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Demixing fluorescence time traces
transmitted by multimode fibers

Caio Vaz Rimoli 1,2, Claudio Moretti 1, Fernando Soldevila1, Enora Brémont 2,
Cathie Ventalon 2,3 & Sylvain Gigan 1,3

Optical methods based on thin multimode fibers (MMFs) are promising tools
for measuring neuronal activity in deep brain regions of freely moving mice
thanks to their small diameter. However, current methods are limited: while
fiberphotometryprovidesonly ensemble activity, imaging techniques usingof
longmultimode fibers are very sensitive to bending and have not been applied
to unrestrained rodents yet. Here, we demonstrate the fundamentals of a new
approach using a short MMF coupled to a miniscope. In proof-of-principle
in vitro experiments, we disentangled spatio-temporal fluorescence signals
from multiple fluorescent sources transmitted by a thin (200 µm) and short
(8mm)MMF, using a general unconstrained non-negativematrix factorization
algorithm directly on the raw video data. Furthermore, we show that low-cost
open-source miniscopes have sufficient sensitivity to image the same fluor-
escence patterns seen in our proof-of-principle experiment, suggesting a new
avenue for novelminimally invasive deep brain studies usingmultimode fibers
in freely behaving mice.

Fluorescence-based techniques are providing researchers with differ-
ent ways to collect functional readouts from neuronal activity in the
brain1–10. However, measuring neuronal activity at depths greater than
1mm is still challenging mainly due to issues resulting from light
scattering, especially in prominent paradigms such as freely behaving
animals11–15. To address this problem, neuronal microendoscopy
methods have emerged as complementary alternatives to linear and
nonlinear fluorescence microscopy techniques for studying neuronal
activity in deep brain regions using genetically encoded calcium indi-
cators (GECI)14–17. Among these methods, conventional microendo-
scopic methods that use a single gradient index (GRIN) lens optics17–20,
as well as fiber photometry recordings using multimode fiber
(MMF)16,21–24, havebeen successfullyused toobtain functionalneuronal
activity signals in deep brain regions in freely behaving mice16,23–25.
Nonetheless, direct imaging techniques and fiber photometry
approaches bring peculiar tradeoffs in terms of spatial and temporal
discerning capabilities11,14,26,27. On one hand, albeit GRIN lens micro-
endoscopy retrieves calcium transients with cellular resolution, it

demands a somewhat invasive surgical procedure to implant the GRIN
lens into the mouse brain. Commercial GRIN lenses are relatively thick
(≥500 µm), andoftentimes they necessitate the removal of a significant
amount of brain tissue to effectively conduct the experiment13,27. On
the other hand, the useof thinmultimodefibers (<500 µmdiameter) in
photometric recordings, as well as in optogenetics experiments, has a
significantly less invasive surgical procedure, which does not require
anybrain tissue removal, but only a careful penetrationof the thinfiber
through the mouse brain6,16,26. It is known that the implantation of
multiple multimode fibers (up to a maximum of 48 fibers28) to opto-
genetically control and/or photometrically probe different regions in
freely-behaving mouse brains is already a reality in neuroscience
labs27–29. However, the light wavefront propagating inside multimode
fiber gets spatio-temporally scrambled due to multimodal mixing
(internal scattering)30–32. Generally, that is not a limitation for deliver-
ing light (optogenetics) to an ensemble of neurons in a given depth
(unless one wants to probe specific neurons within the fiber field of
view, FoV), but it poses a challenge for fiber photometry methods
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which limits the technique’s potential to resolve (demix) time traces
from individual neurons. Consequently, fiber photometry time traces
coming fromawhole population of neurons transmitted throughMMF
are ensemble integrated during detection, and therefore, fast single-
pixel detectors are frequently chosen to optimize the detection
speed and sensitivity16,27. While the use of fast scientific Com-
plementary Metal-Oxide-Semiconductor (sCMOS) cameras to simul-
taneously probe multiple fiber photometric signals has been
demonstrated27,29,33–36, the mixing between all the spatial patterns
transmitted by each MMF prevented the individual retrieval of each
neuron time trace27. Recently, researchers have developed novel
techniques that utilize the deterministic nature of themultimode fiber
transmission matrix (TM) to perform bioimaging31,32,37–48. These
approaches have enabled the acquisition of diffraction-limited images
of fluorescently labeled brain structures and neuronal activity, even in
deep brain regions of head-fixed mice, using a multimode fiber
microendoscope32,47,48. To achieve this, however, an extensive char-
acterization of MMFs transmission properties is necessary, ideally
taking into account TM changes whenever theMMF fiber is bending or
changing its transmission properties during an experiment, as well
discussed in previous research37,48,49. Consequently, while these tech-
niques provide a minimally invasive method to obtain diffraction-
limited resolution in deep brain regions, they are complex to imple-
ment and require a wavefront shaping device (e.g., spatial light mod-
ulator, SLM) to compensate for the fluorescence randomized
wavefronts through a lengthy calibration procedure. Moreover, the
calibration can be even more complex if the experiment is not per-
formed in head-fixed mice, but in freely behaving mice, such as those
in long-term social behavior studies32,37,47,48. Finally, the use of spatial
light modulators and complex distal optical devices poses an extra
challenge in future use in miniaturized wireless systems.

In this article, we propose a novel approach to performminimally
invasive fiber photometry experiments disentangling single-source
time traces transmitted by short and thin multimode fibers (≈200 µm
diameter and <10mm length). We take advantage of the short length
of the multimode fibers, which makes them naturally rigid (bending
resistant) and therefore suitable to be used in long-term freely-moving
mice neuroscience experiments. Ourmethod involves the demixing of
fluorescence spatiotemporal signals by applying a single post-
processing step on the recorded video data of 2D scattered fluores-
cence patterns transmitted by the fiber. By substituting the bucket
detector with a camera (i.e., a pixelated detector such as CMOS sen-
sor), we can profit from using the spatial information of the fluores-
cence patterns transmitted by the multimode fiber, enabling single-
source temporal activity resolution. Analysis of the recorded video is
performed employing a simple unconstrained Non-negative Matrix
Factorization (NMF) algorithm that separates each spatial scattering
pattern component with its corresponding temporal trace (singular
trace)49–52. With this approach, we show that it is possible to extract
single-source time traces in fiber photometry without the need to
perform any complicated calibration procedure. This work builds up
on previous work from some of the authors, which showed that it is
possible to spatiotemporally demix fluorescence scattering patterns
(speckles) transmitted through a highly scattering media (e.g., mouse
skull) by using a NMF algorithm51,52. This algorithm relies on the pre-
mise that the input data matrix only contains non-negative values, and
it has been used to decompose datasets into their representative parts
or components50–61. Here, we apply the same algorithm to the video
data from scattering patterns that are characteristic of the light
transmitted through short multimode fibers of the same length as the
ones implanted in fiber photometry27,62–64. It is well known that multi-
modefibers randomize thefluorescencewavefront propagatingwithin
it, acting as a scatteringmedia over the fiber length due tomultimodal
mixing. Nevertheless, the multimode fibers (<10mm) typically
implanted in living mice for chronic behavioral experiments are too

short to generate a fully evolved specklewavefront62,64. In fact, the light
wavefront that emerges from such short fibers displays a very peculiar
spatial distribution of light, which is structurally mixed, but not fully
spatially randomized/sparse62,63, and whose shape depends mostly on
the multimode fiber core geometry65. Here, we call these short MMF
patterns as scattering fingerprints.

