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Abstract 63 

Antibiotic resistance in bacteria is becoming a major sanitary concern worldwide. The 64 

extensive use of large quantities of antibiotics to sustain human activity has led to the rapid 65 

acquisition and maintenance of antibiotic resistant genes (ARGs) in bacteria and to their 66 

spread into the environment. Eventually, these can be disseminated over long distances by the 67 

atmospheric transport. Here, we assessed the presence of ARGs in clouds as an indicator of 68 

long-distance travel potential of antibiotic resistance in the atmosphere. We hypothesized that 69 

a variety of ARGs can reach the altitude of clouds mainly located within the free troposphere. 70 

Once incorporated in the atmosphere, they are efficiently transported and their respective 71 

concentrations should differ depending on the sources and the geographical origin of the air 72 

masses. We deployed high-flow rate impingers and collected twelve cloud events between 73 

September 2019 and October 2021 at the meteorological station of the puy de Dôme summit 74 

(1,465 m a.s.l, France). Total airborne bacteria concentration was assessed by flow cytometry, 75 

and ARGs subtypes of the main families of antibiotic resistance (quinolone, sulfonamide, 76 

tetracycline; glycopeptide, aminoglycoside, β-lactamase, macrolide) including one mobile 77 

genetic element (transposase) were quantified by qPCR. Our results indicate the presence of 78 

29 different ARGs’ subtypes at concentrations ranging from 1.01×10
3
 to 1.61×10

4
 copies m

-3
 79 

of air. Clear distinctions could be observed between clouds in air masses transported over 80 

marine areas (Atlantic Ocean) and clouds influenced by continental surfaces. Specifically, 81 

quinolones (mostly qepA) resistance genes were prevalent in marine clouds (54% of the total 82 

ARGs on average), whereas higher contributions of sulfonamide, tetracycline; glycopeptide, 83 

β-lactamase and macrolide were found in continental clouds. This study constitutes the first 84 

evidence for the presence of microbial ARGs in clouds at concentrations comparable to other 85 

natural environments. This highlights the atmosphere as routes for the dissemination of ARGs 86 

at a large scale. 87 
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 88 

Introduction 89 

 90 

Antibiotic resistance has been classified as one of the 10 biggest threats for human societies in 91 

the near future. In 2019, more than 4.95 million deaths were associated with antimicrobial 92 

resistance, and about 1.27 million were directly attributed to antibiotic-resistant bacterial 93 

infections 
1
. If no action is taken, this number could rise to up to 10 million deaths per year by 94 

2050, making it the first cause of death worldwide and engendering cumulative global cost to 95 

the economy over 100 trillion USD 
2
. The resistance to antimicrobial substances is a natural 96 

phenomenon that includes natural microbial evolution dynamics, and the extensive use of 97 

antibiotics to sustain growing human populations have greatly promoted it 
3
. Each year, tens 98 

of thousands of tons of antibiotics are used for treating and preventing human, animal and 99 

plant diseases 
4
, and at least a fraction can be released in the environment. Nowadays, 100 

antibiotics can be detected in waste water 
5
 and in the natural environment, from rivers 

6
 and 101 

sea water 
7,8

 to soils 
9
, and therefore carrying antibiotic resistance can now be considered 102 

beneficial for bacteria in the environment. A recent report from the French national agency for 103 

sanitary, environment and work safety highlighted median total antibiotics concentrations in 104 

French rivers of 12 ng L
-1

, dominated by fluoroquinolones and sulfamethoxazole 
10

. In 105 

hospital raw effluent and waste water treatment plants effluent, these concentrations were 106 

17.10
3
 ng L

-1 
and 300 ng L

-1
 respectively. In soils, concentrations reaching up to 62 to 3.10

3
 107 

ng g of dw
-1

 in sewage sludge were reported. Given such conditions, the natural environment 108 

is becoming a major actor in the emergence of antibiotic resistance genes (ARGs) in microbes 109 

naturally present in the environment. 110 

So far, the main antibiotic resistance mechanisms described in bacteria include direct 111 

antibiotic inactivation through enzymatic digestion, and modifications of the biological targets 112 
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such as by methylation of the binding sites 
11

. Other mechanisms prevent antibiotics from 113 

entering the cell (e.g. biofilm formation, reduced membrane permeability) or are responsible 114 

for their active evacuation (e.g. efflux pumps). These mechanisms are encoded by so-called 115 

antimicrobial resistance genes (ARGs), carried either by chromosomes or plasmids. In the 116 

latter case, these can be easily transferred horizontally between bacteria cells and species 117 

through genetic material exchanges (conjugation, etc).  118 

ARGs dispersal is logically tightly linked with that of bacteria cells. ARGs can transit 119 

via microbes between ecosystems, and the atmosphere could act as a major route of their 120 

dispersal, in particular over long distances 
12,13

. Although the conditions encountered in the 121 

atmosphere may severely limit bacterial survival, some amount of genetic material is 122 

undoubtedly dispersed by atmospheric circulations. Investigating the occurrence of ARGs in 123 

the air at high-altitude and clouds can thus provide valuable information regarding the long-124 

distance spread of such functions. Main bacteria cell aerosolization mechanisms include 125 

mechanical disturbances, such as wind, raindrop impaction on surfaces, bubble-bursting, etc 126 

