few decades. The final step,
which settled the case of all closed hyperbolic 3-manifolds, was achieved by Ian Agol in 2012.
An excellent survey of Thurston’s work on hyperbolic manifolds fibered over the circle, until
1980, is Sullivan’s Bourbaki seminar, Travaux de Thurston sur les groupes quasi-fuchsiens et

les variétés hyperboliques de dimension 3 fibrées sur S1 (1980).
In Chapter 13, Ohshika gives an overview, with sketches of proofs, of the development of

the theory of 3-dimensional surface bundles, starting from Poincaré’s work, passing through
Stalling’s theorem on fibrations over the circle, Thurston’s classification of surface mapping
classes and their action on Teichmüller space, his double limit theorem, and the existence of
hyperbolic structures on mapping tori with pseudo-Anosov monodromy. The chapter ends
with an exposition of recent results on volumes of hyperbolic surface bundles. A substantial
part of this survey is dedicated to the important work of Thurston.

Chapter 14, by Charalampos Charitos, is titled The complex of incompressible surfaces

of a handlebody. In this chapter, the author associates with a 3-dimensional handlebody of
genus ≥ 2 a simplicial complex called its complex of incompressible surfaces. As the name
suggests, the vertices of this complex are the isotopy classes of incompressible surfaces in the
handlebody, and for every k ≥ 0, k + 1 vertices form a k-simplex if they can be represented
by a collection of disjoint incompressible surfaces. Charitos proves that for g ≥ 3, any
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automorphism of this complex is induced by a homeomorphism of the handlebody. This
rigidity result follows several rigidity results of the same kind for surfaces and their mapping
class groups, obtained starting in the 1980s. Typically, in the surface case, one studies
simplicial complexes whose k-faces are homotopy classes of k + 1 homotopically non-trivial
and pairwise non-homotopic disjoint simple closed curves on which some property may be
imposed (to separate the surface into two connected components, etc.). After several works
on surfaces, with simplicial complexes built using such collections of simple closed curves,
several complexes appeared in the realm of 3-manifolds, including the complex of essential
discs (which, in the case where the 3-manifold is a handlebody, coincides with the complex of
meridians), introduced by McCullough (Virtually geometrically finite mapping class groups

of 3-manifolds, 1991). A rigidity result for this complex was obtained by Korkmaz and
Schleimer (Automorphisms of the disk complex, 2009). Other rigidity results for complexes
associated with surfaces in 3-manifolds were obtained by Charitos–Papadoperakis–Tsapogas
(A complex of incompressible surfaces for handlebodies and the mapping class group, 2012
and On the complex of separating meridians in handlebodies, 2022). The work in Chapter 14
is a sequel to these works.

Chapter 15, by Krishnendu Gongopadhyay, Tejbir Lohan and Chandan Maity, is titled
Reversibility and real adjoint orbits of linear maps. The authors extend classical results on
the classification of the elements of the general linear groups over R and C that are reversible
(that is, conjugate to their inverse) to the case of the group GL(n,H). They also provide a
new proof of the known classification results for the groups GL(n,R) and GL(n,C). At the
same time, they give a classification of the real adjoint orbits in the Lie algebras gl(n,R) and
gl(n,C).

The next four chapters are on knot theory, and the first two of them are concerned with
Seifert surfaces, that is, surfaces embedded in the sphere whose boundary is the given knot
(or link).

The first of them, Chapter 16, by Mikami Hirasawa, Ryota Hiura and Makoto Sakuma, is
titled Invariant Seifert surfaces for strongly invertible knots. The setting is that of strongly
invertible knots, that is, smooth knots in the 3-sphere for which there exists a smooth invo-
lution of this sphere which preserves the knot and fixes a simple loop intersecting it in two
points. A related and older notion is that of (cyclically) periodic knot with period n, that is,
a knot in the 3-sphere for which there exists a periodic diffeomorphism of period n of the am-
bient sphere which leaves the knot invariant and fixes a simple loop in its complement. The
importance of periodic knots was realized in the 1960s–1980s, in works of Trotter and Mura-
sugi, then Edmonds and Livingston. Edmonds and Livingston proved that every periodic
knot admits an invariant incompressible Seifert surface. In the present chapter, Hirasawa,
Hiura and Sakuma study the general question of existence of invariant Seifert surfaces for
strongly invertible knots. They prove that for such a knot, the gap between the equivariant
genus, that is, the minimum of the genera of invariant Seifert surfaces, and the (usual) genus
may be arbitrarily large. This result is in sharp contrast with a result of Edmonds, obtained
in 1984, stating that every periodic knot admits an invariant incompressible minimal genus
Seifert surface. Edmonds used this result in his proof of Fox’s conjecture stating that any
nontrivial knot has only finitely many periods. Hirasawa, Hiura and Sakuma, in Chapter
16, obtain variants of Edmonds’ theorem which are useful in the study of invariant Seifert
surfaces for strongly invertible knots. On the same occasion, they report on the relations
between their work and a construction of fibered links in the 3-sphere using divides, that
is, immersions of 1-manifolds in the disc, discovered by A’Campo in his study of isolated
singularities of complex hypersurfaces and which has been a source of inspiration for their
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work (cf. A’Campo’s Generic immersions of curves, knots, monodromy and Gordian number,
1998).

