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We prove explicit stability estimates for the sphere packing problem in dimensions 8 and 24, showing that, in the lattice case, if a lattice is ∼ ε close to satisfying the optimal density, then it is, in a suitable sense, O(ε 1/2 ) close to the E8 and Leech lattices, respectively. In the periodic setting, we prove that, under the same assumptions, we may take a large 'frame' through which our packing locally looks like E8 or Λ24.

 in dimension 24, together with results of independent interest on the abstract stability of the lattices E8 and Λ24.

Introduction

Consider a disjoint collection of unit balls in the Euclidean space R n . A natural question regarding these arrangements of points is the following: for a fixed dimension n ∈ N, what is the maximal density among all such configurations? Moreover, what are the configurations attaining the maximum? Such a configuration is generally called a sphere packing, and the aforementioned problems are known as versions of the (Euclidean) sphere packing problem, a pillar of modern metric geometry.

This problem has eluded mathematicians for centuries. Indeed, even if we restrict our attention to lattice packings, the largest density is only known in a few dimensions: for n = 2 by the work of Lagrange [START_REF] Lagrange | Solutions analytiques de quelques problemes sur les pyramides triangulaires[END_REF] from 1773, for n = 3 by Gauss [START_REF] Gauss | Untersuchungen über die Eigenschaften der positiven ternaren quadratischen Formen von Ludwig August Seeber. Gottingische gelehrte Anzeigen[END_REF] from 1831, for n = 4, 5 by Korkin and Zolotarev [START_REF] Korkin | Sur les formes quadratiques positives quaternaires[END_REF][START_REF] Korkin | Sur les formes quadratiques positives[END_REF] from around 1875, for n = 6, 7, 8 by Blichfeldt [START_REF] Blichfeldt | The minimum values of positive quadratic forms in six, seven and eight variables[END_REF] from 1934, and for n = 24 by Cohn, Kumar [START_REF] Cohn | Optimality and uniqueness of the Leech lattice among lattices[END_REF] from 2009.

Concerning the densest general packings of congruent balls in R n , even less is known. Around 1900, already Minkowski observed that saturated packings of congruent balls in R n -that is, when no extra ball can be inserted without violating the packing property -have density at least 2 -n . This trivial lower bound has been only slighly improved asymptotically even after significant efforts since Minkowski's times. The current record is due to Venkatesh [START_REF] Venkatesh | A note on sphere packings in high dimension[END_REF], who proved that there exist lattice packings of spheres for all sufficiently large n whose density is at least 65,963n 2 -n , and that for infinitely many values of n there exist lattice packings of spheres whose density is at least n log log n 2 n+1 . On the other hand, Kabatyanskii and Levenshtein [START_REF] Kabatyanskii | Bounds for packings on a sphere and in space[END_REF] still hold the best asymptotic upper bound 2 -0.599n+o (n) to date for the density of packings of congruent spheres in R n using the linear programming bound for sphere packings on S n-1 . This bound was slighly improved by the pioneering work of Cohn and Elkies [START_REF] Cohn | New upper bounds on sphere packings[END_REF], which applied the linear programming method directly in the Euclidean setting. In particular, these bounds, together with numerical computations, yielded almost exact upper bounds in dimensions n = 8 and n = 24. As the following list shows, the maximal density of sphere packings is only known in dimensions when a lattice with very special metric properties is available (n = 8, 24), or where low dimensionality allows for more direct combinatorial arguments, possibly combined with computational tools (n = 2, 3). n = 2 : The so-called hexagonal lattice (generated by two side vectors of an equilateral triangle)

gives the optimal packing of circles in two dimensions according to Thue [START_REF] Thue | On some geometric number-theoretic theorems[END_REF][START_REF] Thue | Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene[END_REF]. However, Thue's proof lacked a compactness argument which was later provided by L. Fejes Toth [START_REF] Toth | Über einen geometrischen Satz[END_REF] and Segre and Mahler [START_REF] Segre | On the densest packing of circles[END_REF]. n = 3 : The famous Kepler's conjecture (cf. [START_REF] Kepler | Strena seu de nive sexangula. Tampach[END_REF]) stated that the best density in three dimensions is achieved by the face centered cubic (fcc) lattice; namely, by piling balls as a pile of oranges in the supermarket shelf (or alternatively, as cannonballs in a pirate ship). This was proven by Hales [START_REF] Hales | A proof of the Kepler conjecture[END_REF] with parts of the argument relying on computer calculations, and a formally verified proof was given by Hales et al [START_REF] Hales | A formal proof of the Kepler conjecture[END_REF] in 2017. n = 8 : In 2016, Maryna Viazovska [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF] made a major breakthrough by solving the sphere packing problem in dimension 8, confirming the optimality of the E 8 lattice (see Theorem 1.1 below). The paper [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF] used the theory of modular forms in an ingenious combination with the linear programming bound of Cohn and Elkies [START_REF] Cohn | New upper bounds on sphere packings[END_REF]. We note that E 8 is the unique even unimodular lattice in 8 dimensions according to Mordell [START_REF] Mordell | The definite quadratic forms in eight variables with determinant unity[END_REF] (see for example Griess [START_REF] Griess | Positive definite lattices of rank at most 8[END_REF] and Elkies [START_REF] Elkies | Yet another proof of the uniqueness of the E8 lattice[END_REF] for simpler proofs). n = 24 : Cohn, Kumar, Miller, Radchenko, Viazovska [START_REF] Cohn | Universal optimality of the E8 and Leech lattices and interpolation formulas[END_REF] established the optimality of the Leech lattice Λ 24 in 24 dimensions (see Theorem 1.2 below). The Leech lattice is the unique even unimodular lattice in R 24 whose minimal length is at least 2.

Our focus in this manuscript will be on the stability question for sphere packings in dimensions 8 and 24. That is, if a packing Ξ + B n , n ∈ {8, 24}, is almost optimal in the aforementioned results for dimensions 8 and 24, must it be in some sense close to the optimal packing -E 8 for n = 8 and Λ 24 for n = 24?

In order to start our discussion we recall the exact statement of the main result in [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF].

Theorem 1.1 (Viazovska).

If Ξ + √ 2
Theorem 1.2 (Cohn, Kumar, Miller, Radchenko, Viazovska). If Ξ + B 24 is a periodic packing in R 24 , then its center density is at most 1, with equality if and only if Ξ is congruent to the Leech lattice Λ 24 .

Regarding the stability question, we note that G. Fejes Toth [START_REF] Toth | A stability criterion to the moment theorem[END_REF] gave a stability version of the optimality of the hexagonal lattice packing of congruent circular disks in R 2 . The goal of this note is to prove explicit quantitative stability versions of Theorems 1.1 and 1.2. We start by stating our results in the realm of lattice packings, in which case we have rather precise statements. Recall that for lattices L ⊂ R n , the center density is 1/ det L. We also denote by λ(L) the length of the shortest non-zero vector in L. 