14–16
. Once aerosolized, depending on air turbulence, airborne micro-organisms can eventually 127 

reach higher altitudes, travel over continents 
13,17

, and can integrate the atmospheric water 128 

cycle, clouds and precipitation, before deposition 
18,19

.  129 

With the increase awareness that human health is closely related with the wider 130 

environment, studying ARGs dispersal in the atmosphere, its potential to spread over long 131 

distances and its relation with human activities could provide critical and valuable 132 

information. Hence, this study is a part of the wider “Discovery Frontiers” research program 133 

dedicated to the study of airborne dissemination of ARGs 
20

. In compliance with the “One 134 

Health” interdisciplinary approach 
21,22

, this research program incorporates assessment of 135 

several different indoor environments and their outside emissions, novel ARG tracking and 136 
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surveillance methods, selective culture approaches, and animal models to be incorporated into 137 

exposure and risk assessment models. 138 

Here, we examined ARGs in clouds in order to investigate their capacity to be 139 

dispersed over long distances through the multiphasic atmosphere. Clouds were sampled 140 

between September 2019 and October 2021 from a high altitude site in central France (puy de 141 

Dôme meteorological station, 1,465 m a.s.l). For each event, total bacteria and a panel of 33 142 

ARGs subtypes were quantified by flow cytometry and qPCR, respectively, and interpreted in 143 

regards to the geographical origin of the corresponding air masses. The ARGs assessed were 144 

related to quinolone, sulfonamide, tetracycline, glycopeptide, aminoglycoside, β-lactamase 145 

and macrolide resistance and included one mobile genetic element (transposase). Overall, this 146 

study constitutes the first report of the presence of microbial ARGs in clouds and evidences of 147 

the atmosphere, and especially clouds, as pathways for the dissemination of antimicrobial 148 

resistance functions worldwide. 149 

 150 

Material and Methods 151 

Study site, collection of clouds and Air Masses Backward Trajectories 152 

Cloud sampling was performed at the puy de Dôme (PUY) meteorological observatory 153 

(1,465 m a.s.l., 45.772° N, 2.9655° E - France) from September 2019 to October 2021. At 154 

each sampling occasion, two high flow rate  impingers 
23

 (HFRi, DS6,  Kärcher SAS, 155 

Bonneuil sur Marne, France) sampling at an air flow rate of ~2 m
3 

h
-1

 were deployed from the 156 

roof platform of the station to collect the cloudy air, that were then used for qPCR analyses. In 157 

parallel, a cloud collector allowing to sample cloud droplets was deployed nearby 
24,25

 for 158 

total cell quantification using flow cytometry. Sampling were performed for 2 to 5 159 

consecutive hours depending on cloud events’ duration. The HFRi were filled with 850 mL of 160 
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sterile nucleic acid preservation (NAP) buffer solution as the impaction liquid 
26

. The volumes 161 

of cloud water recovered were estimated by weighting, assuming a cloud water density of 1.0. 162 

The NAP buffer solution was composed by 0.019 M of ethylenediaminetetra-acetic acid 163 

(EDTA) disodium salt dihydrate, 0.018 M of sodium citrate trisodium salt dihydrate, 3.8 M of 164 

ammonium sulfate, and H2SO4 to pH 5.2. HFRi samplers were sterilized prior each sampling 165 

event by thorough rinses with 70% ethanol followed by 10 minutes of exposure to UV light. 166 

Field blanks were conducted before each sampling and consisted of 850 mL of sterile NAP 167 

buffer solution left in contact with the HFRi’s tanks for several minutes before recovery. The 168 

cloud droplet impactor was rinsed with ultrapure water and sterilized by autoclave before each 169 

sampling.  170 

The CAT three-dimensional (3D) forward/backward kinematic trajectory model was 171 

used to calculate the 72-hours backward trajectories of clouds’ air masses. The model uses 172 

dynamic fields extracted from the ECMWF ERA-5 meteorological data archive 173 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 
27

), allowing for the 174 

determination of air masses geographical origins and altitudes over the last 72 hours before 175 

sampling at the PDD meteorological observatory 
28,29

. The model also provides the altitude 176 

relative to the planetary boundary layer (PBL) to estimate the influence of the underlying 177 

surfaces. In the present work, the ECMWF data used to calculate back-trajectories have a 178 

spatial resolution of 0.5° in latitude and longitude and a temporal resolution of 3 hours, and 179 

back-trajectory points have been calculated every 15 min. 180 

 181 

Sample Processing and DNA Extraction 182 

Cloud water samples collected with the HFRi in NAP preservation buffer were 183 

concentrated by individual filtration through 47 mm diameter mixed cellulose ester 184 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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membranes (MCE - 0.2 µm porosity) within a laminar flow hood, rolled into 5 mL bead tubes 185 

(Macherey-Nagel) and added with 1.2 mL of lysis buffer (MWA1 - Macherey-Nagel) before 186 

being stored at -80°C until further analysis. DNA extraction was carried out individually from 187 

each separate filter using the NucleoMag DNA/RNA Water kit for water and air samples 188 

(Macherey-Nagel), based on the manufacturer’s instructions, with some minor modifications 189 

to match with the modifications made on the original protocol (use of 47 mm diameter filters 190 

instead of 25 mm, and larger volumes of lysis buffer): briefly, after the recommended 10 min 191 

of mechanical lysis and 30 s of centrifugation (30 s at 1,000 g), 450 µL of the lysates was 192 

transferred into two different microtubes. DNA extraction was then performed as 193 

recommended, with final elution volumes of 50 µL of RNAse-free H2O provided in the kit.  194 