Chapter 17, by Sebastian Baader, Pierre Dehornoy and Livio Liechti, titled Minor theory

for quasipositive surfaces, is concerned again with Seifert surfaces in link complements. Given
a pair of Seifert surfaces Σ1 and Σ2 for a knot in R

3, Σ1 is said to be a minor of Σ2 if Σ1 is
isotopic to an incompressible subsurface Σ′

1 of Σ2, that is, Σ
′
1 is contained in Σ2 such that the

complement Σ2 \ Σ
′
1 has no disc component. The authors in Chapter 17 note that the word

“minor” originates in graph theory, where a minor refers to a graph obtained from a finite
graph by a finite number of operations of vertex and edge deletions and edge contractions.
Baader, Dehornoy and Liechti, in Chapter 17, study the order relation on Seifert surfaces
induced by the property of incompressible inclusion. They consider quasipositive surfaces,
that is, Seifert surfaces associated with quasipositive links. Such surfaces originate in the
study of complex plane curves, and they are also used in contact geometry. A quasipositive
link is the braid closure of a quasipositive braid, that is, a product of conjugates of the
standard generators of the Artin braid group. Quasipositivity is related to the fact that the
braid closure admits a canonical Seifert surface of minimal genus. The authors in Chapter
17 show that the set of quasipositive surfaces is closed under the relation of incompressible
inclusion. They also prove that the order induced by incompressible inclusion on fiber surfaces
of positive braid links containing a fixed root of a full twist is a well-quasi-order, that is, it
has the property that every infinite family contains two comparable elements.

Chapter 18 by Rinat Kashaev, titled The Alexander polynomial as a universal invariant, is
concerned with universal quantum knot invariants. These constitute an algebraic tool that is
used for encoding in a representation-independent way the multitude of quantum invariants
associated with a given Hopf algebra. Kashaev addresses the question of identifying the
universal invariant of long knots in one of the simplest cases of non-trivial Hopf algebras,
namely, the case of the commutative complex algebra B1 = C[a±1, b] with its structure of
complex Hopf algebra induced from its interpretation as the algebra of regular functions on
the affine linear algebraic group of complex invertible upper triangular 2x2 matrices of the
form

(

a b
0 1

)

. He proves that the universal invariant of a long knot K associated with B1 is
the reciprocal of the canonically normalized Alexander polynomial ∆K(a). The main result
of this chapter is then a proof of a conjecture which Kashaev proposed in 2019, which gives
a new point of view on the Melvin–Morton–Rozansky conjecture saying that the Alexander–
Conway polynomial of a knot can be retrieved from the coefficients of the Jones polynomials
of its cables. This conjecture was settled by Bar-Nathan and Garoufalidis in 1996, and later,
in an analytic form, by Garoufalidis and Lê, in 2011. It has applications to the so-called
Generalized volume conjecture, an important conjecture formulated by Kashaev in 1997 and
by Hitoshi and Jun Murakami in 2001, connecting two different approaches to knot theory,
namely Topological Quantum Field Theory and hyperbolic geometry.

Chapter 19, by Eva Bayer, is concerned with high-dimensional knots. It is titled Alexander

polynomials and signatures of some high-dimensional knots. The general question addressed
in this chapter is to find the possibilities for an integer to be the signature of a knot with
a given Alexander polynomial. This question was already answered by the same author for
classical knots, that is, 1-dimensional knots in the 3-sphere. In this chapter, she studies the
same question for high-dimensional knots, and more especially, for m-dimensional knots Km

in the sphere Sm+2 with m ≡ −1 (mod 4). The case m = 3 (that is, 3-dimensional knots in
the 5-sphere) requires a special discussion.

Now we pass to dimension four.
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Chapter 20, by Anna Beliakova and Marco de Renzi, is titled Refined Bobtcheva–Messia in-

variants of 4-dimensional 2-handlebodies. The authors develop, in the setting of 4-manifolds,
an analogue of the theory of quantum invariants of 3-manifolds. More precisely, they deal
with 4-dimensional smooth 2-handlebodies, that is, smooth 4-manifolds with boundary ob-
tained from the 4-ball by attaching finitely many 1-handles and 2-handles. They consider
these 4-manifolds up to a certain equivalence relation called 2-deformation, or 2-equivalence.
They define invariants of pairs (W,ω) where W is such a 4-manifold and ω a relative co-
homology class in H2(W,∂W ;G) and where G is some abelian group. The algebraic input
required for this construction is a unimodular ribbon Hopf G-coalgebra. The authors discuss
in detail these invariants for the restricted quantum group U = Uqsl2 at a root of unity q of
even order 2p, which is a unimodular Hopf Z/2Z-coalgebra which contains the small quan-

tum group Ū as its degree zero part, and for its braided ribbon extension Ũ = Ũqsl2, which
fits in this setting where G = Z/2Z. They deduce formulae that generalize a well-known
decomposition of the Witten–Reshetikhin–Turaev invariants in terms of spin structures and
cohomology classes. The expression “Bobtcheva–Messia invariants” in the title of Chapter
20 refers to an invariant of 4-thickenings of 2-dimensional CW Complexes that was intro-
duced by I. Bobtcheva and M. Messia in their article HKR-Type invariants of 4-thickenings

of 2-dimensional CW Complexes (2003). The authors work with an extended version of this
invariant.