Theorem 1.3. If L is a lattice in R 8 such that λ(L) ≥ √ 2 and det L ≤ 1 + ε for 0 < ε < ε 8 , then there exist Φ ∈ O(8
for i = 1, . . . , 24 
where ε 24 , c 24 > 0 are computable parameters.

The proofs of these results rely on two fundamental facts: the fact that the special functions g 8 and g 24 constructed in [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF][START_REF] Cohn | The sphere packing problem in dimension 24[END_REF] have explicitly controlled behavior near their zeros, and the fact that, if lattices are close to optimal, then the lengths of their shortest vectors have to be close to those of the optimal lattice. We then prove that, under the constraints that sufficiently many of the lengths are close to those of E 8 , there are bases of both lattices which are close.

Our next results are devoted to proving stability in the setting of periodic packings. To handle this case, we need some more notions.

For compact sets Ξ

1 , Ξ 2 ⊂ R n , their Hausdorff distance is d H (Ξ 1 , Ξ 2 ) = min r≥0 {Ξ 1 ⊂ Ξ 2 + rB n and Ξ 2 ⊂ Ξ 1 + rB n },
which is a metric. We observe that if Ξ 1 , Ξ 2 are finite such that Ξ 1 + ϱ B 8 and Ξ 2 + ϱ B 8 are packings for ϱ > 0 and d H (Ξ 1 , Ξ 2 ) < ϱ, then Ξ 1 and Ξ 2 have the same cardinality.

Let Π be a measurable set of R n that is periodic with respect to a lattice L. Denote by Ṽ the (induced) Lebesgue measure on R n /L. Then we say that Π holds for x ∈ R n with probability p ∈ [0, 1] if we have

p = Ṽ (Π/L) det L = lim r→∞ V ({x ∈ rK : x ∈ Π}) V ( 
rK) for any convex body K. We observe that, since Π is L-periodic, we obtain the same probability starting from any other lattice L ′ ⊂ L.

Theorem 1.5. There exist explicitly computable values ε8 , c8 > 0 such that for ε ∈ (0, ε8 ) and R ε = | log ε| log | log ε| , the following properties hold: If a periodic packing Ξ + √ 2 2 B 8 of balls has center density at least 1 -ε for ε ∈ (0, ε8 ), and K is a centered convex body containing a ball of radius R ε and having diameter diam K ≤ 2 20 R ε , then with probability at least

1 -c8 R -1 2 ε , x ∈ R 8 satisfies that #(Ξ ∩ (x + K)) ≥ (1 -c8 R -1 2 ε )V (K) and d H ΦZ, Ξ ∩ (x + K) ≤ c8 e 1 c8
Rε ε 1 4

where Z ⊂ E 8 and Φ is an isometry of R 8 . Moreover, the set Z has small gaps when compared to a localized version of E 8 , in the sense that

#(ΦZ) #((ΦE 8 ) ∩ (x + K)) -1 ≤ C 8 √ R ε ,
where C 8 > 0 is an absolute computable constant.

Theorem 1.6. There exist explicitly computable values ε24 , c24 > 0 such that for ε ∈ (0, ε24 ) and R ε = | log ε| log | log ε| , the following properties hold. If a periodic packing Ξ + B 24 of balls has center density at least 1 -ε for ε ∈ (0, ε24 ), and K is a centered convex body containing a ball of radius R ε and having diameter diam K ≤ 2 140 R ε , then

with probability at least 1 -c24 R -1 2 ε , an x ∈ R 24 satisfies that #(Ξ ∩ (x + K)) ≥ (1 -c24 R -1 2 ε )V (K) and d H ΦZ, Ξ ∩ (x + K) ≤ c24 e 1 c24
Rε ε 1 4 where Z ⊂ Λ 24 and Φ is an isometry of R 24 .

Moreover, the set Z has small gaps when compared to a localized version of Λ 24 , in the sense that

#(ΦZ) #((ΦΛ 24 ) ∩ (x + K)) -1 ≤ C 24 √ R ε ,
where C 24 > 0 is an absolute computable constant.

Remark 1.7. Observe that, in spite of the perhaps cumbersome notation, in both Theorems 1.5 and 1.6 we have that d H ΦZ, Ξ ∩ (x + K) ≲ ε Paraphrasing, these results tell us that up to adjusting the frame to convex sets of diameter ∼ R ε , an almost optimal packing 'almost always' looks like a lattice packing, barring removing a small set of centers. The choice of R ε here was taken so that the bound on the Hausdorff distance is smaller than any power ε α , α < 1 4 . Such a choice, as one will see from the proof, is not rigid: one could either further adjust the frame by 'zooming in' in order to obtain a slightly better estimate on such a Hausdorff dimension, or 'zoom out' in order to have a stability result at a higher scale, albeit with less precision.

In order to prove these results, we employ several mechanisms: the first is, as in the lattice packing case, the use of 'almost vanishing' of the magic functions g 8 and g 24 . This gives us, implicitly, that most differences of points in the periodic configuration are close to zeros of the magic function. The differences which are not are relatively few, and these give rise to a small set of 'bad' points, which is the one which we discard, as stated in the proofs of Theorems 1.5 and 1.6. For the remaining 'good' points, the proximity to zeros of the magic function imposes rigidity conditions, just as in the lattice case, which allow us to explicitly construct a (rotated) basis of E 8 and Λ 24 close to a basis of the original lattice, after a suitable translation.

One readily notices the differences between Theorems 1.3, 1.4 and Theorems 1.5, 1.6. In particular, one may wonder whether the weaker nature in the latter results cannot be dropped. In the next example we show that one can't expect a more precise statement about an almost optimal periodic packings in R 8 than Theorem 1.5, and R ε is at most of order 1/ε. An entirely analogous construction is possible in dimension 24.

Example 1.8. Let Ψ ∈ O(8) be such that E 8 ∩ ΨE 8 = {0}. For any large positive integer R, we consider ε = 1 R , Λ = R 2 Z 8 , and let

{v 1 , . . . , v R 8 } = [0, R -1] 8 ∩ Z 8 .
For i = 1, . . . , R 8 , let

W i = Rv i + [0, R] 8 .
We construct the packing

Ξ i + √ 2 2 B 8 ⊂ W i if R 7 < i ≤ R 8 . First, if R 7 < i ≤ R 8 , then let Ξ ′ i =    x : x + √ 2 2 B 8 ⊂ W i and x -Rv i ∈ E 8 if the sum of coordinates of v i is even , x : x + √ 2 2 B 8 ⊂ W i and x -Rv i ∈ ΨE 8 if the sum of coordinates of v i is odd ,
and let Ξ i be obtained from Ξ ′ i by deleting arbitrary R 7 points from

Ξ ′ i . Our packing is Ξ + √ 2 2 B 8 , where Ξ = Λ + R 7 <i≤R 8 Ξ i .
Then the center density of the periodic packing is at least 1 -O(ε), the packing contains no patch of size larger then R = 1/ε that can be reasonably well approximated by a part of the sphere packing by E 8 , and the packing may contain holes of size R 7 .