 195 

Quantification of Total Bacteria by Flow Cytometry 196 

The concentration of total bacteria in cloud water was determined from samples 197 

collected with cloud droplets impactors. Briefly, the cells contained in 40 mL of water 198 

samples were pre-concentrated into ~200 µL by ultrafiltration using vivaspin 20 (Sartorius, 10 199 

Kda molecular weight cut off), from two successive centrifugation steps of 20 mL at 4000 g 200 

for 16 min, and the addition of 1 mL of tris-EDTA buffer (1X), then transfer into 2 mL sterile 201 

microtubes. The exact concentration factor for each sample was obtained by weighting initial 202 

and final liquid volumes, considering a density of 1.0. Volumes of 200 µL of the pre-203 

concentrated samples were then stained with SYBR Green (1X final concentration, 204 

Invitrogen) for 15 minutes in the dark at room temperature, and total bacteria counts were 205 

performed using an LSR Fortessa Cell Analyzer flow cytometer (Becton Dickinson, Franklin 206 

Lakes, NJ). Cytograms were obtained by plotting SYBR green fluorescence intensity (488 207 

nm, voltage 350 V) over forward scattering (voltage 500 V) after 60 seconds of run, and flow 208 
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rates were measured before analyzes of samples by weighing of ultrapure water after 10 209 

minutes of run. All flow cytometry analyses were conducted within 4 to 12 hours of sampling. 210 

 211 

ARGs Quantification by qPCR 212 

A panel of 33 ARGs belonging to the main families of antibiotic resistance was 213 

assessed from samples collected with HFRi in NAP buffer: β-lactamases, quinolones, 214 

tetracyclines, macrolides, aminoglycosides, sulfonamides, vancomycins as well as one mobile 215 

genetic element (transposases). More details about the ARGs targeted, including the 216 

corresponding sets of primers, are described in supplementary material (Table 1SI 
30,31

). PCR 217 

reactions and cycling conditions were identical for all target genes, and were as following: 4 218 

μL of template DNA (diluted to 1/10), 10 µL of IQ Green supermix (BioRad), 5.88 μL of 219 

RNase-free H2O and 0.12 μL of equimolarly mixed primers (50 μM each) in 20 µl final 220 

volume. Cycling conditions were set at 95°C for 3 min as initial denaturation step, followed 221 

by 40 cycles of 95°C for 10 s and 60°C for 30 s. The concentrations of each target gene in the 222 

samples were determined relatively to 10-fold dilution series of a 10
6
 copies x µl

-1
 mix of 223 

control plasmids (pUCIDT-AMP) including the target sequence. All qPCR reactions were 224 

performed in technical duplicates from the pool of DNA extracts from samples collected 225 

simultaneously. Field blanks were also processed under the same conditions. A Ct value 226 

threshold of 37 was used as the limit of quantification, and all amplification peaks were 227 

systematically checked based on the melting curves of the corresponding plasmid standard. 228 

 229 

Statistical Analyses 230 

All statistics were performed using R (R Core Team (2021). Statistical differences between 231 

each family of ARGs considering all cloud events (n = 12) was assessed by the nonparametric 232 
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Kruskal-Wallis test followed by multiple pairwise comparison using Tukey contrast from the 233 

“nparcomp” function of the R package of the same name 
32

. The relationships between the 4 234 

variables associated with the 72-hours backward trajectories (time spent within and above the 235 

planetary boundary layer, above continental and marine surfaces) and the relative 236 

concentrations of the different families of antibiotics quantified (quinolones, β-lactamases, 237 

vancomycin, tetracycline, sulfonamide, macrolide, aminoglycosides) including transposase in 238 

the samples were assessed using partial least square repression analysis (PLSR). The analysis 239 

was computed using the “PLS” function from the mixOmic R package 
33,34

 and all data were 240 

centered and reduced before analysis. Prior to the PLSR analysis, a hierarchical clustering was 241 

performed considering only the 72-hours backward trajectory parameters (Table 2 SI) to 242 

identify classes of cloud samples. The clustering involved Euclidean distances and was 243 

performed using the ward aggregation method. Statistical differences between clusters were 244 

assessed by multiple bootstrap resampling (100 bootstraps, P < 0.05) using the “pvclust” 245 

function of the corresponding R package 
35

. Based on these groups, 95% level confidence 246 

interval ellipses were drawn.  247 

 248 

Results 249 

ARGs diversity and concentration in clouds 250 

Of the 33 ARGs subtypes assessed in our study on 12 independent cloud events, 29 were 251 

detected at least once, and 6 were observed in 75% (9) or more of the samples (qnrB – qepA -  252 

aac(3) – ermB – tetO and vanA); 4 of the targets were not detected in any of the samples (tetS 253 

– blaGes - blaMOX and vanSA, Table 3 SI). The total absolute concentration of the ARGs 254 

assessed, considering all clouds, averaged 2.08×10
4
 ± 6.40×10

3
 copies mL

-1 
of cloud water

 255 

(mean ± standard error of the mean), with values ranging from 3.45×10
3
 to 6.47×10