In the present work, we design in vitro proof-of-principle experi-
ments and we show that a simple unconstrained NMF algorithm can
disentangle scattering fingerprints transmitted by short MMFs and
retrieve the corresponding time traces. We demonstrate that one may
now temporally resolve and count the number of sourceswith singular
time traces transmitted by short, minimally invasive MMFs. Thus, the
results of this paper consist of a proof of concept on how to obtain
individual time trace resolution in fiber photometrymethods. Starting
with a simple proof-of-principle experiment with only a few fluor-
escent beads located right below the fiber, we progressively validate
our approach towards more realistic conditions, such as demixing
fluorescence signal from tens of bead sources buried behind a scat-
tering media (plastic paraffin: ParafilmM®) including a component for
neuropil activity, and by selectively probing a few structurally Gad-
eGFP labeled neurons in a 50 µm fixed brain slice with literature-
available time traces to mimic neuronal activity. We also validate the
method when the signal from the mimicked neuropil is dominant
compared to the signal corresponding to the mimicked cell bodies
(somata). Finally, we propose a novel method for probing neuronal
microendoscopic signals by simply combining a miniscope and an
implantable short multimode fiber, which we call MiniDART (for Min-
iaturized Deep Activity Recording with high Throughput). For that, we
demonstrate that the inexpensive and commercially available open-
source miniscope (Open Ephys Miniscope-v4.4) has already enough
sensitivity and illumination power to detect the typical intricated
patterns of short MMFs.

Results
Proof-of-principle experiment using phantom samples made of
10 µm diameter fluorescent beads
Todemonstrate the validity of themethod, we implemented an optical
setup using a digital micromirror device (DMD), which was used to
generate different excitation ground truth (GT)51,52,66,67 activity traces
for each fluorescent source (10 µm diameter fluorescent beads ≈ neu-
ron soma size). Each source emits fluorescence that is collected and
transmitted by themultimodefiber (see Fig. 1 andmethods fordetails).
Upon propagating through the MMF, the fluorescence wavefront
undergoes scrambling, resulting in the emergence of fluorescence
patterns uponexiting thefiber (scatteringfingerprints). The controlled
excitation guarantees that each fluorescent source generates a fin-
gerprint pattern whose intensity transiently fluctuates accordingly
with the chosen GT time trace profile (see transient patterns in Fig. 1).
We designed GT time traces to be equivalent to optical recording
experiments of GECI time traces where calcium signals had F0 set to
zero. We then recorded a video of the transient patterns that emerge
from a short multimode fiber and applied NMF to the recorded raw
data without doing any pre-processing step. In other sets of experi-
ments later, we selected one or more sources available in the FoV to
mimic neuropil signal, by exciting them using a non-sparse GT signal
(see sections below).

In Fig. 2 we show the results retrieved by NMF and compared with
the ground truth. The results consist of individual spatial fingerprint
patterns (Fig. 2f) and, most importantly, their corresponding single-
activity time traces (Fig. 2g-i) that without NMF would be mixed.

As can be seen in Fig. 2b, the scattering patterns transmitted by
the shortMMFof 6fluorescent bead sources (Fig. 2d) have a significant
overlap in space when all of the sources are simultaneously excited
with the DMD (Fig. 2b). On the other hand, whenever a fluorescent
bead is excited individually, each detected spatial pattern has a very
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different spatial structure/morphology (see the GT scattering finger-
prints in Fig. 2e). After applying a simple unconstrained NMF on the
recorded video data, the demixed spatio-temporal result by NMF had
an overall good agreement with the GT. The ensemble superimposed
signal (photometry) was decomposed on its individual fingerprint-
trace components (Fig. 2g). Not only the NMF retrieved well each
singular temporal activity trace (Fig. 2g-i), but also the individual
spatial fingerprint patterns (Fig. 2e-f). Since we know the GT activity,
we sorted and assigned the source indexes in descending order of the
correlation between their time trace obtained by the NMF and the GT.
As we can see in Fig. 2h, the GT-NMF temporal correlation coefficient
values were high for all the first 5 beads, whichwere localized closer to
the central region of the fiber (Fig. 2d). More specifically, we obtained
an average value of <δg,n > = δavg = 85.4% with a standard deviation of
std = 3.6% (Fig. 2h). However, the NMF algorithm could not reliably
recover the time trace and fluorescence patterns corresponding to
bead#6due to lowSNR, probably because itwas localized too far from
the center, i.e. at the edge of the field of view (fiber core border, see
Fig. 2d), as suggested by the low intensity of GT scattering pattern
(Fig. 2e, index 6). In the analysis process, the input rank of NMF
determines the number of components the algorithm demixes the
spatio-temporal signal. When we choose an NMF’s rank value higher
than the real number of fluorescence sources, we obtain replicas of the
scattering fingerprints and the background (see Supplementary
Note 1), similar to what happened in a previous work56. Thus, counting

the maximum number of unique patterns demixed by NMF could be a
way to count the real number of sources probed by the fiber. A more
technical analysis of it can be found in the Supplementary Note 1 and
Figs. S2, S3, S4, S5.

NMF demixing of densely superimposed spatiotemporal signals
including neuropil dynamic background
Due to the fiber geometry, it is expected that symmetrically probed
sources should generate similar spatialfingerprint signals that could in
principle limit the capacity of NMF to disentangle fluorescence time
traces. Hence, we designed and performed an experiment to address a
more realistic video recording than before, such as on a new bead
sample with a higher spatial density of beads (see “Methods”); with a
fiber field of view where multiple fluorescence sources would have
similar radial distance (equidistant) from the center of fiber; withmore
complex time traces with several overlapping peaks; and by setting
one of the sources as a “noisy and dynamic background source” that
would yield a rapidly fluctuating non-sparse signal throughout the
experiment (e.g., mimicking a neuropil fluctuations). Interestingly, as
we can see on Fig. 3, the NMF algorithmwas able to successfully demix
around 22 fluorescence time traces out of 26 probed sources (see
Fig. 3g–i). Note that, all of the 4 poorly retrieved time traces were from
sources that were actually close to the fiber edge (c.f. beads 23, 24, and
25 in Fig. 3d) or even outside of the fiber FoV (c.f. bead 26 in Fig. 3d) as
expected.