The rest of the manuscript is organized as follows. In Section 2, we collect some preliminary results, ranging from properties of lattices to claims on the functions g 8 and g 24 . In Section 3, we prove Theorems 1.3 and 1.4 on stability for lattice packings, and in Section 4 we prove Theorems 1.5 and 1.6. Finally, Section 5 deals with natural generalizations of the main results to the context of bin packings and general packings.

Preliminaries

2.1. Definitions and properties of packings. For r > 0, Ξ ⊂ R n and D = rB n , we recall that Ξ + D is a sphere packing if int (x + D) ∩ int (y + D) = ∅ for different x, y ∈ Ξ, and the upper density of the packing is defined as

δ upp (Ξ, rB n ) = lim sup R→∞ V ((z + R B n ) ∩ (Ξ + D)) V (R B n )
for any fixed z ∈ R n . A packing is called periodic if Ξ is invariant under a lattice Λ, and hence if Ξ represents N cosets with respect to Λ, then one has

δ upp (Ξ, D) = lim R→∞ V (R B n ∩ (Ξ + D)) V (R B n ) = N • V (D) det Λ .
In the case when Ξ = Λ, thus N = 1, we call the packing a lattice packing. The classical paking density δ(B n ) is thus defined as the supremum of δ upp (Ξ, B n ) over all packings Ξ + B n , which equals the supremum of δ upp (Ξ, rB n ) over all packings Ξ + rB n for any fixed r > 0. According to Groemer [START_REF] Groemer | Existenzsatze für Lagerungen im Euklidischen Raum[END_REF], we may define δ(B n ) to be the supremum of the densities over all periodic packings, and in fact, there exists a (possibly non-periodic) packing Ξ 0 + B n such that for any convex body K (compact convex set with non-empty interior), we have

δ(B n ) = δ upp (Ξ 0 , B n ) = lim R→∞ V (R K ∩ (Ξ 0 + B n )) V (R K) .
Let D be a Euclidean ball in R n . For a periodic packing Ξ+D, it is sometimes more convenient to work with the center density

∆(Ξ, D) = δ(Ξ, D) V (D) = lim R→∞ #(Ξ ∩ RB n ) V (R B n ) = N det Λ ,
where Ξ is periodic with respect to the lattice Λ and Ξ represents N cosets with respect to Λ. Similarly, for a general packing Ξ + D, the upper center density is defined as

∆ upp (Ξ, D) = δ upp (Ξ, D) V (D) = lim sup R→∞ #(Ξ ∩ RB n ) V (R B n ) .
A cornerstone concept used to study sphere packings is that of a lattice, which we define to be a discrete subgroup Λ of R n whose R-linear span is R n . In this case, there exist u 1 , . . . , u n such that Λ = n i=1 Zu i , and any such n-tuple of vectors in Λ is called a basis of Λ. In addition, det Λ is the common absolute value of the determinant det[u 1 , . . . , u n ] for all bases of Λ.

For a lattice Λ in R n , we use λ(Λ) to denote the minimal length of non-zero vectors. That is,

λ(Λ) = min{∥v∥ : v ∈ Λ\{0}}.
Let Λ * = {z ∈ R n : ⟨z, x⟩ ∈ Z for x ∈ Λ} denote the dual lattice. For the dual lattice, we have det Λ * = 1/ det Λ. We note that if Λ is a lattice in R n , then Λ+ λ(Λ) 2 B n is a packing where B n is the unit Euclidean ball centered at the origin. We call a lattice Λ unimodular if det Λ = 1 and even if ∥x∥ 2 ∈ 2Z for any x ∈ Λ. If Λ is even and unimodular, then

(2.1) ⟨x, y⟩ = ∥x + y∥ 2 -∥x∥ 2 -∥y∥ 2 2 ∈ Z
for any x, y ∈ Λ; therefore, the dual lattice Λ * coincides with Λ.

It is known that a lattice Λ in R n possesses a so-called Lenstra-Lenstra-Lovász-reduced (or LLL-reduced) basis u 1 , . . . , u n such that the product of lengths is at most a constant times det Λ; in other words, there is a basis u 1 , . . . , u n of Λ such that

(2.2) ∥u 1 ∥ • . . . • ∥u n ∥ ≤ 2 n(n-1) 4 
det Λ.

We will simply call such bases LLL bases.

2.2.

Properties of the functions g 8 and g 24 . We recall first the following core idea in the proof of Theorem 3.1 in Cohn, Elkies [4, p. 694], which will be of utter importance in our proofs:

Proposition 2.1. If Λ + S + B n is a packing of balls,
where Λ is a lattice, the set S has (finite) cardinality #S = N and Λ ∩ (S -S) = {0}, and

g n : R n → R is a nice function satisfying g n (0) = g n (0) = 1, g n ≥ 0, then (2.3) N + z∈Λ, v,w∈S z+v-w̸ =0 g n (z + v -w) ≥ N 2 det Λ .
This proposition follows at once from the Poisson summation formula for (translated versions of) the lattice Λ. Moreover, if one assumes that g n (x) ≤ 0 for |x| ≥ ϱ, then ∆(Λ + S) ≤ (ϱ/2) n .

We quickly recall the breakthrough from both works [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF][START_REF] Cohn | The sphere packing problem in dimension 24[END_REF]: if n = 8, then Viazovska constructed a radial Schwartz function g 8 : R 8 → R which satisfies the hypotheses above with ϱ = √ 2. Moreover, g 8 satisfies that g 8 ( √ 2k) = 0 for integers k ≥ 1, g 8 has a simple root at √ 2, and g 8 has a double root at √ 2k when k ≥ 2. For n = 24, Cohn, Kumar, Miller, Radchenko and Viazovska subsequently constructed a radial function g 24 : R 24 → R for ϱ = 2, which additionally satisfies g 24 ( √ 2k) = 0 for integers k ≥ 2, has a simple root at 2, and g 24 has a double root at √ 2k when k ≥ 3.

We are going to need the following properties regarding the functions g 8 and g 24 :

Lemma 2.2. For R > 2, there exists α 8 (R), α 24 (R) > 1 such that the following hold:

(1) if √ 2 ≤ t ≤ R, then there exists an integer k ≥ 1 such that |t 2 -2k| ≤ α 8 (R) |g 8 (t)|; (2) if 2 ≤ t ≤ R, then there exists an integer k ≥ 2 such that |t 2 -2k| ≤ α 24 (R) |g 24 (t)|.
Moreover, there exists an absolute constant c > 0 such that one may take

α 8 (R) ≤ ρ 0 R 3 2 e 5 4 πR and α 24 (R) ≤ ρ 1 R 11 2 e 5 √ 2 
2 πR , ∀ R > 1, where ρ 0 , ρ 1 > 0 are two absolute computable constants.