4 
copies 256 
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mL
-1

 depending on samples (Table 1 and Figure 1A). This corresponded to an average 257 

concentration of 5.42×10
3
 ± 1.51×10

3
 ARGs copies m

-3 
of air (1.01×10

3
 to 1.61×10

4 
copies m

-258 

3
). The highest values were observed on the 03-Nov-20 and 10-Nov-20 and the lowest on the 259 

22-Oct-19 and 28 Apr-21. The concentration of every family of ARGs varied significantly 260 

between clouds (Kruskal-Wallis, P < 0.05). However, quinolone resistance genes were by far 261 

the most prominent family (Kruskal-Wallis, P < 0.05). Their absolute concentration ranged 262 

from 2.69×10
2
 to 4.90×10

4
 copies mL

-1
 (1.15×10

2
 to 1.24×10

4
 copies m

-3
 of air respectively), 263 

with an average of 1.19×10
4
 ± 3.93×10

3 
copies mL

-1
 (3.18×10

3
 ± 9.87×10

2 
copies m

-3
). Based 264 

on the respective relative contributions of the different families of genes to the total pool of 265 

ARGs, two different patterns of samples could be observed (Figure 1B): half of clouds were 266 

characterized by limited proportions of resistance to quinolones (50% or less, 34% on 267 

average) and relatively high proportions of genes related with resistance to either macrolides 268 

(17-jul-20 and 10-Nov-20), β-lactamases (16-Oct-20 and 26-Oct-21), sulfonamides (28-Apr-269 

21), or the three of them (22-Oct-19). The other half of samples displayed an overwhelming 270 

majority of quinolones resistance genes, reaching up to 88% (74% on average), and low 271 

proportions of all the other families. Interestingly, the vast majority of quinolone resistance 272 

was contributed by qepA (~98%), whereas qnrB represented only a minor fraction (< 2% on 273 

average), regardless of clouds. Concerning the other genes, aminoglycoside resistance and 274 

transposases were the lowest of all (Kruskal-Wallis, P < 0.05) with average concentrations of 275 

1.08 ± 0.45 and 2.51 ± 1.35 copies mL
-1

 respectively (0.26 ± 0.11 and 1.14 ± 0.76 copies m
-3

). 276 

Their cumulated contribution to the total ARGs barely reached 0.05%, and there were many 277 

events where they could not be detected. The relative contributions of the other families of 278 

ARGs were, by decreasing importance: β-lactamases (~12%), sulfonamides (~11%), 279 

vancomycins (~9%), macrolides (~8%) and tetracyclines (~6%).  280 
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The total absolute bacteria number concentration averaged 8.0×10
3
 ± 2.9×10

3 
cells

 
per mL

-1
 of 281 

cloud water, with, as observed for ARGs, large variations between samples (Figure 2 and 282 

Table 1). Based on these data, each bacteria cell carried on average 7.1 ± 2.5 ARGs. 283 

Nevertheless, no correlation could be observed between these two variables (Spearman 284 

correlation coefficient ρ = -0.23, P = 0.5, figure 2), indicating that the total ARGs copies does 285 

not necessarily covariate with the total number of bacteria cells in cloud water. Specifically, 286 

there were >10 times more ARGs copies than bacteria cells in the samples on the 10-Nov-20, 287 

19-Nov-20 and 13-Oct-21, and ~ 5 times more in the samples collected on the 11-Mar-20, 03-288 

Nov-20, 06-May-20, and 26-Oct-20. In contrast, in the samples collected on 22-Oct-19, 16-289 

Oct-20, 28-Oct-20 and 28-Apr-21, bacteria cells were more abundant than ARGs copies by 290 

factors of up to one order of magnitude, with values that ranged between 1 ARG every 10 291 

bacteria to 1 ARG per bacteria at most. 292 

 293 

Influence of the geographical origin of the air masses on the ARG and bacteria 294 

abundances in clouds 295 

The clouds assessed originated from various geographical areas (Figure 1SI). Based on the 296 

time spent by air masses above continental or marine surfaces within the 72-hours preceding 297 

sampling, as well as their altitudes, 3 groups of samples could be distinguished (Figure 2SI 298 

and Table 2SI): “Continental” clouds (events 22-Oct-19, 17-Jui-20, 16-Oct-20, 10 Nov-20 299 

and 28-Apr-21), for which the air masses spent on average 70% of the time over continental 300 

surfaces, “Marine high” clouds (events 11-Mar-20, 03-Nov-20, 19-Nov-20 and 06-May-21), 301 

for which the air masses spent 85% of time over the Atlantic Ocean, mostly at high altitude in 302 

the free troposphere, and finally “Marine low” clouds (events 28-Oct-20, 13-Oct-21 and 26-303 

Oct-21) for which the air masses spent most time (75%) above the Atlantic Ocean, for a large 304 

part within the planetary boundary layer (PBL). 305 
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Based on the relative abundance of the main families of ARGs (95% level confidence 306 

interval; Figure 3A), “Continental” clouds differed significantly and were more variable than 307 