Fig. 1 | Concept of single-source resolved fiber photometry (demixed fiber
photometry). From left to right: ground-truth excitation mimicking neuronal
activity is performed by using a DMD, which can selectively excite a set of fluor-
escent emitters on the sample with a given time trace, likewise in51,52. A short (8mm
long) multimode fiber typically implanted in optogenetics or fiber photometry
experiments (NA =0.39, 200 µm core diameter, step-index fiber) is placed almost
touching the sample (distance of ≈ 50 µm) to collect the fluorescence dynamics of
each source. Due to its proximity to the sample, the fiber’s effective FoV is expected
to be slightly larger than the core size. Fluorescence light inside the multimode
fiber is subject to multimodal mixing during propagation, which scrambles/mixes

the emitters’ wavefront similarly to any scattering media. The transmitted super-
imposed signal (#1, #2, and #3) consists of fluorescence transient patterns, i.e., 2D
patterns (w1, w2, w3) that fluctuate in intensity over time with typical calcium
transient profiles (h1, h2, h3)66,67. A video is recorded with a camera and a post-
processing step using a spatio-temporal demixing algorithm (unconstrained NMF)
is applied to disentangle the overlapped transient patterns into individual 2D
spatial fingerprints and their corresponding singular time trace profiles that should
match the GT excitations. The optical setup and raw data videos details are fully
described in Fig. S1.

Article https://doi.org/10.1038/s41467-024-50306-z

Nature Communications |         (2024) 15:6286 3



NMF demixing of photometric signals emitted from multiple
sources buried below a scattering layer
The previous experiments mimicked a condition where there is no
scattering media (e.g., brain tissue layer) in between the fluores-
cence sources and the fiber tip. In this section, we designed a
similar experiment as before, but including a layer of plastic par-
affin (ParafilmM®) in between the fluorescence beads and the fiber.
Parafilm M® is a well-known scattering media and it has similar
scattering properties to biological tissue, as the brain56,68. We
assume that one layer (~120 µm) of ParafilmM®mimics well ~120 µm
of brain tissue slice (a brief discussion about why Parafilm M® is a
good material to model for biological tissue scattering can be
found in the Supplementary Note 3). With this experiment, we
expect to show (1) that our method could demix fluorescence
spatiotemporal signals transmitted by short MMF coming from
sources concealed beneath a scattering layer and (2) that the
scattering layer scrambles more the fluorescence wavefront and,
consequently, breaks the residual symmetry of the fingerprint
patterns we currently obtained, thus affording depth sensitivity to
the method. In an extreme case, where a strong scattering medium
is present in between the sources and the fiber, multimode fibers
are expected to transmit a fully developed speckle as fluorescence

patterns, which our team has already demonstrated that NMF can
successfully be employed51.

To challengeNMF in this experiment with ParafilmM®, we chose a
distal FoVwhere tens of fluorescent beadswere actually touching each
other and had similar localization around the fiber center (equidistant)
(Fig. 4). As shown in Fig. 4g, we chose one of the sources (bead #13) to
mimic the dynamic neuropil background during the video acquisition.
Despite these multiple challenges, NMF was capable of demixingmost
of those signals (20 time traces out of 26 sources) as we can see in
Fig. 4. As expected, the scattering patterns from this experiment
(Fig. 4) are different from the previous cases (Figs. 2, 3). They became
less symmetric (which facilitates NMF demixing) and spatially noisier
(i.e., with decreased intensity contrast), reflecting the addition of an
element in the optical pathway (the parafilm layer) that scatters light
and does not exhibit cylindrical symmetry. The latter might explain
why some sources could not be demixed well even though they were
close to the fiber center (see beads #23 and #24). Indeed, those beads
they had a strong spatial overlap with the neuropil (bead #13), which
made the signals more difficult to demix. Nevertheless, based on
previous works, it is reasonable to expect that a longer acquisition
would help on this issue because there would be more frames to be
used in the matrix decomposition51.
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with NMF (blue) and their corresponding GT traces (gray). The NMF trace (#6) was
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fingerprint of bead #6 in (e)). h The GT-NMF time trace correlations. The average
diagonal value of thefirst 5 beadswas<δg,n > =δavg = 85.4%with σδ = 3.6%. Tobetter
evaluate the off-diagonal elements (time trace cross-talk), we subtract them from
their corresponding GT-GT coefficients. Then, we averaged the absolute values of
these differences and we obtained the mean absolute error of ζ avg = 7.06% with a
standard deviation ofσζ = 7.29% for the first 5 beads (see Supplementary Note 2).
i The GT-GT temporal trace correlation table. Importantly, the GT-GT correlation
coefficients show that although each GT trace was unique over time (singular
profile), GTs from different sources were not fully uncorrelated. For example, GT
traces of beads #3 and #4 were fairly correlated (γ3,4 = γ4,3 = 31.2%, in (i)) and had a
very clear spatial overlap (see GT and NMF scattering fingerprints #3 and #4 in (e)
and (f)).
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Interestingly, however, NMF is widely employed to denoise
image datasets57,60,61,69,70, and the results from the Fig. 4 strongly
suggests that NMF is inherently denoising our data. Such denoising
effects were already observed in the previous figures (see the
comparison of GT and NMF patterns in Figs. 2, 3). A few examples
have been further highlighted in Fig. S6. Consequently, our findings
suggest a multifaceted role for NMF, wherein it not only demixes
signals and performs image segmentation (fingerprints), but also
naturally denoises the data, thereby exemplifying its potential in
simultaneously addressing multiple aspects of fluorescence ima-
ging data extraction60,61.

NMF demixing of signal from multiple sources hidden by
dominant neuropil activity
Previous work by some of the authors has already shown that uncon-
strained NMF can successfully demix fluorescence time traces from
overlapping speckle patterns from a high level of fluorescence
background51,52. In the last experiments we showed here, we chose to
have only one source mimicking neuropil signal, with an amplitude
comparable to the amplitude of the bright peaks of each of the other
individual time traces. Thus, it remained an open question whether
unconstrained NMF could demix the time traces from overlapping
scattering fingerprints transmitted by short multimode fibers in con-
ditions where the fluorescence background is dominant, as demon-
strated in the previous works.

To address this question, we performed a new set of experiments
in which we progressively increased the number of sources mimicking
neuropil, and thus progressively increased the strength of the neuropil
signal compared to the target sources. More specifically, we chose a
new FoV containing 21 beads in total, and we excited 1, 5, or 11 sources
with the same neuropil-like non-sparse temporal signal (see Fig. 5, S7,
S8). As expected, unconstrained NMF was able to successfully demix
most of the individual time traces of the target beads mimicking cell
bodies (“target sources”) with high temporal correlation accuracy
(>80%), even when 11 of 21 sources were mimicking neuropil (see
Fig. 5). In such an extreme case, the signal from the total neuropil-like
backgroundwas approximately 6x stronger on average than thewhole
ensemble target signal (see Fig. S7m), and approximately 10x larger
than the maximum peak of each target source signal. Yet, NMF was
able to retrieve 9 of the 10 remaining target sources with very high
accuracy (temporal correlation with GT time traces larger than 80%,
with an average value of 86% and standarddeviation of 5.5%, see Fig. 5).
Importantly, as can be seen in Fig. 5d, the target sources were spatially
aggregatedwithmanyneuropil sources,which is often the case inGECI
imaging experiments.