Proof. We provide a proof for g 8 , and later we indicate the places where slight modifications are needed in order to cover the g 24 case.

We start by observing that we have, for r > √ 2,

g 8 (r) = π 2160 sin 2 (πr 2 /2) ∞ 0 A 8 (t)e -πr 2 t dt,
where A 8 (t) < 0 for t ∈ (0, +∞). Notice, from the proof of Theorem 4 in [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF], that, letting a 0 (t) = -368640 π 2 t 2 e -π/t , then

|A 8 (t) -a 0 (t)| ≤ 2 t 2 + 36 π 2 ∞ n=2 e 2 √ 2π √ n e -πn/t ≤ 2 t 2 + 36 π 2
e 16π e -2π/t

1 -e 2 √ 2π e -π/t .

For t < 1 10 7 , this implies the bound

|A 8 (t) -a 0 (t)| ≤ 4e 16π t 2 + 36 π 2 e -2π/t ≤ t 2 e -π/t π 2 ,
which implies that A 8 (t) ≤ -a 0 (t) 2 on the interval (0, 10 -7 ). Thus:

(2.4)

∞ 0 A 8 (t)e -πr 2 t dt ≤ - 368640 2π 2 10 -7 0
t 2 e -π/t e -πr 2 t dt.

If r -2 > 10 -14 4 , we bound the right-hand side of (2.4) by -368640 2π 2 • 10 -7 0 e -π/t e -πt(4/10 14 ) . If, on the other hand, r -2 < 10 -14 4 , we see that e -π( 1 t +r 2 t) attains its maximum for t = 1/r, and thus, by restricting t to the interval between 1 2r and 2 r , (2.4) may be bounded by -c 0 e -5 2 πr r 3 . Therefore,

c 1 R 3 e 5 2 πR |g 8 (r)| ≥ sin 2 (πr 2 /2) ≥ 1 5 min k∈Z |r 2 -2k| 2 ,
where c 1 is an explicitly computable constant, and r ∈ ( √ 2, R). Thus, one may take

α 8 (R) = c 2 R 3 2 e 5 4
πR for some absolute (and computable) constant c 2 > 0. For the case of g 24 , such an explicit bound is not readily available. What holds, on the other hand, by Lemma A.1 and Section 4 in [START_REF] Cohn | The sphere packing problem in dimension 24[END_REF], is that A 24 (t) ≤ π 28304640 t 10 φ(i/t), where φ is a certain quasimodular form, such that the n-th coefficient c(n) of the q-expansion of φ∆ 2 satisfies |c(n)| ≤ 513200655360(n + 1) 20 .

From that, we see that

(2.5) |(φ • ∆ 2 )(i/t) + 3657830400e -4π/t | ≤ ∞ n=3 513200655360(n + 1) 20 e -2nπ/t .
Bounding (1 + n) ≤ e n and using similar estimates as in the eight-dimensional case, we obtain

|(φ • ∆ 2 )(i/t) + 3657830400e -4π/t | ≤ 513200655360e 60 e -6π/t 1 -e 20 e -2π/t .
For t 0 > 0 small enough, the right-hand side above may be bounded by 1 2 e -6π/t whenever t < t 0 . Thus, (φ • ∆ 2 )(i/t) ≤ -3657830400 2 e -4π/t for 0 < t < t 0 . On the other hand, observe that

log ∆(i/t) ≥ - 2π t + 24 ∞ n=1 log(1 -e -2πn/t ) ≥ - 2π t -36 ∞ n=1 e -2πn/t ≥ - 2π t -100.
whenever t ∈ (0, t 0 ), and thus ∆ 2 (i/t) ≥ e -2π/t e -100 . From that, we readily obtain that φ(i/t) ≤ -c 2 e -2π/t for t ∈ (0, t 0 ), where c 2 = 3657830400 2 e 100 . One concludes that for c 3 = π 28304640 c 2 , one has A 24 (t) ≤ -c 3 t 10 e -2π/t if t ∈ (0, t 0 ). The same analysis as in the eight-dimensional case plus the formula

g 24 (r) = sin 2 (πr 2 /2) ∞ 0 A 24 (t)e -πr 2 t dt,
show that we may take

α 24 (R) = c 4 R 11 2 e 5 √ 2 
4 πR for some absolute computable constant c 4 > 0. □ 2.3. Approximating a basis of R n . For linearly independent x 1 , . . . , x i ∈ R n , let us write det i (x 1 , . . . , x i ) to denote the determinant of x 1 , . . . , x i in lin{x 1 , . . . , x i }; namely,

det i (x 1 , . . . , x i ) = det[x 1 , . . . , x i ] t [x 1 , . . . , x i ].
In addition, if x 1 , . . . , x n ∈ R n , then we write x 1 , . . . , xi , . . . , x n to denote the list of n-1 elements where x i is excluded.

Our first statement of this subsection provides a condition for a basis u 1 , . . . , u n of R n to be approximately orthonormal.

Lemma 2.3. Let u 1 , . . . , u n ∈ R n be linearly independent, and let d, D, ϱ > 0 such that d ≤ ∥u i ∥ ≤ D for i = 1, . . . , n, and

n i=1 ∥u i ∥ ≤ ϱ det[u 1 , . . . , u n ] . If u * 1 , . . . , u * n is the dual basis, i.e., ⟨u i , u * j ⟩ = 0 if i ̸ = j and ⟨u i , u * i ⟩ = 1, then • 1 D ≤ ∥u * i ∥ ≤ ϱ d for i = 1, . . . , n; • assuming x = n i=1 λ i u i for λ i ∈ R, we have λ i ≤ ϱ d • ∥x∥.
Proof. For any u i , let h i be the distance from u i to lin{u 1 , . . . , ûi , . . . , u n }. Then h i ≤ ∥u i ∥ and

| det[u 1 , . . . , u n ]| = det n-1 (u 1 , . . . , ûi , . . . , u n ) • h i ≤ h i • j̸ =i ∥u j ∥. Since ∥u * i ∥ = 1 h i , we deduce that 1 D ≤ ∥u * i ∥ ≤ ϱ d for i = 1, . . . , n.
In turn, it follows that

λ i = ⟨x, u * i ⟩ ≤ ϱ d • ∥x∥. □ Lemma 2.4. If u 1 , . . . , u n ∈ R n and v 1 , . . . , v n ∈ R n satisfy that ∥u i ∥ ≤ M and ∥u i -v i ∥ ≤ ε for i = 1, . . . , n, M ≥ 1 and ε ∈ (0, 1), then det[v 1 , . . . , v n ] -det[u 1 , . . . , u n ] ≤ 2 n M n-1 ε .
Proof. Using det[w 1 , . . . , w n ] ≤ n i=1 ∥w i ∥, ∥v i ∥ ≤ 2M and the linearity of the determinant, we have

det[v 1 , . . . , v n ] -det[u 1 , . . . , u n ] = det[v 1 -u 1 , v 2 , . . . , v n ] + det[u 1 , v 2 -u 2 , v 3 , . . . , v n ] + . . . . . . + det[u 1 , . . . , u n-1 , v n -u n ] ≤ n i=1 2 i-1 M n-1 ε < 2 n M n-1 • ε.
□ Finally, we use thees two lemmas to estimate how much the pairwise scalar products detetermine a basis, up to congruency, in a quantitative form.