The next two chapters constitute an excursion in the world of differential topology.

Chapter 21, by François Laundenbach, is titled Conic singularities and immediate transver-

sality. The author starts by recalling the notion of submanifold with C1 conic singularities.
Such an object appears in the closure of invariant submanifolds of Morse gradients (that
is, gradients of Morse functions) under some assumptions on the simplicity of this gradient.
He proves a result concerning immediate transversality by flow, a notion which has other
potential applications and which he introduced in a recent work on A∞-structures on Morse
complexes (H. Abbaspour and F. Laudenbach, Morse complexes and multiplicative structures,
to appear). Here, given a smooth manifold M with two smooth submanifolds S and Σ, an
ambient isotopy φt on M is said to be of immediate transversality of S with respect to Σ if
φt(S) is transverse to Σ for every small enough positive real t. The important case studied
in the paper quoted is when S = Σ. In Chapter 21, this theory is extended, and the author
shows that the notion of immediate transversality is useful in the setting of arbitrary compact
submanifolds with C1 conic singularities and not only in that of Morse theory. The details
are, for the Laudenbach, an opportunity for reviewing several elements of singularity theory.
References to the work of Thom arise naturally in this discussion.

Chapter 22, by Yakov Eliashberg and Dichant Pancholi, titled Honda–Huang work on con-

tact convexity revisited, is based on some recent important work by Ko Honda and Yang
Huang on contact convexity in high dimensions. In this setting, a hypersurface in a contact
manifold is said to be convex if it admits a transverse contact vector field. In their article
titled Convex hypersurfaces in contact topology (2019), Honda and Huang, generalizing work
of Emmanuel Giroux in dimension three, proved that in any manifold with a co-oriented con-
tact structure, an arbitrary co-oriented hypersurface can be C0-approximated by an isotopic
convex surface. In Chapter 22, Eliashberg and Pancholi provide a shorter and more accessible
proof of this result, clarifying the original proof at some delicate points.

The terms Milnor fiber, Milnor fibration, etc. refer to a device, introduced by Milnor
in the 1960s, in the study of the germ of a complex analytic function f at a critical point
x whose image (the critical value) is assumed to be 0, by examining nearby fibers, after
normalizing the map f by dividing it by |f |. The geometry of such a nearby fiber turns out
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to be a valuable information on the singularity at x. The Milnor fibration of a singularity of
a complex polynomial, and the study of the monodromy of this fibration, have been probably
the most useful tools for studying the structure of such a singularity. This construction has
several variants which depend on the setting, and it led to important developments in the
study of isolated hypersurface singularities and more generally in differential topology and
(complex) algebraic geometry. In the next seven chapters, the notion of Milnor fiber and
some other related notions play a key role. A’Campo’s contribution is visible in this setting.

The first one in this series of chapters, Chapter 23, is written by François Loeser and it is
titled Rambling around the Milnor fiber. The author’s goal in this chapter, as he puts it him-
self, is “to present the pervading influence of Norbert’s works on monodromy and the Milnor
fiber in current research, and their interplay with other topics like non-archimedean geometry,
finite fields or symplectic geometry.” The developments accounted for include the computa-
tion of the Lefschetz numbers of monodromies, based on two early works by A’Campo titled
Le nombre de Lefschetz d’une monodromie (1973) and La fonction zêta d’une monodromie

(1975). Loeser then discusses versions of the Milnor fiber in the setting of non-Archimedean
geometry, and the computation of the monodromy zeta functions for discriminants of finite
Coxeter groups. The connection with symplectic geometry stems from the fact that a Milnor
fiber is viewed as a symplectic manifold, with its boundary endowed with a contact structure.

In Chapter 24, titled Singular fibrations over surfaces, Louis Funar studies smooth maps
from compact connected oriented 4-manifold onto compact oriented surfaces with finitely
many critical points. Such a map is said to be a singular fibration if all its critical points are
regular and its singularities cone-like. Funar presents several constructions of singular fibra-
tions, including ones with a unique singularity, and the so-called achiral singular fibrations
of the 4-sphere over the 2-sphere, originating in work of Yukio Matsumoto. He establishes
classification results for singular fibrations which are similar to those known for achiral Lef-
schetz fibrations. He shows that relatively minimal singular fibrations are determined by their
monodromies. The work presented in this chapter owes a lot to A’Campo’s study of isolated
singularities of planar curves and his construction of fibered links from divides. At the same
time, Funar outlines works of Hirzebruch and Hopf on 2-plane fields with finitely many singu-
larities, making connections between these works and those of Neumann and Rudolph on the
Hopf invariant. He uses these results to prove that a closed orientable 4-manifold with large
first Betti number and vanishing second Betti number does not admit any singular fibration.
He discusses several open problems, and in particular the question of whether any smooth
closed simply connected oriented 4-manifold is the total space of a singular fibration over
some surface.