“Marine” clouds (both “low” and “high”), whereas the two “Marine” types clouds did not 308 

significantly differ from each other. More precisely, quinolones resistance genes were more 309 

abundant in “Marine” clouds (Figure 3B), in particular “Marine high” clouds, whereas 310 

sulfonamide and tetracycline resistance genes appeared mostly associated with “Continental” 311 

surfaces, especially for air masses that travelled within the PBL. Macrolide resistance genes 312 

were associated with continental surfaces as well, but these were mostly prevalent in air 313 

masses that travelled at higher altitude. The abundances of β-lactamase, vancomycin and 314 

aminoglycoside resistance genes as well as transposases could not be explained by the 315 

geographical origin of the air masses using this classification. 316 

 317 

Discussion 318 

ARGs reach high altitudes and clouds 319 

Detecting ARGs in clouds robustly evidences that they are transported over large 320 

geographical areas over the planet. Here, we monitored 33 different genes belonging to the 321 

main classes of antimicrobial resistance. This is standard in atmospheric  studies 
36–38

, 322 

although it is still non-exhaustive of the ARGs known. For this reason, most estimations of 323 

ARGs concentrations in the environment, including ours in clouds, likely underestimate the 324 

current situation. The ARGs known at the time of writing includes more than 6,500 ontology 325 

terms covering resistant mechanisms from approximately 2,923 antimicrobial resistance 326 

determinants 
39

. Most have functions not directly associated with antibiotic resistance but with 327 

more general roles in stress response, for instance the increase of outer-membrane 328 

permeability to face osmotic variations, efflux pumps toward a large variety of toxic 329 
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substances 
40

. Some antibiotic-degrading β-lactamases (ampC-type) were also found to be 330 

related with ancestral peptidoglycan-modifying activities. The atmosphere is a highly 331 

selective and stressful environment for microbial cells 
24

; some of these genes and functions 332 

could therefore be favorable for survival 
41

, and reinforce the capacity of bacterial ARGs to 333 

spread by atmospheric transport.  334 

Our data evidence cloud’s resistome. Numerous antibiotic resistance genes were found 335 

recurrent or more sporadic, at concentrations ranging from ~10
3
 to ~10

5 
gene

 
copies mL

-1
. 336 

Comparatively to other environments, this is 2 to 3 orders of magnitude lower than in rivers 337 

42–44
 (6.2×10

6 
to 1×10

8
 copies mL

-1
) and lakes 

45
 (4.4×10

6
 to 2.4×10

7
 copies mL

-1
), and waste 338 

water effluents 
46

 (1.0×10
3
 to 1.0×10

7
 copies mL

-1
) and sea in coastal areas (1.2×10

4
 – 339 

3.9×10
5
 copies mL

-1
). Our observations are even higher than the concentrations reported in 340 

sea water 
47

 (21.1 to 8×10
3
 copies mL

-1
). However, on a volumetric basis, it has to be kept in 341 

mind that water in clouds is distributed among droplets with micrometric radius, and cloud 342 

liquid water content (LWC) is typically on the order of ~0.1 to 0.8 mL of water per m
-3 

of air. 343 

In this respect, clouds on the planet represent diluted environments since they are 344 

polydisperse medium, also composed of air. Additionally, direct comparisons of ARG 345 

quantification between independent studies are not necessarily relevant as the number and 346 

diversity of the targets may vary.  347 

 348 

Spatial and temporal variability of ARGs in clouds and links with potential sources  349 

The abundance of antimicrobial resistance functions in the environment is likely variable in 350 

space and times in relation with the natural (seasonal) or anthropogenically induced 351 

fluctuations of biomass and biodiversity in ecosystems, meteorological conditions, 352 

atmospheric and oceanic circulation, etc. In the atmosphere, the microbial content is affected 353 
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by sources such as vegetation, so marked seasonal variations of the biodiversity are often 354 

observed, including the puy de Dôme sampling site 
48

. Here, we did not observe such seasonal 355 

variations on the ARGs in clouds and their abundance. Many concurrent environmental 356 

factors influence the composition of cloud water (e.g. ionic concentrations), and although our 357 

dataset is relatively consequent regarding the difficulties of sampling, it remains too limited to 358 

clearly identify environmental trends such as seasonality, requiring long-term monitoring. 359 

We could detect links between the geographical origin of the air masses and the relative 360 

abundances of the different ARG families in clouds, which attests of the heterogeneous 361 

distribution of ARGs in the environment. These can be related with differences of usage 362 

between countries and continents, as previously reported in waste water treatment plants 
46

. 363 

Quinolones resistance genes were dominant in our study, in particular in air masses 364 

influenced by marine areas. This is consistent with literature as they were found to be the 365 

second most abundant in urban air samples from various cities around the Earth, although still 366 

far behind β-lactamases resistance genes 
38

. However, their presence in the indoor-air of 367 

human facilities, including waste water treatment plants and many different animal farms, 368 

appears much lower 
49

. While this partially traduces different detection methods, this could 369 

suggest that these systems may not be the main contributors of quinolones resistance in the 370 

atmosphere in comparison with natural sources. This is supported by metagenomics data from 371 

ocean samples collected by past TARA expeditions from 2009 to 2012 
50

, where an important 372 

proportion of quinolone resistance genes, in particular multidrug efflux pumps was observed 373 

and especially in coastal areas 
47

. Similar trends have been observed in soils, where efflux 374 

pump resistance mechanisms represented nearly 60% of the total detected ARGs, out of 242 375 

tested 
51

. In our study, the vast majority of quinolones were related with qepA, an exclusively 376 

plasmid-mediated efflux pump 
52

 from the superfamily of major facilitators, likely derived 377 

from soil β-proteobacteria strains’ transmembrane transporters 
53,54

 and hence explaining its 378 
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occurrence in the environment . Its regulation involves the soxRS gene, a positive two-379 

component regulator part of the superoxide stress response and triggered by various stresses, 380 

including damages to DNA, exposure to toxicants and reactive oxygen species 
52,54