Lemma 2.5. For M > 1 and n ≥ 2 there exist explicit ε M ∈ (0, 1 4 ) and γ M > 1 (depending on n and M ) with the following properties. If u 1 , . . . , u n ∈ R n satisfy det[u 1 , . . . , u n ] ≥ 1/M , and ∥u i ∥ ≤ M for i = 1, . . . , n, and

|⟨u i , u j ⟩ -k ij | ≤ ε and k ij ∈ Z for i, j = 1, . . . , n and ε ∈ (0, ε M ), then there exist v 1 , . . . , v n ∈ R n such that ∥v i -u i ∥ ≤ γ M ε and ⟨v i , v j ⟩ = k ij for i, j = 1, . . . , n.

Remark. The present argument gives γ

M = √ 2n 7 2 +n M 2 (M 2 + 1) n .
Proof. By assumption, we have

k ij = k ji for i, j = 1, . . . , n. Let A = [u 1 , . . . , u n ]. The entries b ij of the positive definite symmetric matrix B = A t A satisfy |b ij -k ij | ≤ ε and |b ij | ≤ M 2 . It follows that each eigenvalue of B is at most n • M 2 , which together with det B ≥ 1/M 2 yields that each eigenvalue of M is at least n -n • M -2n
, and moreover each principal minor of B is at least n -n 2 • M -2n 2 , since, by Cauchy's interlacing theorem, all eigenvalues of principal submatrices of B are at least n -n • M -2n .

Let K be the symmetric matrix [k ij ] i,j=1,...,n . It follows from Lemma 2.4 that if ε M is sufficiently small, then det K ≥ (M 2 +1) -1 and each principal minor of K is positive, and hence K is positive definite. In addition each

|k ij | ≤ M 2 + 1; therefore, the eigenvalues λ 1 ≤ . . . ≤ λ n of K satisfy n -n • (M 2 + 1) -n ≤ λ 1 ≤ . . . ≤ λ n ≤ n(M 2 + 1).
We now employ an analysis originally from [START_REF] Bhatia | Variation of the unitary part of a matrix[END_REF]: let P(n) and B(n) denote, respectively, the set of n × n positive definite matrices and the set of n × n upper-triangular matrices with positive diagonal elements. If one considers the map L : P(n) → B(n) that associates to a matrix

A ∈ P(n) its (unique) Cholesky factorisation matrix L(A) ∈ B(n) such that A = L(A) t L(A), then the differential of the map L satisfies (cf. [2, Equation (31)]) ∥DL(A)∥ F ≤ 1 √ 2 ∥A∥ 1/2 2 ∥A -1 ∥ 2 ,
where ∥ • ∥ F denotes the Frobenius norm of the operator DL(A) (viewed as an operator from

T A P(n) to T L(A) B(n))
, and ∥ • ∥ 2 denotes the 2-norm of a matrix. The fundamental theorem of calculus then implies that

∥L(A) -L(B)∥ 2 ≤ ∥A -B∥ 2 sup t∈[0,1] ∥DL(tA + (1 -t)B)∥ F ≤ 1 √ 2 ∥A -B∥ 2 sup t∈[0,1] ∥tA + (1 -t)B∥ 1/2 2 ∥(tA + (1 -t)B) -1 ∥ 2 . (2.6)
With this tool in hands, notice now that the matrices B and K above are both positive definite, and thus we are in position to use (2.6), which gives

∥L(K) -L(B)∥ 2 ≤ 2nM 2 √ 2 ∥K -B∥ 2 • sup t∈[0,1] ∥(tK + (1 -t)B) -1 ∥ 2 . As (tK + (1 -t)B) -1 is self-adjoint, ∥(tK + (1 -t)B) -1 ∥ 2 = ρ((tK + (1 -t)B) -1 ) ≤ n n • (M 2 + 1) n .
We then conclude

(2.7) ∥L(K) -L(B)∥ 2 ≤ √ 2n n+1 M 2 (M 2 + 1) n ∥K -B∥ 2 ≤ √ 2n n+2 M 2 (M 2 + 1) n ε. Write now Q • L(B) = A, for some invertible matrix Q. As A t A = L(B) t L(B), it follows that Q is an orthogonal matrix. Define then [v 1 , . . . , v n ] = Q • L(K)
. By (2.7) and the fact that Q is orthogonal, we have

∥[v 1 , . . . , v n ] -[u 1 , . . . , u n ]∥ max ≤ √ n∥L(K) -L(B)∥ max ≤ √ n∥L(K) -L(B)∥ 2 ≤ √ 2n 5 2 +n M 2 (M 2 + 1) n ε. As Q • L(B) = [v 1 , . . . , v n ], we deduce that [v 1 , . . . , v n ] t [v 1 , . . . , v n ] = L(B) t L(B) = K.
This concludes the proof. □

Proof of Theorems 1.3 and 1.4 on almost optimal lattice packings

We start this section with a statement on the stability of the E 8 lattice from its first 2 16 lengths. Concerning that lattice, it has a basis such that each lattice vector in the basis is of length at most 2. It is also well-known that E 8 is the unique even unimodular lattice in R 8 ; namely, the unique lattice up to orthogonal transformations whose determinant is one, and for which the square length of any lattice vector is an even integer. Proposition 3.1. Let ε ∈ (0, ε 0 ) with ε 0 sufficiently small. If L is a lattice in R 8 such that det L ≤ 10 9 , and for any x ∈ L\{o} with ∥x∥ ≤ 2 16 , there exists a positive integer k with

(3.1) ∥x∥ 2 -2k ≤ ε,
then there exist a Φ ∈ O(8), a basis u 1 , . . . , u 8 of L, and a basis z 1 , . . . , z 8 of E 8 with max i ∥z i ∥ = 2 such that

(3.2) ∥u i -Φz i ∥ ≤ 2 1000 • ε for i = 1, . . . , 8.
Proof. We observe that ∥x∥ ≥ 1 for x ∈ L\{o}, and hence an LLL reduced basis ũ1 , . . . , ũ8 of L with det[ũ 1 , . . . , ũ8 ] = det L satisfies that

(3.3) ∥ũ i ∥ ≤ 2 8•(8-1) 4 
det L < 2 15 for i = 1, . . . , 8.