Chapter 25 by Masahaku Ishikawa, Yuya Koda and Hironobu Naoe, titled Presentation

of the fundamental groups of complements of shadows, is a continuation of work started by
A’Campo on the relation between divides, the links they generate, and the associated shad-
owed polyhedra. Here, a shadowed polyhedron is a polyhedron with some extra structure
encoded by half integers assigned to some regions called gleams. The polyhedron is embed-
ded in a compact, oriented, smooth 4-manifold as a spine of that manifold. A shadowed
polyhedron represents its ambient manifold in some precise sense. The notion of shadow was
introduced by Turaev, and has played an essential role in 3- and 4-dimensional topology, and
it is also intimately related to the theory of singularities of maps from 3- and 4-dimensional
manifolds to surfaces developed by A’Campo. The relation between A’Campo’s divides and
Turaev’s shadows was already highlighted in a 2020 paper by Ishikawa and Naoe, titled
A’Campo’s divide and Turaev’s shadow.
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In Chapter 25, Ishikawa, Koda and Naoe consider more particularly contractible shadows
obtained from the unit disk by attaching annuli along some closed curves generically immersed
in this disk. In this context, the underlying 4-manifold is the 4-ball. Milnor fibers of plane
curve singularities can be represented in this way. In fact, the union of a Milnor fiber of
a plane curve singularity and the disks bounded by its vanishing cycles is a polyhedron
embedded in the so-called Milnor ball, a small 4-ball in C

2 centered at the singular point. In
this case, the polyhedron becomes the union of the unit disk with a finite number of annuli
attached to it along some curves immersed in that disc. The resulting polyhedron is simple
and contractible. The main result in Chapter 25 is a presentation of the fundamental group
of the complement of a sub-polyhedron of a shadowed polyhedron in its ambient 4-manifold,
in the case where the shadow consists of the unit disk and of annuli attached to it along
immersed curves, so that the polyhedron is simple and contractible. The authors apply this
theory to polyhedra of fibrations of divides, and in particular to polyhedra of Milnor fibrations
and to complexified real line arrangements.

Chapter 26, by Sabir Gusein-Zade, is titled A’Campo type equations and integrals with

respect to the Euler characteristic. In 1975, A’Campo established equations for the Euler
characteristic of the Milnor fiber of a germ of a holomorphic function and for its monodromy
zeta function at a singular point, in terms of a resolution. (This is A’Campo’s paper La

fonction zêta d’une monodromie.) Equations of this kind are called A’Campo type equations,
and they constitute a predecessor of Viro’s notion of integral with respect to Euler charac-
teristic, which Viro introduced in 1988. In Chapter 26, Gusein-Zade shows that A’Campo
type equations arise from some integrals with respect to the Euler characteristic over infinite-
dimensional spaces such as projectivizations of spaces of function germs and spaces of divisors
on a singularity. He also shows that in some cases the values of these integrals coincide with
the zeta functions of certain monodromy operators. The results obtained in this chapter
are instances of situations where analytic invariants (the integrals with respect to the Euler
characteristics) coincide with topological ones (zeta functions of monodromies or Alexander
polynomials). This chapter is also the occasion of presenting some beautiful mathematics
discovered by Norbert.

Chapter 27, by Mutsuo Oka, is titled Almost non-degenerate functions and a Zariski pair of

links. In this chapter, the author gives a generalization of a formula due to Varchenko for the
zeta function of the Milnor fibration of a Newton non-degenerate function. This generalization
concerns germs of analytic functions that have some Newton degenerate faces. This work uses
in an essential way A’Campo’s 1975 paper, La fonction zêta d’une monodromie, in which the
latter gave a formula for the zeta function of the Milnor monodromy of the germ of an analytic
function of n complex variables at a singular point, given a local resolution of the singularity.
This paper is probably the most quoted work by A’Campo. As an application, Oka obtains
an example of a pair of hypersurfaces with the same Newton boundary and the same zeta
function but with different tangent cones.