Validation of themethodwhile probing structurally GFP-labeled
neurons in a 50 µm thick fixed brain slice
Next, we investigated if NMF could demix the fluorescence activity of
structurally labeledGFP neurons in a fixed brain slice, whose signal has
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g Top: the individual temporal activity traces obtained with NMF (blue) and their
correspondingGT traces (gray). Bottom: the photometric ensemble signal from the
recorded video (black line), which is the sum of all individual traces. The fluores-
cence intensity in all traces in the figure are normalized to 1. h The GT-NMF time
trace correlations. The average diagonal value of the first 22 beads was <δg,n > =
δavg = 86.0%with σδ = 5.4%. Tobetter evaluate theoff-diagonal elements (time trace
cross-talk), we subtract them from their corresponding GT-GT coefficients. Then,
we averaged the absolute values of these differences and we obtained the mean
cross-talk of ζavg = 4.4%with a standard deviation ofσζ = 3.7% for the first 22 beads
(see Supplementary Note 2). i The GT-GT temporal trace correlation table showing
that the ground truth traces were not orthogonal.
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a higher background and lower fluorescence brightness compared to
fluorescent bead samples44. Therefore, in another set of experiments,
we changed our fluorescent sample to a 50 µm fixed brain slice (Gad-
eGFP labeled neurons, see methods for more details), and we carried
out the same type of GT excitation on a few selected neurons in the
fiber FoV (mimicking the neuronal activity in a real brain environment).
After recording a video of the scattering transient patterns and
applying the unconstrained NMF, we confirmed again (see Fig. 6) a
good retrieval of the number of neurons, their scattering fingerprints
(Fig. 6e, f), and their individual activity traces (see Fig. 6g–i). As in the
previous experiment, the GT-NMF temporal trace correlation values
obtainedwere high, with an average value of <δg,n > = δavg = 86.7%, and
a standard deviation of std = 2.8%.

Pattern sensitivity evaluation of low-cost miniscopes while
probing a single fluorescence source
Finally, we investigated if an inexpensive miniscope (Open Ephys
Miniscope-v.4.4) coupled with a MMF would have enough sensi-
tivity to excite and image an individual fluorescence fingerprint
pattern emitted from a single fluorescent source (Fig. 7a). In such
conditions, both the LED excitation from the miniscope and the
fluorescence signal from the sample would be transmitted within
the short MMF before imaging. This is an important question
because the miniscope has simple, inexpensive, and compact

components, such as the commercial-grade CMOS detector, rather
than a high-end sCMOS camera as in our proof-of-principle table-
top experiment (see “Methods” and Fig. S1). To tackle this question,
we combined a miniscope with a short MMF (the MiniDART) and
tested the miniscope sensitivity with a very sparse bead sample: a
single fluorescent bead that we can displace laterally in the fiber
FoV (seemethods and Fig. 7b, c).When we set theminiscope for low
LED power and with no camera gain (LED = 20% corresponds to a
transmitted power through the short MMF of PMMF < 10 µW), it was
already possible to detect short MMF scattering fingerprint pat-
terns with very good contrast at the fastest frame rate available in
the miniscope control software (FPS = 30 Hz, corresponding to
33ms exposure time, see Fig. S9). Interestingly, whenever raising
the LED power, decreasing the framerate speed, or raising the
camera gain value, the detected patterns by the miniscope got
saturated, suggesting that theminiscope CMOS has already enough
sensitivity to probe scattering fingerprints through short MMFs
even from less bright fluorescent sources than the ones used here,
especially when the fluorescent source is close to the center of the
fiber core (see Fig. 7c). At distances d < 20 µm from the core center,
the CMOS got saturated while theminiscope GUI settings were: LED
power = 20% (where LEDmax = 100%, corresponding to a trans-
mitted power through the shortMMF of Pmax

MMF = 125 µW), FPS = 10 Hz
(where FPSmax = 30 Hz), and Gain = 1 (where Gainmax = 3.5).
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Fig. 4 | Results of a proof-of-principle experiment performed with 26 fluor-
escent beads behind a Parafilm M® layer. The bead #13 is the source mimicking
neuropil background signal (highlighted in orange). From (a) to (d) we have: (a) the
photometric (ensemble) time trace, which is the sum of 26 time traces; (b) the
sCMOS detected image of the spatially overlapped fingerprint patterns from 26
fluorescent beads simultaneously probed by the short MMF (see “Methods”); (c)
the short MMF located at a distance of 60 ± 10 µm from the sample; (d) the ground
truth image of the sample (backpropagated fluorescence image detected from a
CMOS Basler camera, see setup in Fig. S1). e The ground truth (GT) fingerprint
patterns obtained from each bead when they were individually excited. f The fin-
gerprint patterns obtained via NMF are to be comparedwith the GT patterns in (e).
g Top: the individual temporal activity traces obtained with NMF (blue) and their

corresponding GT traces (gray). Bottom: the photometric signal from the recorded
video (black line), which is the sum of all individual traces. The fluorescence
intensity in all traces in the figure are normalized to 1. h The GT-NMF time trace
correlations. The average diagonal value of the first 20 beads was <δg,n > =
δavg = 77.0% with σδ = 11.9%. To better evaluate the off-diagonal elements (time
trace cross-talk), we subtract them from their corresponding GT-GT coefficients.
Then, we averaged the absolute values of these differences and we obtained the
mean cross-talk of ζ avg = 5.9%with a standard deviation ofσζ = 5.6% for the first 20
beads (see Supplementary Note 2). i The GT-GT temporal trace correlation table
showing that the ground truth traces were not orthogonal - some of them were
correlated.
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Fundamentally, the MiniDART is not designed for imaging neu-
rons or localization (like in other works that used learning algorithm
methods62,63). In many experiments, the relevant biological informa-
tion does not dependon the shapeor local position of the neurons, but
mostly on the activity of eachof themand their number. Toextract this
information, just demixing fluorescence time trace signals with NMF
would be enough for relevant applications, since the number of neu-
rons (NMF rank) could be obtained by counting the number of unique
MMFfingerprints, and possibly confirmedby a post-mortem evaluation
of the brain region right below the thin hole made by the MMF. In
addition, recording the spatial fingerprints of each source would be
useful for chronic experiments (tomatch the sources fromone session
to the next). Nevertheless, as we can also see in Fig. 7, the morphology
of short MMF fingerprints provides some interesting insights into the
point source position at the fiber distal end - without the need for any
computational learningmethod. Aswemove a singlebead laterally in a
radial manner (in the x,y-plane at the fiber’s distal end), a few easily
interpretable geometrical properties of the fluorescence patterns
systematically change in the fiber’s proximal end (Fig. 7c). More spe-
cifically, when the bead is displaced from the center towards the fiber
border (of a distance d) a bright ring (of radius ρ) with some spiral
ramifications is deterministically formed (see Supplementary Note 4).

Larger d distances yield wider rings (i.e., larger ρ, see Fig. 7c). Thus,
each fingerprint’s bright ring diameter is encoding radial information
about the bead lateral localization at the distal end. The dependence of
fingerprint shape features on the individual point source position is
further discussed in the Supplementary Note 4.