Since each non-zero vector of √ 2 L is of length at least √ 2, Viazovska's theorem yields that det( √ 2 L) ≥ 1, and hence

(3.4) det L ≥ 2 -4 .
For i, j = 1, . . . , 8, (3.1) yields a positive integer k ii if i = j and positive integer kij if i ̸ = j such that

∥ũ i ∥ 2 -2k ii ≤ ε and ∥ũ i + ũj ∥ 2 -2 kij ≤ ε,
and hence setting

k ij = kij -k ii -k jj if i ̸ = j, we have that |⟨ũ i , ũj ⟩ -k ij | = ⟨ũ i + ũj , ũi + ũj ⟩ -⟨ũ i , ũi ⟩ -⟨ũ j , ũj ⟩ 2 - 2 kij -2k ii -2k jj 2 ≤ 3 2 • ε ≤ 2ε.
It follows from (3.3), (3.4) and det L ≤ 2 that Lemma 2.5 applies with M = 2 15 and using 2ε instead of ε as ε 8 < 1 2 ε M for the ε M of Lemma 2.5. Therefore, there exists a basis z1 , . . . , z8 of R 8 such that ⟨z i , zi ⟩ = 2k ii for i = 1, . . . , 8; (3.5) Taking also (3.5) into account, we deduce that the lattice generated by z1 , . . . , z8 is an even unimodular lattice. Therefore, we may asume that z1 , . . . , z8 is a basis of E 8 . As ũ1 , . . . , ũ8 is an LLL basis of L, (3.7) yields that

⟨z i , zj ⟩ = k ij for i, j = 1, . . . , 8 with i ̸ = j; (3.6) ∥ũ i -zi ∥ ≤ 2 11 M 2 • 8 8 • (M 2 + 1) 8 • 2ε ≤ 2 500 • ε for i = 1, . . . ,
8 i=1 ∥z i ∥ ≤ 1 + 2 700 • ε 8 8 i=1 ∥ũ i ∥ ≤ 1 + 2 700 • ε 8 • 2 8•(8-1) 4 
det L < 2 15 .

Let z 1 , . . . , z 8 be a basis of E 8 such that each ∥z i ∥ ≤ 2. Readily, we have ∥z i ∥ > 1, and hence we deduce from Lemma 2.3 that z i = 8 j=1 λ (i) j zj where (3.9)

|λ (i) j | ≤ 2 15 • ∥z i ∥ ≤ 2 16
and the 8 × 8 matrix [a ij ] with a ij = λ (i) j has integer entries and deteminant ±1. Finally, we consider the basis

u i = 8 j=1 λ (i) j ũj , i = 1, . . . , 8 of L. It follows from (3.7) that i = 1, . . . , 8, then ∥u i -z i ∥ ≤ 8 • 2 16 • 2 700 • ε ≤ 2 1000 ε,
completing the proof of Proposition 3.1. □

A similar argument proves the following result in dimension 24:

Proposition 3.2. Let ε ∈ (0, ε 0 ) with ε 0 sufficiently small. If L is a lattice in R 24 such that det L ≤ 10 9 , and for any x ∈ L\{o} with ∥x∥ ≤ 2 140 , there exists an integer k ≥ 2 with

(3.10) ∥x∥ 2 -2k ≤ ε,
then there exist a Φ ∈ O(24), a basis u 1 , . . . , u 24 of L, and a basis z 1 , . . . , z 24 of the Leech lattice Λ 24 such that

(3.11) ∥u i -Φz i ∥ ≤ 2 -10 10 • ε for i = 1, . . . , 24.
Proof. We observe that ∥x∥ ≥ 1 for x ∈ L\{o}, and hence an LLL reduced basis ũ1 , . . . , ũ24 of L with det[ũ 1 , . . . , ũ24 ] = det L satisfies that (3.12) ∥ũ i ∥ ≤ 2 24•(24-1) 4

det L < 2 139 for i = 1, . . . , 24.

Since each non-zero vector of 2L is of length at least 2, Cohn-Kumar-Miller-Radchenko-Viazovska theorem yields that det(2 L) ≥ 1, and hence

(3.13) det L ≥ 2 -24 .
For i, j = 1, . . . , 24, (3.10) yields a positive integer k ii if i = j and positive integer kij if i ̸ = j such that

∥ũ i ∥ 2 -2k ii ≤ ε and ∥ũ i + ũj ∥ 2 -2 kij ≤ ε,
and hence setting

k ij = kij -k ii -k jj if i ̸ = j, we have that |⟨ũ i , ũj ⟩ -k ij | = ⟨ũ i + ũj , ũi + ũj ⟩ -⟨ũ i , ũi ⟩ -⟨ũ j , ũj ⟩ 2 - 2 kij -2k ii -2k jj 2 ≤ 3 2 • ε ≤ 2ε.
It follows from (3.12), (3.13) and det L < 2 that Lemma 2.5 applies with M = 2 139 and using 2ε instead of ε as ε 24 < 1 2 ε M for the ε M of Lemma 2.5. Here taking n = 24 < 2 5 , we have

2 • γ M ≤ 2 10000 .
Therefore, there exists a basis z1 , . . . , z24 of R 24 such that ⟨z i , zi ⟩ = 2k ii for i = 1, . . . , 24; (3.14) 

⟨z i , zj ⟩ = k ij for i, j = 1, . . . , 24 with i ̸ = j; (3.15) ∥ũ i -zi ∥ ≤ 2 10000 • ε for i = 1, . . . ,
∥u i -Φz i ∥ ≤ 2 1000 • α 8 (2 16 ) √ ε for i = 1, . . . , 8.
This finishes our proof in this case. For the case of dimension 24, one may employ the exact same techniques as above, and therefore we omit the proof. □

Although we did not explicitly compute ε 0 above, a direct inspection of the proof shows that it depends only on the ε M of Lemma 2.5, which in turn depends only on M , and moreover this dependence can be explicitly computed. One may check, for instance, that ε M = 2 -4n n -2n 2 M -4n 2 works in such a context, although it is likely quite far from sharp.

Proof of Theorems 1.5 and 1.6

We will use the following statement about finite packings: Lemma 4.1. If K is a compact convex set in R 8 that contains a discrete set S of m ≥ 1 points such that the distance between any two points in S is at least 24 that contains a set S ′ of m ′ ≥ 1 points such that any two points in S ′ are of distance at least 2, then m ′ ≤ V (K + 2B 24 ).

√ 2, then m ≤ V (K + √ 2 B 8 ). Similarly, if K is a compact convex set in R
Proof. By directly applying the first upper bound in [1, Theorem 9.4.1], one gets m

δ 8 √ 2 2 ≤ V (K + √ 2B 8 ),
where we let δ n (r) = sup Ξ : Ξ+rB n packing δ(Ξ). As δ 8 (1) = where we also assume that ( S -S) ∩ Λ = {0} and (4.1) Λ + 2 21 R B 8 is a packing, and hence Λ + 2K is a packing.