Walter Neumann and Nathalie Wahl, in a paper published in 2002 and titled Universal

abelian covers of surface singularities, introduced the class of splice type surface singularities,
a class which contains all known examples of integral homology spheres that appear as links
of isolated complete intersections of dimension two. Such singularities are determined, up
to equisingularity, by decorated trees called splice diagrams. The Milnor fiber conjecture,
formulated by the same authors in 2005, says that any choice of an internal edge of a splice
diagram determines a special kind of decomposition into pieces of the Milnor fibers of the
associated singularities.
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In Chapter 28, titled The Milnor fiber conjecture of Neumann and Wahl and an overview

of its proof, Maria Angelica Cueto, Patrick Popescu-Pampu and Dmitry Stepanov provide an
overview of the conjecture mentioned in the title together with a detailed outline of a proof
they obtained of it. The proof uses techniques from toric, tropical and log geometry in the
sense of Fontaine and Illusie. The latter geometry is reviewed in detail in this chapter. A
central ingredient is the operation of rounding a complex logarithmic space, introduced in
1999 by Kato and Nakayama. This is a functorial generalization of an operation introduced
by A’Campo in 1975, in his study of Milnor fibrations, called real oriented blowup. In the
same chapter, Cueto, Popescu-Pampu and Stepanov show that A’Campo’s operation gives
canonical representatives of the Milnor fibration over the circle of a smoothing, provided an
embedded resolution of this smoothing is given. The outline of the proof of the Milnor fiber
conjecture is presented in 8 steps in the introduction to Chapter 28 and in 28 steps in the
last section of the same chapter. The detailed proof is announced to appear in one or several
papers.

Chapter 29, by Vladimir Fock, is titled Singularities and clusters. A correspondence
between singularities and cluster varieties was observed recently by Sergey Fomin, Pavlo
Pilyavsky, Dylan Thurston, and Eugenii Shustin in their paper titled Morsifications and

mutations (2022). This correspondence is based on certain real forms of deformations of
singularities introduced by A’Campo in his paper Le groupe de monodromie du déploiement

des singularités isolées de courbes planes (1975) and by Gusein-Zade in his paper Dynkin di-

agrams of the singularities of functions of two variables (1974). Fomin, Pilyavsky, Thurston,
and Shustin showed that different resolutions of the same singularity give the same clus-
ter variety. In Chapter 29, Fock describes a geometric relation between simple plane curve
singularities, classified by simply laced Cartan matrices, and cluster varieties of finite type,
classified by the same matrices. He constructs certain varieties of configurations of flags from
Dynkin diagrams and from singularities, and he shows that they coincide if the Dynkin dia-
gram corresponds to the singularity. In particular, the author describes a map from the base
of a versal deformation of a singularity to the corresponding cluster variety. The result of this
chapter makes Fomin, Pilyavsky, Thurston, and Shustin’s correspondence more geometrical
and less mysterious.

Chapter 30, by Ismail Özkaracha and Muhammed Uludag, is concerned with dynamics and
measure theory. It is titled Deformations of Lebesgue’s measure on the boundary of the Farey

tree. Based on joint work between the second author and Hakan Ayral, the authors study
deformations of the Lebesgue measure on the interval (0, 1). The latter is seen as a measure
on the boundary of the Farey tree realized in the usual way in the hyperbolic plane: the
vertices of this tree are arranged using an operation on the rationals in (0, 1) where the tree-
structure is a result of using an “addition” which assigns to two irreducible rational fractions
a fraction whose numerator is the sum of the numerators and whose denominator is the sum
of the denominators. The measures obtained on the boundary of the Farey tree appear then
as deformations of the Lebesgue measure using two involutions which the authors call K
and h. . The authors prove that these new measures are singular with respect to Lebesgue’s
measure and they compute special values of their cumulative distribution functions. It turns
out that these measures possess a subtle symmetry involving an outer automorphism of the
group PGL(2,Z), which was introduced by Joan Dyer in the late 1970s and which induces an
involution of the real line that preserves the set of quadratic irrationals, permuting them in a
non-trivial way and commuting with the Galois action on them. Dyer’s outer automorphism
conjugates the Gauss continued fraction map to the so-called Fibonacci map and it has
other interesting features. The properties that Özkaracha and Uludag obtain, together with
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experimental data they provide, show that these measures constructed on the boundary of
the Farey tree have an arithmetic significance.

The next three chapters are on algebraic geometry, with relations with mathematical
physics.

Chapter 31, by Noémie Combe, Yuri Manin and Matilde Marcolli, is titled Birational maps

and Nori motives. The theory of Nori motives, introduced by Modhav Nori, is an approach
to the theory of mixed motives. The latter is a conjectural abelian tensor category (whose
existence was conjectured by Beilinson) taking values on all varieties, which is related to
several conjectures in algebraic geometry. Nori’s original writings in this domain consist of a
set of unpublished notes of lectures given at Bombay’s TIFR and at the University of Chicago.
The theory has been later developed from different points of view by several authors including
Huber, Ayoub, Kontsevich, Connes, Marcolli, Manin, Levine and others. Nori motives appear
in various domains of algebraic geometry, in particular in geometries in characteristic 1, in the
theory of persistence formalism, in the study of the absolute Galois group, and in the context
of Kontsevich’s conjectures on the Grothendieck–Teichmüller group introduced by Drinfeld
and Ihara (cf. Kontsevich’s Operads and motives in deformation quantization, 1999). In
the recent monograph Periods and Nori motives by A. Huber and S. Müller-Stach (2017),
this theory was developed systematically and studied as a universal (co)homology theory of
algebraic varieties or schemes in the sense of Grothendieck. In Chapter 31, Combe, Manin and
Marcolli present a sketch of an approach to the problems of equivariant birational geometry
developed by Kontsevich and Tschinkel, in which the Burnside invariants were introduced,
making explicit the role of the Nori constructions in the latter setting.