Discussion
Multimode fibers are well known to be minimally invasive micro-
endoscopic probes that could be promptly combined with optoge-
netics manipulation of neuronal activity for behavioral neuroscience
studies in living mice16,28,29,47,64. It is well known from the literature that
long multimode fibers (MMF length > 100mm) could be used to
transmit fluorescence activity signals and that would naturally gen-
erate a speckle wavefront due to internal multimodal mixing31,38,71,72.
However, as well described inwavefront shaping experiments, speckle
wavefronts are extremely sensitive to fiber bending, torsion move-
ments, and temperature changes along the fiber, which demands a
long and meticulous wavefront propagation characterization (e.g.,
calibration using spatial light modulators, SLM) to compensate for all
the changes in spatial properties of the speckles37,48,49. In other words,
there would be many experimental conditions to take into account to
guarantee that the speckle patterns from each source would remain
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Fig. 5 | Results of a proof-of-principle experiment performed in conditions
simulating dominant neuropil activity. The sample consists of 21 fluorescent
beads, where 10 beads had sparse and unique time traces and the other 11 had the
same non-sparse neuropil-like time trace (dynamic background). The beads with
“neuropil-like” background activity are highlighted in orange (#1, #11, #12, #13, #14,
#15, #16, #17, #18, #19, and #20). The remaining beads (#2, #3, #4, #5, #6, #7, #8,
#9, #10, and #21) had unique sparse neuronal activity time traces mimicking signal
from neuronal cell bodies (target sources). a The photometric (ensemble) time
trace, which is the sum of all the 21 time traces; (b) the sCMOS detected image of
the spatially overlapped fingerprint patterns from 21 fluorescent beads simulta-
neously probed by the short MMF (see “Methods”); (c) the short MMF located at a
distance of 60 ± 10 µm from the sample; (d) the ground truth image of the sample
(backpropagated fluorescence image detected from a CMOS Basler camera, see
setup in Fig. S1). e The ground truth (GT) fingerprint patterns obtained from each

bead when they were individually excited. f The fingerprint patterns obtained via
NMF. Note that theNMFpattern#1 is the neuropil pattern due to the spatial overlap
of 11 sources (highlighted with orange squared boxes). g Top: the individual time
traces obtained with NMF (blue) and their corresponding GT traces (gray). Bottom:
the photometric signal from the recorded video (black line), which is the sum of all
individual traces. The fluorescence intensity in all traces in the figure are normal-
ized to 1. h The GT-NMF time trace correlations. The average diagonal value of the
first 10 beads was <δg,n > = δavg = 86.0% with σδ = 5.5%. To better evaluate the off-
diagonal elements (time trace cross-talk), we subtract them from their corre-
sponding GT-GT coefficients. Then, we averaged the absolute values of these dif-
ferences and we obtained the mean cross-talk of ζ avg = 6.1% with a standard
deviation ofσζ = 5.7% for the first 10 beads (see Supplementary Note 2). i The GT-
GT temporal trace correlation table showing that the ground truth traces were not
orthogonal.
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the same over time when using a long MMF as a photometric probe in
freely-behaving mice experiments. That is why using only a short and
stable multimode fiber for this type of application could be a very
pragmatic solution.

To this end, we designed an experiment with a known ground
truth excitation to be able to evaluate if NMF could demix the indivi-
dual spatio-temporal readouts characteristic of short MMFs and GECI
recordings. In this paper, we demonstrate that it is possible to demix
such spatio-temporal signals in vitro, using a simple and general
unconstrainedNMFalgorithmon the videodata recorded inour proof-
of-principle experiment. We designed in vitro samples to mimic as
much as possible the real brain: we used tens of sources embedded in
agarose (where a few of them are touching each other), with multiple
overlapping temporal transient peaks signals, and we chose one or
several sources to mimic fluorescent neuropil. In one experiment, we
added a scattering layer between the sources and the fiber, with
scattering properties equivalent to that of a 120 µmbrain layer. In all of
these experiments, we demonstrate that we are able to successfully
demix most of the sources with NMF. In one challenging case, where
the sources were touching one another below a scattering layer, we
show that NMF retrieved 20 of the 26 sources with high fidelity. In
another extreme case, we included a dominant neuropil-like back-
ground signal to compete against the signal from the target sources
(mimicking activity from neuronal cell bodies). We designed this

“neuropil-like” signal to be a surrounding, non-sparse, and dynamic
fluorescent background emitted from sources that were in the vicinity
or even aggregating with the target sources (Fig. 5), with a total
amplitude that was 6 times larger than the ensemble signal from the
target sources. Despite these stringent conditions, we demonstrated
that a general unconstrained NMF algorithm could successfully demix
the signals from most of the target sources (9 out of 10). Therefore,
this work opens a promising direction to improve fiber photometry
fluorescence experiments by reaching single-source temporal activity
resolution.

We finally suggest that this method could be applied in vivo in
freely behaving animals by coupling the short implanted fiber with a
miniscope (MiniDART concept). Indeed, we showed that patterns
measured with a miniscope for single sources are very similar to pat-
terns measured with the benchtop microscope used in our in vitro
experiments. Therefore, one could benefit from the short MMF’s
scattering fingerprint patterns and rigidity by directly imaging the
proximal end of the short (implantable) MMF with a miniscope. That
would be different from the typical scheme infiber photometry, where
there is an optical coupling between the transmitted light from the
implantableMMF to another longMMF (relay). In this sense, we tested
and confirmed that even a low-costminiscopewould have enough LED
power and CMOS speed/sensitivity to image the intricated scattering
patterns transmitted by shortMMFs emitted from just a single source.
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Fig. 6 | Validation of the concept of single-activity resolved fiber photometry
with short multimode fibers in a brain tissue environment (in vitro). Sample:
Gad-EGFP neurons fixed in a 50 µm brain slice, sealed in between 2 coverslips to
keep the humidity of the tissue (see “Methods”). a The ensemble photometric time
trace of this experiment. b The fiber proximal end image of 4 neurons’ fingerprint
patterns spatially overlapped on the sCMOS camera chip. c An illustration of the
short MMF placed above the top coverslip of the sample, at a distance of ≈
60 ± 10 µm from it; and (d) the GT image of the sample highlighting the 4 selected
neurons to be excited (structurally labeled). e The GT fingerprint patterns are
obtained from each neuron when individually excited. f The fingerprint patterns
retrieved via NMF are ingood agreementwith theGTpatterns in (e).gThedemixed
temporal activity traces are sorted in descending GT-NMF correlation order

(from the most correlated time traces on top to the least correlated time traces on
the bottom). Traces in blue are retrieved by NMF and temporal traces in gray are
their GT. h The GT-NMF temporal trace correlation coefficients. i The GT-GT
temporal correlations. The average diagonal value in (h) of the 4 neurons was
<δg,n > = δavg = 86.7%, with standard deviation of = 2.8%. Regarding the non-
diagonal elements (cross-talk), themean absolute error taking into account the GT-
GT coefficients was ζ avg = 8,95% with a standard deviation ofσζ = 8.02% (see
Supplementary Note 2). Again, although each GT trace was unique in time (sin-
gular), they were not fully uncorrelated as we can see in the GT-GT correlation
traces (i). Interestingly, neurons #1 and #2 (i.e., the two best NMF retrieved results)
were also the most temporally correlated ones in the GT excitation
(γ1,2 = γ2,1 = 25.0%).
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Both the multimode fiber and the miniscope (Open Ephys Miniscope-
v4.4) are affordable and available in the market to carry out experi-
ments in living mice. Therefore, in this paper, we show a low-cost and
simple idea to expand the capacity of fiber photometry methods in
resolving neuronal activity circuitry (that have already been used to
investigate deep brain regions in chronic behavioral experiments in
freely-behaving mice). In addition, as a minor result, we point out in
Fig. 7 that the short MMF scattering fingerprint morphology can have
some interpretable geometry that has a relation with the source
(≈10 µmsize) localization at the distal end of the fiber. The relationship
between the source localization and its fluorescence pattern shape is
discussed in the Fig. 7 and S10, but the key message for demixing is
that the scattering fingerprint patterns do not seem to be ambiguous
depending on the source lateral position from the fiber axis.