Step 1: discarding a small set. According to the main result in [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF], we have

# S det Λ ≤ 1.
By assumption, the packing has almost optimal density; namely

# S det Λ ≥ 1 -ε.
We make the packing saturated: we choose S ⊃ S such that Λ + S + √ 2 2 B 8 is still a packing, (S -S) ∩ Λ = {0} and for any z ∈ R 8 there exists x ∈ Λ + S with ∥x -z∥ <

√ 2. Let #S = N , thus 1 -ε ≤ N det Λ ≤ 1,
and hence

N -# S ≤ ε • det Λ ≤ 2εN.
As g 8 (0) = ĝ8 (0) = 1, it follows from (2.3) that

N + z∈Λ, v,w∈S z+v-w̸ =0 g 8 (∥z + v -w∥) ≥ N 2 det Λ ≥ (1 -ε)N ; therefore, # (z, v, w) : z ∈ Λ and v, w ∈ S and g 8 (∥z + v -w∥) ≤ - √ ε ≤ N √ ε.
Let S 0 ⊂ S be the set of all v ∈ S such that there exist w ∈ S and z ∈ Λ with g 8 (∥v

-(w -z)∥) ≤ - √ ε. It follows that #S 0 ≤ N • 2 √ ε ≤ 2 √ ε • det Λ, (4.2) g 8 (∥v -w + z∥) > - √ ε for v, w ∈ S\S 0 and z ∈ Λ. (4.3)
Let π : R 8 → R 8 /Λ be the projection map. Hence π is injective on S and on K (cf.(4.1)). Since V (R 8 /Λ) = det Λ and ε < 1 R , we observe that

R 8 /Λ # (π(S) ∩ (x + π(K))) dx = R 8 /Λ y∈π(S) 1 x+π(K) (y) dx = R 8 /Λ y∈π(S) 1 y-π(K) (x) dx = N • V (K) ≥ (1 -ε)V (R 8 /Λ) • V (K) ≥ 1 - 1 R V (R 8 /Λ) • V (K).
Assuming R is large enough, Lemma 4.1 and

RB n ⊂ K yield, for any x ∈ R 8 /Λ, # (π(S) ∩ (x + π(K))) ≤ V (K + √ 2 B 8 ) ≤ 1 + √ 2 R 8 • V (K) < 1 + 15 R • V (K).
It follows from the last two estimates that, for x ∈ R 8 /Λ,

p = P # (π(S) ∩ (x + π(K))) < 1 - 4 √ R V (K) for x ∈ R 8 /Λ satisfies 1 - 1 R V (K) ≤ p • 1 - 4 √ R V (K) + (1 -p) • 1 + 15 R V (K) = 1 + 15 R V (K) -p • 4 √ R + 15 R V (K) ≤ 1 + 15 R V (K) -p • 4 √ R • V (K); therefore, (4.4) P # (π(S) ∩ (x + π(K))) ≥ 1 - 4 √ R V (K) for x ∈ R 8 /Λ ≥ 1 - 4 √ R .
We observe that if (x + K) ∩ S 0 ̸ = ∅ then x ∈ S 0 -K, and

(4.5) V (S 0 -K) ≤ N • 2 √ ε • V (K) ≤ N • 2 √ ε • (2 20 R) 8 ≤ N • 1 √ R
if ε is small; therefore, combining (4.4) and (4.5) yields that

A = x ∈ R 8 : # ((S + Λ) ∩ (x + K)) ≥ 1 - 4 √ R V (K) and (S 0 + Λ) ∩ (x + K) = ∅ satisfies the estimate P x ∈ A for x ∈ R 8 = P x ∈ π(A) for x ∈ R 8 /Λ ≥ 1 - 8 √ R .
As we allow for a small set to be thrown away where we cannot ascertain that any structure will be preserved, we dispose of the complement of the set A, and from now on we focus on this set. For a ∈ A, let s a ∈ S + Λ with ∥a -s a ∥ ≤ √ 2. This exists by the saturatedness of the packing. We claim that there exists a lattice L depending on a and S + Λ with the following properties:

(A) For any v ∈ (S +Λ)∩(a+K), there exists u ∈ L such that ∥v -(s a +u)∥ ≤ 2 21 α 8 (2 20 R)ε

1 4 ; (B) 2 -20 ≤ det L ≤ 1 + 8 √ R ;
(C) L has a basis w 1 , . . . , w 8 such that 8 i=1 ∥w i ∥ ≤ 2 14 det[w 1 , . . . , w 8 ] , and if i, j = 1, . . . , 8, then 1 8 ≤ ∥w i ∥ ≤ 2 56 and there exists m ij ∈ Z with m ii ∈ 2Z satisfying

⟨w i , w j ⟩ -m ij ≤ 2 2 46 R 3 α 8 (2 20 R)ε 1 4 .
To construct L, it is convenient to shift (S + Λ) ∩ (a + K) in a way such that s a ends up being the origin; therefore, let S ′ = (S + Λ) ∩ (a + K) -s a and a ′ = s + a, and hence

(4.6) 0 ∈ S ′ and S ′ ⊂ a ′ + K where diam K ≤ 2 20 R and #S ′ ≥ 1 - 4 √ R V (K).
Step 2: Constructing a first lattice close by S ′ . Since (S 0 + Λ) ∩ (a + K) = ∅, we deduce from (4.6) and Lemma 2.2 that if p 1 , p 2 , p 3 ∈ S ′ , then there exist positive integers k 1 , k 2 , k 3 such that (4.7)

∥p 1 -p 2 ∥ 2 -2k 3 ≤ α 8 (2 20 R)ε 1 4 , ∥p 2 -p 3 ∥ 2 -2k 1 ≤ α 8 (2 20 R)ε 1 4 and ∥p 3 -p 1 ∥ 2 -2k 2 ≤ α 8 (2 20 R)ε 1 4 ,
and hence

|⟨p 1 -p 3 , p 2 -p 3 ⟩ -(k 1 + k 2 -k 3 )| = ∥p 1 -p 3 ∥ 2 + ∥p 2 -p 3 ∥ 2 -∥p 1 -p 2 ∥ 2 2 - 2k 1 + 2k 2 -2k 3 2 ≤ 3α 8 (2 20 R)ε 1 4 . (4.8)
We now claim that there exist independent vectors v 1 , . . . , v 8 ∈ S ′ with the following properties:

(a) √ 2 ≤ ∥v i ∥ ≤ 3 √ 2 < 2 5/2 for i = 0, . . . , 8; (b) 2 4 ≤ det[v 1 , . . . , v 8 ] ≤ 2 20 ; (c) 8 i=1 ∥v i ∥ ≤ 2 16 det[v 1 , . . . , v 8 ]
We construct v 1 , . . . , v 8 by induction on i = 1, . . . , 8. For v 1 , we choose any

v ′ 1 ∈ R 8 with ∥v ′ 1 ∥ = 2 √ 2,
and hence the saturatedness of the packing yields a

v 1 ∈ (v ′ 1 + √ 2 B 8 )∩S ′ .
If we have already constructed v 1 , . . . , v i-1 for i ∈ {2, . . . , 8}, then we take any v ′ i orthogonal to v 1 , . . . , v i-1 with ∥v ′ i ∥ = 2 √ 2, and hence the saturatedness of the packing again yields a

v i ∈ (v ′ i + √ 2 B 8
) ∩ S ′ . Now (a) follows from construction, and in turn (a) implies the upper bound in (b). For the lower bound in (b), we observe that any v i is at least distance √ 2 from lin{v 1 , . . . , v i-1 } for i ∈ {2, . . . , 8}; therefore, induction on the size of j of {i 1 , . . . , i j } ⊂ {1, . . . , 8} yields that det j (v i 1 , . . . , v i j ) ≥ √ 2 j . Finally, (c) follows from (a) and (b).