Chapter 32, by Alexander Varchenko, is titled Dwork-type congruences and p-adic KZ

connection. The Knizhnik–Zamolodchikov (KZ) equations are differential equations that
appear in conformal field theory, representation theory and enumerative geometry. In a
previous work (Arrangements of hyperplanes and Lie algebra homology, 1991), Varchenko,
together with V. Schechtman, showed that the solutions of the KZ equations take the form of
multidimensional hypergeometric functions. In this chapter, Varchenko discusses analogues
of hypergeometric solutions of these equations in a setting where a p-adic field replaces that
of the complex numbers. In doing so, he develops new matrix Dwork-type congruences for
Hasse–Witt matrices of KZ equations.

Chapter 33, by Toshitake Kohno, is titled Temperley–Lieb–Jones category and the space of

conformal blocks. In this chapter, Kohno starts by reviewing the relationship between homo-
logical representations of the braid groups, that is, the action of these groups on the homology
of abelian coverings of certain configuration spaces, and the monodromy representations of
the KZ connection. This leads to a topological method for computing the monodromy of the
space of conformal blocks. Using this method, the author shows that there is an isomorphism
between the space of conformal blocks and the space of morphisms of the Temperley–Lieb–
Jones category which is equivariant under the action of the braid group. As a result, he
recovers the unitarity of the braid group action on the space of conformal blocks by means
of the positivity of the Markov trace.

Chapter 34, which I wrote with Sumio Yamada, is titled On the timelike Hilbert geometry of

a simplicial simplex. Timelike geometry is a metric geometry developed by Herbert Busemann
in his paper Timelike spaces (1967). The theory of timelike spaces is a generalization of
Riemannian geometry in which the quadratic form defining the metric infinitesimally is not
required to be positive definite. Busemann introduced this theory as a metric setting for
general relativity. In the axioms of timelike spaces, one starts with a topological space



INTRODUCTION 13

equipped with two basic objects: a distance function, which plays the role of the indefinite
metric, and a partial order relation <. This order relation corresponds to the causality
property of the space-time of relativity theory. (One thinks of the relation x < y as meaning
that y is in the future of x.) In a timelike space, the distance between a point and a second
one is defined only in the case where the second point is in the future of the first one.
Triples of points x, y, z such that x < y and y < z satisfy the reverse triangle inequality
(called time inequality): d(x, z) ≥ d(x, y) + d(y, z). The motivation comes again from the
theory of relativity, where triples of point satisfying the causality relation are subject to the
reverse triangle inequality. Busemann’s theory of timelike spaces is parallel to the one called
“chronogeometry”, which was developed at about the same time by A. D. Alexandrov in
Russia.

From the purely mathematical viewpoint, it is natural to ask what are the analogues
in timelike geometry of the usual notions, properties and results that are known in classical
metric geometry. For instance, we know that there are timelike analogues of the classical Funk
and Hilbert geometries associated with convex subsets of n-dimensional Euclidean space, of
the n-sphere, and of the hyperbolic n-space. As a matter of fact, in the timelike setting, one
rather talks about “exterior” Funk and Hilbert geometries, rather than Funk and Hilbert
geometries. We have expanded these theories, Yamada and me, in the paper Timelike Hilbert

and Funk geometries (2019). Several natural questions arise in the timelike setting, and
among them the existence of analogues of the rigidity results that hold for the classical Funk
and Hilbert geometries. For instance, a well-known result (due to Busemann) says that in
the classical Hilbert geometry, a convex set equipped with a Hilbert metric is isometric to
a finite-dimensional vector space if and only if the underlying convex set is a simplex. In
Chapter 34, we study an analogous question in the timelike spherical Hilbert setting, that is,
we study the exterior Hilbert geometry of the union of two disjoint antipodal simplices on
the sphere. This question of characterizing the exterior Hilbert geometry of the union of two
disjoint antipodal spherical simplices arose naturally after we noticed (again with Yamada,
in the paper mentioned above) that the exterior Hilbert geometry of a union of two disjoint
antipodal geometric discs in the sphere is the familiar de Sitter geometry.

The last three chapters of this volume are concerned with philosophy of mathematics.
Topics like those that are covered in these three chapters, that constitute the culmination of
the book, reflect an important aspect of the discussions I have regularly with Norbert.