. This 381 

supports that the environment is not only an important reservoir of bacterial resistance but 382 

could promote their maintenance through environmental stresses, and that the atmosphere 383 

would act as vector at a large scale of these genes. Quinolone antibiotics, including 384 

fluoroquinolones, are broad spectrum synthetic antibiotics introduced in the early 1960s and 385 

widely used until the late 1980s 
55

. Since the recommendation of their restriction in Europe 386 

emitted by the Pharmacovigilance Risk Assessment Committee (PRAC) in 2018, their 387 

utilization has plummeted down to ~6% in human health and ~2% in food production 
56

. 388 

Notable molecules in this family of antibiotics includes ciprofloxacin, levofloxacin and 389 

norfloxacin, used against a large panel of Gram-negative (including Pseudomonas 390 

aeruginosa) and Gram-positive bacteria (including Staphylococcus aureus); their activity as 391 

antibacterial agents rely on their interaction with topoisomerase II (DNA gyrase), which 392 

prevents DNA replication. This class of molecules rapidly caused the emergence of resistance 393 

in bacteria 
57

. It therefore makes sense to find quinolone resistance genes among the prevalent 394 

ARGs in the environment.  395 

The other main classes of antibiotic resistance, namely β-lactamases, sulfonamides, 396 

vancomycin, macrolide and tetracycline, were relatively more abundant in “Continental” 397 

clouds. While this partly results from a relative decrease of the amounts quinolones resistance 398 

genes, it also suggests continental surfaces as their main sources. Table 2 summarizes 399 

antibiotic consumption for 29 countries in Europe for human and veterinary usages 
56

. 400 

Veterinary usages contribute ~61.4% (6558 tons of active products) of the total antibiotics 401 

market, versus ~ 38.6% for human health (4122 tons) 
56

. Most antibiotics related to human 402 

health are expected to be caught by waste water treatment systems, where removal efficiency 403 
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has been estimated to reach up to 76% of the inputs 
58

, with variations depending on 404 

compounds 
59

. If we omit the gene qepA, which we related to oceanic inputs as mentioned 405 

previously, we found a fairly good agreement between the relative abundances of 406 

antimicrobial functions observed in clouds and the proportions of the different families of 407 

molecules used in the various countries. For instance, the highest concentration of ARGs were 408 

observed on 10-Nov-20 in an air mass that flew over Spain. This country  is the biggest 409 

purchaser of antibiotic products for veterinary purposes in Europe (~ 1,244 tons of active 410 

substance 
60

). More local sources should also largely contribute to our observations. 411 

Accordingly, sulfonamides and macrolides, which represent 21.7 % and 12.3%, respectively, 412 

of the veterinary antibiotics sold in France 
61,62

; accordingly, represented on average 21.5% 413 

and 13.9% of the total ARGs quantified in our samples. However, resistance to tetracycline 414 

was found at lower proportions than could be expected from such extrapolations. This may 415 

relate with seasonal variations, as observed in rivers with the lowest abundance of tetA, tetC 416 

and tetM during winter than the rest of the year 
63

. 417 

 418 

The selective advantage of ARGs in clouds could promote their maintenance in the 419 

environment 420 

There are increasing reports of the presence of multi-resistant bacteria in the environment, and 421 

this represents one of the most worrisome threats to human societies nowadays. In our work, 422 

although multi-resistance was not specifically addressed, we found ARGs at higher 423 

abundance than bacteria cell by a factor of 5 in ~60% (7/12) of the samples. As the samples 424 

were filtered through 0.22 µm porosity before analysis, viruses and cell-free DNA fragments 425 

(i.e., external DNA, bacteriophage-associated DNA, and membrane vesicle-associated DNA) 426 

were excluded. However, they are known to have critical roles in horizontal gene transfer and 427 

dispersal including ARGs 
66,67

. Viruses for example, exhibit high proportions of ARGs in 428 
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their genome, with a strong prevalence of antibiotic efflux mechanism 
68

 Overall, these 429 

evidences the presence of multiple ARG copies in genomes and possibly multiple resistance 430 

combined together within single cells, and this was particularly true for “Marine” clouds. 431 

Such prevalence of antimicrobial resistance genes is most likely a combination of both 432 

intrinsic and acquired resistance, i.e. of ARGs carried by both chromosomes and plasmids; the 433 

methods used here do not allow distinguishing them.  434 

Many ARGs such as the efflux pump qepA are involved in global stress regulation as 435 

already mentioned. We propose that these functions could participate to the survival of 436 

bacteria in clouds, which would in turn contribute to global spread. Clouds are indeed 437 

depicted as particularly harsh environments, selective for the most efficient multiple-stress 438 

response phenotypes 
69–71

. Metatranscriptomics indicated the expression of biological 439 

responses to stress, including defense mechanisms like elevated transmembrane transports, 440 

binding activities and protein phosphorylation 
24

. The selective advantage of carrying ARGs 441 

such as the efflux pump qepA in clouds could therefore contribute to their maintenance and 442 

spread in the environment, even in the absence of such antimicrobial molecules. A connection 443 

between antibiotic resistance acquisition and bacterial aerosolization was even recently 444 

established 
41

. More specifically, the osmotic and desiccative stresses caused by aerosolization 445 

triggered an immediate response to antibiotic compounds targeting cell wall and protein 446 

synthesis (Cephalothin and Gentamicin) in Escherichia coli.  447 

 448 

Global ARGs Dispersal 449 

Based on our current dataset, that compiles 12 clouds with various geographical origins, we 450 

attempt here to provide an evaluation of the global contribution of clouds in antimicrobial 451 

genes dispersal (Table 3). The ARG concentrations observed in clouds were expressed as 452 