To apply this method in vivo, a few difficulties could arise, but we
think they can be circumvented:

Fluorescence background: In calcium imaging experiments, there
are two types of background: a static background (corresponding to
the neurons resting fluorescence F0) and a dynamic background
(typically the activity of the neuropil). In our experiments, we didn’t
model the resting fluorescence of the neurons (F0 =0). However,
recent GECI indicators such as GCaMP8 have low resting fluorescence
and show large transient signals, with a ΔF/F0 corresponding to
one action potential ranging between 40% and 100%depending on the
variant used73. Therefore, this static background should remain mod-
erate, and we expect NMF to be able to extract it (for example using
rank-1 matrix factorization, see supp info of74). On the other hand,
dynamicbackground shouldbe less straightforward to subtract. In this
work, to evaluate if NMF could find and remove a non-sparse dynamic

background component from our current signal, we included one
(Figs. 3, 4) or several (Fig. 5, S7, S8) additional sources to model a
neuropil signal. These sources were chosen to have a spatial finger-
print overlapped with many other sources in the FoV, and to exhibit a
non-sparse, fast oscillating signal, with amplitudes on the same order
of magnitude as the transient peaks of the other individual sources. In
the two experiments with one neuropil source, we first showed that a
simple NMF algorithm could successfully retrieve more than 20 out of
26 spatiotemporal sources from the sample, including the neuropil-
like source. Then, in a more challenging experiment (Fig. 5, S7, S8)
where 11 out 21 sources were mimicking synchronous neuropil, NMF
successfully demixed 9 out 10 remaining target sources with 86%
average temporal correlation accuracy. These results suggest that our
method could be suitable to extract activity from individual neurons in
conditions where the average neuropil fluorescence is several times
larger in amplitude than the remaining ensemble signal from the
neurons in the FoV.

In addition, previous work from the team addressed NMF per-
formance to extract activity from target sources in strong fluorescence
background51,52. NMF performance was evaluated by quantifying the
cross-correlation statistics of the retrieved time traces over different
experimental background conditions. Typically, NMF performance
starts to slowly get impaired when the max value of the background
signal is 1.5x bigger than the max value of the sources’ activity time
trace signal. In this case, the median temporal cross-correlation gets
lower than80%,with the firstquartile of ~65%. Nevertheless, evenwhen
the max background over the max activity ratio is of 2.0, the median
cross-correlation in the time trace is still above 70%, with the first
quartile above 60%51.
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Fig. 7 | Novelmicroendoscopy concept using a shortMMF and aminiscope: the
MiniDART. a A typical fingerprint pattern from a single-fluorescent bead (10 µm
diameter) probed by using only the miniscope excitation and miniscope detection
through the multimode fiber. b The experimental setup to probe scattering pat-
terns from the short MMF includes (i) the miniscope, (ii) a customized titanium
base plate (YMETRY®) to hold the miniscope, (iii) a ferrule (Thorlabs SFLC230-10)
that rigidly holds the multimode fiber (iv) within it, (v) a sample consisting of a
single fluorescent 10 µm bead (spatial density <1 bead/cm²), and (vi) a customized
titanium tweezer (YMETRY®) to hold the ferrule. c Scattering fingerprint patterns at
the proximal end (bottom row) depending on the radial position (d) of the single-
bead at the distal end (bottom row). Position (d) (red arrow) is indicated in relation
to the fiber axis (the bead is represented as a blue spot in the zoom of (b) and the
top row images of (c), while the axial center of the fiber is represented as a fixed
black dot in the top row images of (c)). Each pattern acquisition in the proximal end
(bottom row of (c)) corresponds to 10 µm steps of the bead from the fiber central

axis in the distal end (top row of (c)). The bigger the distance d (red arrow; top) of
the bead from the center of the fiber, the larger the radius ρ (white arrow; bottom)
of the bright spiral-ring pattern in the proximal end. The diagonalwhite dashed line
is the azimuthal orientation of the red vector d, which always coincides with the
alignment angle of the 2 central bright points of the fingerprint patterns in the
proximal end (see Fig. S10 for details). The highest LED power values measured at
the distal end of the fiber (whose core is 200 µm in diameter) were around 9.5 µW,
which yields an excitation intensity of 0.3mW/mm2 at the output of the fiber core,
and 2.4 × 10−5mW excitation power per bead area. Exposure time: 100ms (Minis-
cope FPS = 10Hz). For more details, see Figs. S9, S10. d The concept of doing
experiments with a MiniDART device, which combines a miniscope and a short
implantable multimode. For future in vivo experiments, the MMF and miniscope
baseplate should be glued on the mouse skull with dental cement in the same way
typical miniscope experiments are performed with GRIN lenses.
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Moreover, the performance of NMF could be improved compared
towhat has been shownhere. Indeed, our teamhas already shown that
the cross-correlation between NFM and GT traces increases with the
number of frames in the recording51, thus longer recordings are pre-
ferable for noisier data. In addition, it has been shown that for cases in
which the background is larger than the signal from the somata, con-
strained NMF could retrieve well the time traces from neurons recor-
ded with wide-fieldmicroscopy60,61. In our case, we could apply similar
spatiotemporal constraints (adapted to the fingerprint patterns we see
here), which should allow significant improvement of demixing per-
formances. Finally, when designing in vivo experiments, we would
advise usingGCaMP8 indicators targeted to the soma75 tominimize the
neuropil component and therefore facilitate signal analysis. In the first
experiments, sparsity of expression could be adjusted so that only 20
to30neurons are labeledwithin the illumination volumeof thefiber. In
this case, we expect that spatiotemporal unmixing of most of the
sources should be possible. Indeed, neurons distributed in the 3D
scattering tissue should produce unique fingerprint patterns at the
camera and should therefore be properly unmixed, similar to what we
demonstrated in in vitro proof-of-principle experiments.

Sample motion: In the case of 2-photon imaging experiments in
the cortex with a cranial window, motion artifacts were 2–4 µm at z
distances shorter than 150 µm from the optical window1,76. In our case,
we expect similar motion artifacts when exploring shallow regions of
the brain, and smaller artifacts for deep regions. Indeed, this is what
has been observed for 2-photon imaging with GRIN lenses77,78. In
addition, since in our experiments the patterns smoothly change upon
source motion in the distal FoV (see Fig. 7 and S9), we expect that
motion artifact to remain small, periodic, and restricted in space, and
we expect NMF to extract an average pattern for each source.