Chapter 35 by Victor Pambuccian, is titled The single intuition of a move of time. The
author discusses Brouwer’s claim that mathematics, in its development, needs only the basic
intuition of time. In particular, it does not need an intuition of space. More generally,
Brouwer stated that “the only a priori element in science is time.” This was against Kant’s
view on the “subjective constitution of our mind”, which is based on two forms of intuition,
time and space. Pambuccian explains that the arguments that Brouwer presents against
the validity of a spatial intuition playing a major role in the foundations of mathematics
stems from physics, in particular from the existence of spaces of constant curvature that are
different from Euclidean space. At the same time, the author examines the role played by
geometry in Brouwer’s philosophical work, and in particular in his intuitionistic approach to
mathematics.

Chapter 36, by Arkady Plotnitsky, is titled Continuity and discreteness, between mathe-

matics and physics. The subject is classical; indeed, the reader might know that the notions
of continuity and discreteness were thoroughly discussed by mathematicians, physicists and
philosophers in Greek antiquity, that is, long before the rise of modern topology and the
definitions that are given to these notions in terms of set theory. The author’s treatment
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of this subject is very fresh, and it sheds a new light on the fundamental problems of the
philosophy of science.

Plotnitsky, in this chapter, elaborates on the place of discreteness and continuity in mod-
ern mathematics and physics, especially in light of the advent of new theories like quantum
physics. This discussion is also the occasion for the author to reflect on the more general
question of the relation between mathematics and physics, and in particular on the limita-
tions of the mathematical representation of nature in modern physical theories like quantum
electrodynamics, quantum mechanics, relativity and quantum field theories. While he dis-
cusses the introduction of probability theory, of infinite-dimensional Hilbert spaces and of
non-commutative algebra in quantum mechanics and quantum field theories, he addresses
the more general question of the use of mathematical thinking and its limitations in the de-
scription of nature, stressing nevertheless the fact that mathematics and physics have always
been connected. In doing so, he develops a new point of view on the relationship between
reality and representation, both in mathematics and physics. In particular, he introduces
two philosophical notions, that of “reality without realism” and that of “ideality without
idealism”. The important philosophical questions of “what is reality” and “what is being”
are also addressed.

Part of the discussion is based on an analysis and an original interpretation of ideas of
prominent mathematicians and physicists who were also philosophers, including Riemann,
Poincaré, Einstein, Weyl, Grothendieck, Dirac, Schrödinger and others. At the same time,
the author comments on important passages from Riemann’s Habilitation lecture, On the

hypotheses that lie at the foundation of geometry, a piece of literature which, in Plotnitsky’s
words, revolutionised the mathematical foundations of spatiality and geometry. He empha-
sizes in particular the places where Riemann talks about the reality of space and about the
discrete vs. the continuous (and Plotnitsky points out the fact that the idea, emphasized
by Gothendieck, among others, that the continuous may serve as an approximation of the
discrete, rather than the other way around, originates in a remark by Riemann), actualiz-
ing these passages with comments by later authors, including Heisenberg, Grothendieck and
others. The notions of space, determinism, causality, and the infinitely small (which the
author prefers to call “immeasurably small”) are discussed. Plotnitsky also comments on
passages from Einstein’s work Physics and reality and on the philosophical debates between
Einstein and Bohr concerning the usage of mathematics (algebra, geometry, probability) in
the study of nature. Thom’s ideas on science which were against the stream, and in some
places revolutionary, are highlighted. Philosophical comments by Grothendieck, Cartier and
others involving the roles of the motivic Galois group in renormalization and QFT, of that
of the cosmic Galois group, and of the “symmetries with geometric origin” pointed out by
Connes and Marcolli, are also included in the debate. An interesting distinction is made
between Plato’s philosophy and mathematical Platonism, the latter being, according to the
author, a twentieth-century invention. The reader interested in such ideas may also want
to read Plotnitsky’s recent book Reality without realism: Matter, thought and technology in

quantum physics (Springer, 2021).

Chapter 37, by Stelios Negrepontis, is the last chapter of this book. It is titled Zeno’s

arguments and paradoxes are not against motion and multiplicity but for the separation of

true Beings from sensibles. I would like to linger a bit on this chapter.
Let me first recall who Zeno is.
Zeno of Elea (c. 490-430 BC) is a Presocratic Greek philosopher who is known through

accounts of Plato, Aristotle and their commentators, mainly Proclus and Simplicius. Accord-
ing to Diogenes Laërtius’ Lives of the eminent Philosophers, Aristotle considered that Zeno
was the inventor of dialectic, the art of asking questions and defending successively opposite
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theses with the aim of finding the truth. At the heart of his speculations are his theories
on the infinite, the unlimited and the infinitely divisible. According to Aristotle (from his
Metaphysics), Zeno was also interested in the nature of the line, whether it is a collection of
points or not—an important subject of discussion in Plato’s Academy.