19 
 

copies m
-3

 of cloudy air, based on sampling times and sampler’s air flow rate corrected for the 453 

altitude of puy de Dôme (1465 m). Considering an average volume of clouds within the first 6 454 

km above the Earth of 4.66 10
17

 m
3
 
72

 and assuming ARGs concentrations similar as in our 455 

study (5.42 10
3
 copies of ARGs m

-3
 of air), we estimate that globally clouds carry in 456 

permanence ~2.53×10
21

 copies of ARGs. Annually, this would represent fluxes of ~1.29×10
25

 457 

to ~2.06×10
26

 copies of ARGs transiting through clouds. Assuming a cloud precipitation rate 458 

of 4.10 10
20

 m
3
 year

-1
 
72

, approximately ~2.2×10
24

 copies would get precipitated to the Earth 459 

surface by wet processes every year, while the remaining fraction can be expected to 460 

evaporate and remain airborne. These estimations are based on a limited number of events 461 

collected at a very specific location, but there can be strong spatial and temporal variation as 462 

emphasized previously. Still, since we considered only clouds (i.e. ~15% of the atmospheric 463 

volume) and did not account for below-cloud aerosol scavenging processes by precipitation, 464 

and that we did not account for all known ARGs, these probably represent low estimates of 465 

the total actual inputs of ARGs from the atmosphere.  466 

 467 

Conclusion 468 

In this study, we evidenced for the first time the presence of microbial ARGs in clouds at 469 

concentrations comparable to other natural environments. Using a unique dataset composed of 470 

12 events sampled over more than a year and originating from very different geographical 471 

origins, our results highlights that clouds’ resistome can be viewed as a mosaic composed of 472 

antibiotic resistance from both distant origins and local landscapes. More specifically, a 473 

strong Atlantic Ocean signature was observed in most of the clouds, as shown by the 474 

predominance of the of qepA efflux pump, that decreased as the air masses flew over 475 

continental surfaces, to the benefit of antibiotic resistance in relation with the consumption of 476 

antibiotics in food-producing animals, such as β-lactamase, tetracycline and macrolide 477 
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resistance. Overall, our results point out clouds as a tremendous potential reservoir of ARGs 478 

within the environment, and highlights the high atmosphere as routes for the dissemination of 479 

ARGs at a large scale. 480 
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 710 

 711 

Table 1: Concentrations of antimicrobial resistance genes (ARGs) and bacteria cells in cloud 712 

water (mL
-1

 of water) in the 12 cloud events investigated. The concentrations of the main 713 

families of ARGs are displayed along with their means (± SEM; n=12) and median values. 714 

Statistical differences between families of ARGs are highlighted by the subscript (a > b > c > 715 

d, pairwise comparison, P < 0.05). N.D. = not detected (Ct > 37) and N.A. = not acquired 716 

(missing value). 717 

 718 

Cloud 
sampling date 

Quinolones Aminoglycosides Macrolides Sulfonamide Tetracycline β-Lactamase Vancomycin Transposase Total ARGs Total Bacteria 

Gene copies ml
-1 

of cloud water 
Cell ml

-1

 of cloud 

water 

22-Oct-19 1.46 10
3

 2.69 10
-1

 7.21 10
1

 6.19 10
2

 4.96 10
2

 6.17 10
2

 3.40 10
2

 1.57 10
1

 3.62 10
3

 3.32 10
4

 

11-Mar-20 1.40 10
4

 4.78 10
-1

 2.14 10
2

 9.40 10
2

 8.44 10
2

 2.92 10
-1

 1.02 10
3

 N.D. 1.70 10
4

 3.18 10
3

 

17-Jul-20 1.81 10
4

 2.6 1.21 10
4

 2.30 10
3

 1.19 10
3

 1.19 10
1

 2.06 10
3

 N.D. 3.58 10
4

 N.A. 

16-Oct-20 1.71 10
3

 N.D. 5.81 10
1

 N.D. 2.43 10
1

 3.50 10
3

 8.50 10
2

 N.D. 6.14 10
3

 7.70 10
3

 

28-Oct-20 9.17 10
3

 9.94 10
-1

 1.82 10
2

 9.39 10
2

 9.58 10
2

 6.79 10
1

 1.76 10
3

 N.D. 1.31 10
4

 9.96 10
3

 

03-Nov-20 4.90 10
4

 4.67 1.18 10
2

 1.67 10
3

 2.24 10
3

 4.80 10
3

 5.64 10
3

 3.65 6.35 10
4

 1.06 10
4

 

10-Nov-20 2.18 10
4

 3.3 2.95 10
4

 1.29 10
3

 4.42 10
2

 4.07 1.16 10
4

 N.D. 6.47 10
4

 5.53 10
3

 