Fiber bending: Typical studies onmultimodefiber bending effects
are done with relatively long fibers (>100mm, typically around
300mm long), which are quite flexible to be bent (Thorlabs manu-
facturer recommends bending fibers until a maximum of 21mm of
radius of curvature for 200 µm diameter core fibers). However, light
propagation studies dealing with extreme bending cases of fibers with
similar core as the one we used (200 µm diameter) display typical
smallest bending radius of around 5mm, which is the typical length of
the short MMF we use48. Like any other solid material, shorter
multimode fibers (~10mm) are way stiffer to bending than long
fibers (>100mm) (Euler–Bernoulli beam theory of solid materials
mechanics)74,79–81. Typically, even long fibers have critical ~6mm
bending radius (with typical bending stress of ~700MPa), where the
Young modulus of multimode fibers changes very little (less than 1%)
and its value is for practical purposes considered constant80. There-
fore, short fibers as the ones we used (~8mm long) are significantly
rigid and very difficult to be bent. This is particularly true for in living
mouse experiments, where one end of the fiber (proximal) will be
glued on the mouse’s skull, and only the distal end of the fiber will be
“free” to be bent (i.e., this end will be actually be surrounded by the
mouse brain, dumping the small internalmovements77,78). In fact, most
of the fiber length is rigidly gluedwithin the ferrule, letting only a small
portion of the fiber “free” to be bent (typically, in between ~1mm and
~4mm long stickingout of the ferrule,which is below the critical length
of the fiber). Therefore, we expect very little bending of the fiber
during in vivo recordings.

Bit depth of theminiscope camera: The current 8-bit depth CMOS
camera of the miniscope might experimentally limit the potential of
the method in probing a large number of sources because the minis-
cope camera can get more easily saturated due to the current short
dynamic range (shallow bit depth, see Fig. 7c and Fig. S9). Saturated
camera pixels should be avoided during the video recording because
they do not allow one to distinguish GECI dynamics within the satu-
rated frames. Probably, when N number of pixels are saturated over a
finite number of F frames, it might create a cross-talk in all retrieved

time traces over the F frames whose fingerprint signals depend on
those N saturated pixels. In our tabletop experiment, the sCMOS
camera we used had a larger bit depth (16-bit dynamic range) and we
demonstrated that a simple unconstrained NMF was able to demix
more than 20 sources with a significant spatiotemporal overlap with
other sources and non-sparse neuropil activity. In our experiments the
camera dynamic range (DR) in the ensemble time trace were around:
DR = 10.000 for Fig. 2 (Proof-of-principle with 6 beads), DR = 1.500 for
Figs. 3, 4 (Proof-of-principle with 26 beads with and without Parafilm
M®), DR = 450 for Fig. 6 (Proof-of-principle with 50 µm thick brain
slice). Therefore, most of the experiments used a moderate dynamic
range compared to the available 16-bit. We provide all the tiff files of
the videos in the data repository referenced below.

Regarding the current literature, previous works have demon-
strated methods to obtain some degree of readout specificity in pho-
tometry experiments. For example, in Bianco M. et al. APL Photonics
(2022)33, the authors have tapered the end of a multimode fiber so that
fluorescence light coming from different depths of the taper is spatially
separated in the far field of the optical fiber, at a camera. Although this
technique is a nice improvement of fiber photometry, it does not give
single source specificity, but rather it allows to obtain signals from
spatial ensembles located at different depths in the tissue. Our
approach is verydifferent:we arenot relyingon spatial informationonly
to separate the sources, but we take advantage of the temporal fluc-
tuations of each source to extract both the spatial fingerprint and the
temporal trace corresponding to each source, using a NMF algorithm.
As a consequence, we manage to reach single source specificity.
Moreover, in our approach we show that the raw video data doesn’t
need to be transformed or pre-process to obtainmore specificity in the
photometric readouts, although we could promptly do it as an extra
strategy to improve its performance. It is worth noting that the actual
implementation is performed with a cylindrical MMF, which gives ring
patterns resembling that of Bianco et al. but our method would also
work with other types of fibers (for example square core fibers) as long
as patterns corresponding from different sources are different. Lastly,
multimodefibermodal dispersiondoesn’t necessarily limit ourmethod,
but it can be engineered to tune our method performance.

Moreover, computational learning tools have already been
applied on short MMF scattering fingerprints to retrieve back the
image of deep brain neurons from a fixed thick brain slice54,55. How-
ever, it is not yet proven that this approach could correctly assign the
neuronal activity in living mice or any artificial condition. On the
temporal resolution side, the authors tracked the movement of a
fluorescently labeled worm in 2D with a framerate of 2Hz, which is
relatively low for typical calcium imaging experiments performed in
livingmice. In the latter case, experiments are typically carriedoutwith
a framerate of at least 10Hz (such as the one available in theminiscope
DAQ software). Besides, any learning algorithm depends on the spe-
cific conditions of the training set (fiber properties, imaging optical
components properties, etc.), which is less general and therefore less
applicable to any other new neuroscience experiment.

In our case, we used a simple unconstrained NMF, which is a
general mathematical method that simply decomposes a matrix into a
product of two matrices where all the entries are non-negative. This
has been applied in many different fields, such as astronomy, audio
processing or computer vision53,55,57–59,69,70. In particular, we trans-
formedour recordings into thismatrix formwhere the columns (rows)
represent spatial (temporal) information, but the method is blind to
this physical interpretation and just operates numerically. Importantly,
we wanted to establish as clearly as possible a general proof-of-
principle for the technique, focusing on a solid ground truth, keeping
the algorithm in its standard version (as general as possible), so as to
underlay the physical concepts. As we previously mentioned, a more
tailored NMF implementation, for example using sparsity or other
image-based and/or temporal constraints based on the specific nature
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of our experiments, would probably yield better results in terms of
fidelity or achieving a higher number or retrieved traces60,61. On the
optical engineering side, one could tailor new miniscopes for this
specific method or conveniently explore different multimode fibers
types for the optical recordings. Regarding the miniscope potential
improvements, when we spatially binned the video recorded by our
high-end sCMOS camera (tabletop experiment) until we get a similar
number of FoV pixels used in the miniscope, the retrieved results of
NMF fingerprints and traces were visually indistinguishable (see
Fig. S11) compared to a non-binned analysis. This finding reinforces the
idea that the current default design of the miniscope (LED power,
camera speed/sensitivity, and FoV magnification) might be already
enough to perform a livingmouse experiment, althoughmost pixels of
the miniscope’s camera chip was not used in our case (less than 1/9 of
the FoV pixels were used to image a singleMMF proximal end tip), and
could be explored by simply changing the current magnification lens
of the miniscope.

To conclude, we have demonstrated how time traces of individual
fluorescent sources can be demixed from spatio-temporal intensity
patterns transmitted by short multimode fibers. This is a first step
towards measuring the activity of individual sources in fiber photo-
metry experiments that use thin multimode fibers as a microendo-
scopic probe. Besides, we show that the currently available low-cost
miniscope has enough sensitivity to image directly MMF scattering
fingerprints from individual sources, suggesting that this experimental
configuration could be advantageous for future long-term micro-
endoscopic studies in freely-behaving animals due to the intrinsic
rigidity of short fibers ( < 10mm). Therefore, we believe that this work
can open a whole new avenue for novel and affordable minimally
invasive deep brain optical microendoscopic studies to probe
(potentially several) deep brain regions simultaneously in freely-
behaving animals, including experiments that could be conveniently
coupled with optogenetics tools to photoactivate or inhibit neurons
which are already a routine in many neuroscience labs.