Zeno is famous for his arguments and paradoxes which were reported on mainly by Plato
in the Parmenides and in other dialogues, by Aristotle in the Physics, and later by Simplicius
in his Commentaries on Aristotle’s Physics. One of these paradoxes, known under the name
Achilles and the Tortoise, involves Achilles, who was known to be a very fast runner, and a
tortoise he is chasing. The argument says that it is impossible for Achilles to overtake a turtle.
Indeed, while he is running to the point where the tortoise is at a certain moment, the tortoise
has continued to move forward, and so on, so that the tortoise will always be ahead of Achilles.
Another paradox involves the sound made by falling grains of millet. The problem originates
in that, when falling to the ground, the content of a bushel of grain produces noise, while
the fall of each individual grain produces no noise. This poses several problems at the same
time : Oneness/Multiplicity, Discreteness/Continuity, Motion/Stillness, Theory/Experience,
and there are others. Some paradoxes concern the numbering of infinities, and there are
also others. These paradoxes have fascinated scientists and common people for millennia.
According to Plato’s Parmenides, the paradoxes were meant to give support to Zeno’s teacher,
the great philosopher Parmenides (c. 520-400 BC), defending his basic philosophical thesis
saying that everything is a single unified and unchanging whole (“the way of truth”), and that
all apparent change and multiplicity is merely an illusion (“the way of opinion”). Parmenides’
theories reached us through (a very substantial) fragment of a poem he wrote, whose original
title is unknown and which is known by the name On Nature.

Modern commentators generally consider that Zeno’s arguments and paradoxes are meant
to show the impossibility of physical motion and multiplicity, in accordance with Parmenides’
theories.

As Plato describes in his dialogue Parmenides, Zeno’s “Basic Argument” entails the si-
multaneous presence of a variety of dyads of opposite properties, such as dissimilarity and
similarity, infinite and finite, many and one, great and small, motion and rest. A common
feature of modern interpretations is that Zeno meant these dyads of opposing properties to
be self-contradictory, so that no entity whatsoever can satisfy simultaneously these proper-
ties. This is what Negrepontis calls the “standard interpretation of Zeno’s Basic Argument”,
namely, that the compresence of these opposites properties is a formal contradiction, and this
contradiction shows the partless Oneness of the true Being.

In Chapter 37, Negrepontis offers a radically new interpretation of Zeno’s paradoxes. Based
on a new interpretation of ancient sources, including Plato, Aristotle, Eudemus, Proclus,
Simplicius and others, he explains that the coexistence of opposite properties is most definitely
not excluded, but on the contrary is specifically satisfied by Zeno’s true Being. In fact, this
coexistence of opposites in the true Being is precisely what makes it different from the sensible
entities. This analysis dismantles the standard interpretation of Zeno’s basic arguments. It
shows that Zeno means to help his teacher Parmenides, not by showing that physical change
and multiplicity are impossible, but that the sensible entities (the Parmenides way of opinion)
are different and inferior to the true Being (the Parmenides way of truth), because they are
characterized by change only without permanence, and by multiplicity only, without Oneness,
while a true Being is changeless as it changes, and is One as it is infinitely Many, in fact a
self-similar and not a partless One.

Negreponti’s interpretation of Zeno’s arguments and paradoxes is based (a) on his prior
interpretation of Plato’s intelligible Being, as the philosophical analogue of a dyad of lines
in periodic anthyphairesis, and (b) on several arguments showing the close connection of
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Plato’s intelligible Being with Zeno’s true Being, including the identification of both with
the so-called indivisible lines and the rejection of both by Aristotle in his work Physics, for
employing the (unacceptable to him) actual infinite. It turns out that Zeno’s paradoxes were
inspired by the fundamental Pythagorean mathematical discovery of incommensurability of
the diameter to the side of a square, and its proof, using the method of infinite anthyphairesis,
“finitized” by the conservation of application of areas/Gnomons. It also turns out that Plato’s
intelligible Being was greatly influenced by Zeno’s true Being, modified by Theaetetus’ further
fundamental discoveries on general quadratic incommensurabilities, including his change from
the conservation of application of areas to the Logos Criterion.

It may be useful to recall that Zeno, Plato, Aristotle, Eudemus, Proclus, Simplicius and
several other philosophers from ancient Greece were fully aware of the mathematics of their
epoch, discussing important mathematical problems in a language which is obviously different
from today’s language, but where the fundamental ideas are the same as ours. The reading
and commentary of the texts and fragments of Ancient Greece by someone of Negrepontis’
stature, at the same time mathematician and historian of Greek Mathematics—probably
the person who has contributed most to our understanding of the mathematics in Plato’s
writings—, is always a refreshing draught of air, both for mathematics and for the philosophy
of science.

The reader interested in these questions of philosophy of mathematics may also want to read
the chapter by Farmaki and Negrepontis, titled “The Paradoxical Nature of Mathematics”,
in the volume dedicated to V. Turaev, published in the same series (EMS Publishing house,
2021). The anthyphaeretic reasoning used by Plato in his philosophy is also discussed in the
chapter “Plato on Geometry and the Geometers” by Negrepontis in the book Geometry in

history which I co-edited with S. G. Dani (Springer, 2019).

Finishing this Introduction, I feel a bit nostalgic, as at a mathematics conference; it’s like
a family gathering that is terminating.

Strasbourg, February, 2023