19-Nov-20 5.74 10
3

 1.78 10
-1

 8.00 10
1

 7.55 10
2

 1.27 10
2

 1.19 10
3

 1.75 10
3

 4.43 9.65 10
3

 3.33 10
2

 

28-Apr-21. 2.69 10
2

 6.14 10
-2

 N.D. 2.24 10
3

 9.39 10
2

 N.D. N.D. 2.60 10
-1

 3.45 10
3

 1.33 10
4

 

06-May-21 5.20 10
3

 6.33 10
-2

 N.D. N.D. 2.05 10
2

 N.D. 4.90 10
2

 N.D. 5.89 10
3

 1.19 10
3

 

13-Oct-21 1.32 10
4

 3.36 10
-1

 7.73 10
2

 3.97 10
3

 6.32 10
2

 N.D. 1.23 10
3

 6.12 1.98 10
4

 1.36 10
3

 

26-Oct-21 3.00 10
3

 N.D. N.D. N.D. 8.23 10
1

 3.58 103 N.D. N.D. 6.67 10
3

 1.63 10
3

 

                      

Median 7.45 10
3   

a 3.03 10
-1   

cd 9.91 10
1   

bc 9.39 10
2 

  bc 5.64 10
2   

b 3.99 10
1   

bc 1.12 10
3   

b 0   d 1.14 10
4

 5.53 10
3

 

Mean ± SEM 
1.19 10

4

 ± 3.93 

10
3

 
1.08 ± 4.52 10

-1

 
3.60 10

3

 ± 2.56 

10
3

 

1.23 10
3

 ± 3.39 

10
2

 

6.82 10
2

 ± 1.80 

10
2

 

1.15 10
3

 ± 5.08 

10
2

 

2.23 10
3

 ± 9.54 

10
2

 
2.51 ± 1.35 

2.08 10
4

 ± 6.40 

10
3

 
8.00 10

3

 ± 2.85 10
3

 

 719 

 720 

 721 

 722 
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Table 2: Proportions of the main families of antibiotics used over Europe (29 countries, 723 

human and veterinary usages; from JIACRA III (2021), and relative abundances observed in 724 

clouds (this study).  725 

 726 

Families of 

Antibiotics 

Proportion of antibiotic usages in 

Europe Relative abundance in clouds (this study) 

Human Health Food-producing 

animals 
With qepA Without qepA 

Continental 

clouds Marine clouds All clouds Continental 

clouds Marine clouds All clouds 
β-lactamases 54.1% 24.3% 14.8% 10.6% 12.3% 21.8% 21.4% 21.6% 
Quinolones 5.9% 2.6% 32.0% 69.8% 54.0% 0.7% 3.7% 2.4% 

Sulfonamides 3.5% 9.1% 18.1% 6.2% 11.1% 22.9% 20.5% 21.5% 
Glycopeptides 

(vancomycin) < 7% < 1% 9.4% 8.7% 8.9% 14.6% 35.8% 26.3% 

macrolides 6.1% 7.4% 16.5% 1.0% 7.5% 28.2% 3.7% 13.9% 
tetracyclines 2.4% 30.5% 9.0% 3.6% 5.9% 12.1% 15.5% 14.0% 

aminoglycosides 0.2% 4.6% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1% 
 727 

 728 

 729 

 730 

Table 3: Global estimates of ARGs in clouds. Data for clouds (upper part of the Table) are 731 

estimates from Pruppacher and Jaenicke (1995). 732 

 733 

  
Average min max Unit 

  
Volume fraction of clouds in the first 6 km 15.53 - - % 
Volume of the first 6 km of the atmosphere 3.00 10

18

 - - m
3

 
Total volume of clouds in the first 6 km 4.66 10

17

 - - m
3

 
Cloud precipitation rate 4.10 10

20

 - - m
3

 year
-1

 
ARGs concentration in clouds 5.42 10

3

 1.01 10
3

 1.61 10
4

 copies m
-3

 
          

          
ARGs transiting in clouds 2.53 10

21

 4.71 10
20

 7.51 10
21

 copies  
Total ARGs transiting in clouds every year 6.94 10

25

 1.29 10
25

 2.06 10
26

 copies year
-1

 
Average precipitation rates of ARGs 2.22 10

24

 4.14 10
24

 6.61 10
24

 copies year
-1

 

          
 734 
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Figure 1: Concentrations of the different families of ARGs in the 12 clouds (A) and their 735 

relative contributions to the pool of total ARGs (B). 736 
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Figure 2: Total concentration of ARGs and bacteria in the 12 clouds (left axis; dots / squares 766 

and lines) and the estimated numbers of ARGs normalized to that of bacterial cells (right axis; 767 

grey bars). An ARGs per bacterial cells ratio of 1 is indicated by the dotted line. N.A. = not 768 

available (missing value). 769 
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Figure 3: Partial least square regression (plsr) plot of the 12 cloud events based on 783 

environmental variables. (A) Representation of individual clouds, where groups of samples 784 

classified as “Continental” (red), “Marine high” (blue) and “Marine low” (grey) based on 785 

backward trajectories are highlighted by ellipses at 95% confidence level. (B) Correlation plot 786 

of the plsr: predictors (origin and altitude of the air mass in the 72-hours preceding sampling) 787 

are represented in black, and responses (families of ARGs) in blue.  788 
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