Methods
Proof-of-principle setup
The proof-of-principle setup is visually illustrated and fully described
in Fig. S1.

Fiber-ferrule preparation
The multimode fiber was purchased from Thorlabs (FT200UMT, NA=
0.39, 200± 5 µmcore diameter, 225 ± 5 µmcladding diameter). Around
10 cm of the fiber was initially cleaved with a ruby blade (Thorlabs,
S90R), and the quality of the cleaved edge was inspected with a ste-
reomicroscope (LEICA A60F, maximum magnification 30x). The fiber
was glued within a 1.25mm wide and 6mm long stainless-steel ferrule
(Thorlabs SFLC230-10, 230± 10 µm bore diameter) using an ultraviolet
curing glue (Norland optical adhesive 81) so that the cleaved end was
chosen to be the distal end of the fiber (with 2mm of it sticking out of
the ferrule). The excess of thefiber on theother end (proximal end)was
cut close to the ferrule edge and then sequentially polished (KRELL-
TECHNOVAdevice) with 3 different silicon carbide polishing diskswith
gradually descending roughness (30mm, 3mm, 0.3mm, PSA 4” pol-
ishing disks from KRELLTECH). The quality of the polished end
(proximal end of the fiber) was verified with the LEICA A60F stereo-
microscope. We used a customized titanium tweezer and baseplate to
hold the ferrule and the miniscope respectively (YMETRY®).

Preparation of the fluorescent bead sample
In the proof-of-principle experiments, the samples consisted of ran-
domly distributed fluorescent beads on borosilicate glass (22 × 40mm
cover glass, thickness Nb.1.5, purchased from VWR). An aliquot (100x
diluted in milli-Q water) of the polystyrene (PS) particles aqueous
suspension (PS - FluoGreen - Fi226 – 1mL, 10.23 ± 0.13 µm size,

abs/em = 502/518 nm, purchase frommicroParticles GmbH, Germany)
was used to randomly distribute the beads on the cover glass. The
beads’ size was chosen to have similar size to typical neuron soma
probed in calcium imaging experiments. Besides, the emission spec-
trum of the beads is close to the common GFP calcium indicators. For
the single-bead sample, a more diluted aliquot (from 106 to 107 times
dilution) was used to guarantee a very spatially sparse bead sample
with density ≤1 bead/cm², so that there would be only a single bead
throughout the Fiber FoVwhenever translating thebead laterally in the
miniDART experiment (easily inspected by the miniscope itself with-
out the fiber). The sample with high spatial density of beads was done
by mixing concentrated bead aliquot with 5% Agarose aqueous solu-
tion with proportion 1:1 in volume (Sigma-Aldrich product# A2576,
ultra-low gelling temperature, biology grade).

Preparation of the fixed brain slice sample
The work includes data from one GAD65-EGFP transgenic mouse
(heterozygote; male; aged 6 months) expressing EGFP in Gad65-
positive interneurons in the brain and spinal cord. All procedures
involving this animal complied with French and European legislations
relative to the protection of animals used for experimental and other
scientific purposes (2010/63/UE) and were approved by the “Charles
Darwin” institutional ethics committee under the direction of the
French National Committee of Ethical Reflection on Animal Experi-
mentation under authorization number APAFIS 26667. Themouse was
euthanized by cervical dislocation performed on the terminally anes-
thetized animal (5% isoflurane for 5min in an induction chamber) and
the brain was quickly removed from the skull and immediately trans-
ferred into a fixation solution (4% paraformaldehyde; pH 6.9 buffered;
Sigma-Aldrich#1004965000).After 12 h at 5° the brainwas transferred
into phosphate-buffered saline (PBS) and cut into tangential slices of
50 to 100 μm thickness using a vibratome (Leica VT1000). Obtained
slices were stored in multi-well plates with PBS and assessed with a
fluorometric microscope before the experiment with the DMD.

NMF Analysis in Python
The raw video data [2D image, time] was reshaped to a 2D matrix [1D
image, time] to fit the input format of NMF. We used the scikit-learn
decomposition NMF package freely available online (Python), which is
also explained in the supp info of previouswork52. In the code pipeline,
an optional pre-processing step was added, which included an option
for pixel binning (see Fig. S11). The NMF parameters chosen ignored
the additional parametric terms that are introduced to account for the
sparsity of the data. The parameters chosen were: init = ‘nndsvd’,
random_state =0, max_iter = 3000, solver = ‘cd’, l1_ratio = 1, beta_loss =
2, alpha_W =0, alpha_H =0. The parameter n_components (which is
the chosen NMF rank) changes depending on the experiment and a
more detailed discussion about how to choose this value can be found
in the Supplementary Note 1. In particular, the rank used in Fig. 2 was
rankFig2 = 9 (explained in the Supplementary Note 1), and the rank for
Fig. 6 was rankFig3 = 5. The analysis of the data presented in Fig. 2 with
different ranks is illustrated in Figs. S2, S3, S4, S5 and Supplemen-
tary Note 1.

The non-diagonal coefficientsmean and standarddeviation of the
temporal correlation results:

The matrix of the non-diagonal elements ζ = ζ i≠j , where each ele-
ment is the absolute error value between GT-NMF and GT-GT coeffi-
cients is detailed described in the Supplementary Note 2. The absolute
error (AEi,j) value of a given element in ζ i≠j is given by:

AEi,j = νi,j � γi,j

��� ���,where : i 6¼ j ð1Þ

Where, νi,j is the (i,j) non-diagonal coefficient of GT-NMF temporal
correlations, and is γi,j the corresponding (i,j) non-diagonal coefficient
of the GT-GT temporal correlations. The average value (ζ avg) of all
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these non-diagonal elements (Mean Absolute Error, MAE) and the
standard deviation (σζ ) is given by:

ζ avg =mean ζ i≠j
� �

=
1

2ðNs � 1Þ
XNs�1

i≠j

νi,j � γi,j

��� ���
 !

ð2Þ

σζ = stdðζ i≠jÞ ð3Þ

Where Ns is the total number of sources. These two values (ζ avg ± σζ ),
together with the diagonal values (δavg ± σδ), give us an estimation of
whole experiment quality since ðζ avg ± σζ Þ should ideally approach
to zero.

Data availability
All the data used for this manuscript have been deposited on the
Zenodo database and is available under the accession code: https://
doi.org/10.5281/zenodo.12087382. Raw movies for all the figures are
also available as tiff files in the same repository.

Code availability
Analysis scripts are available at: https://github.com/comediaLKB/
DemixedFiberPhotometry (https://doi.org/10.5281/zenodo.12125030)
https://github.com/RimoliCV/NMF_DemixedFiberPhotometry. Hard-
ware control scripts are available at: https://github.com/laboGigan/
SpeckledNeuronsControl.
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