Readily, v 1 , . . . , v 8 ∈ S ′ . We consider the lattice

L 0 = {u ∈ R 8 : ⟨u, v i ⟩ ∈ Z for i = 1, . . . , 8},
dual to the lattice Zv 1 +. . .+Zv 8 . Choose a basis u 1 , . . . , u 8 ∈ L 0 of L 0 such that for i, j = 1, . . . , 8, we have ⟨u j , v i ⟩ = 0 if i ̸ = j and ⟨u i , v i ⟩ = 1. We observe that Lemma 2.3, (a) and (c) yield that if i = 1, . . . ,

∥u i ∥ ≤ 2 16 .

If x ∈ R 8 , then (a) and (4.9) yield ∥x∥ 
= 8 i=1 ⟨x, v i ⟩ • u i ≤ 2 19 max i=1,...,8 |⟨x, v i ⟩| (4.10) ∥x∥ ≥ max i=1,...,8 |⟨x, v i ⟩| ∥v i ∥ ≥ 1 8 • max i=1,...,8
|⟨x, v i ⟩|, (4.11) and hence ∥u∥ ≥ 1 8 for u ∈ L 0 \{0}, (4.12)

det L 0 = (det[v 1 , . . . , v 8 ]) -1 ≥ 2 -20 . (4.13) Since (S 0 + Λ) ∩ (a + K) = ∅, it follows from (4.8) that for any v ∈ S ′ , there exist integers ℓ i , i = 1, . . . , 8 such that |⟨v, v i ⟩-ℓ i | ≤ 3α 8 (2 20 R)ε 1 4
, and hence (4.10) yields that u = 8

i=1 ℓ i u i ∈ L 0 satisfies (4.14) ∥v -u∥ ≤ 2 19 • 3α 8 (2 20 R)ε 1 4 ≤ 2 21 α 8 (2 20 R)ε 1 4 .
In particular, if i = 1, . . . , 8, then there exists ũi ∈ L 0 with (4.15)

∥v i -ũi ∥ ≤ 2 21 α 8 (2 20 R)ε 1 4 .
We consider now the sublattice

L = 8 i=1 Z ũi ⊂ L 0 .
It follows from (a), (b), (c) and Lemma 2.4 that

(a') 1 ≤ ∥ũ i ∥ ≤ 8 for i = 0, . . . , 8; (b') 8 ≤ det[ũ 1 , . . . , ũ8 ] = det L ≤ 2 21 ; (c') 8 i=1 ∥ũ i ∥ ≤ 2 17 det[ũ 1 , . . . , ũ8 ] .
Let S ⊂ L 0 be the set of all u ∈ L 0 such that there exists v ∈ S ′ with ∥v -u∥ ≤ 2 21 α 8 (R)ε 1 4 . Thus ũ1 , . . . , ũ8 ∈ S and (4.14) defines a bijective correspondence between S ′ and S (compare (4.12)). We then finally let L ⊂ L 0 be the sublattice generated by S as an Abelian subgroup. We deduce from (4.14) that L satisfies (A) and

L ⊂ L ⊂ L 0 .
An LLL basis w 1 , . . . , w 8 of L satisfies ∥w 1 ∥ • . . . • ∥w 8 ∥ ≤ 2 14 det L where ∥w i ∥ ≥ 1 8 by (4.12); therefore, we deduce from (4.12), det L ≥ det L 0 and (c') that

(i) 2 -20 ≤ det L ≤ det[ũ 1 , . . . , ũ8 ] ≤ 2 21 ; (ii) 8 i=1 ∥w i ∥ ≤ 2 14 det[w 1 , . . . , w 8 ] ; (iii) 1 8 ≤ ∥w i ∥ ≤ 2 35 8 7 = 2 56 for i = 1, . . . , 8.
It follows from (i) and (b') that

(4.16) #(L/ L) = det L det L ≤ 2 41 .
Step 3: Showing the lattice is close to E 8 . Next we claim that for any u ∈ L ∩ (a ′ + K), there exist s 1 , . . . , s ℓ ∈ S and ξ 1 , . . . , ξ ℓ ∈ {-1, 1} with

u = ℓ i=1 ξ i s i (4.17) ℓ ≤ 2 2 44 R. (4.18)
As a first step towards proving (4.17) and (4.18), we verify that for any

u ∈ L ∩ (a ′ + [-R, R] n ), there exist s ′ 1 , . . . , s ′ ℓ ′ ∈ S and ξ ′ 1 , . . . , ξ ′ ℓ ′ ∈ {-1, 1} such that ℓ ′ i=1 ξ ′ i s ′ i ∈ u + L (4.19) ℓ ′ ≤ 2 #(L/ L)-1 . (4.20)
Let S(1) be the image of S in L/ L, and hence S(1) generates the Abelian group L/ L. For i ≥ 1, we define S (i+1) = S (i) -S (i) by induction on i. In particular, any element of S (i) is of the form

±t 1 ± . . . ± t 2 i-1
for t 1 , . . . , t 2 i-1 ∈ S (1) . If S (i+1) = S (i) for i ≥ 1, then S (i) is a subgroup of L/ L, and hence S(1) ⊂ S(i) yields that S (i) = L/ L. Therefore, S (#(L/ L)) = L/ L, completing the proof of (4. [START_REF] Kabatyanskii | Bounds for packings on a sphere and in space[END_REF] and (4.20).

For

any u ∈ L∩(a ′ +[-R, R] 8 ]), let us consider s ′ 1 , . . . , s ′ ℓ ′ ∈ S and ξ ′ 1 , . . . , ξ ′ ℓ ′ ∈ {-1, 1} provided by (4.19) and (4.20) such that u = ℓ ′ i=1 ξ ′ i s ′ i + w where w ∈ L and ℓ ′ ≤ 2 #(L/ L)-1 .
As diam K ≤ 2 20 R, we deduce that ∥w∥ ≤ 2 #(L/ L) • 2 20 R ≤ 2 2 42 R. Now w = 8 i=1 λ i ũi where Lemma 2.3, (a') and (c') yield that

8 i=1 |λ i | ≤ 8 • 2 17 ∥w∥ ≤ 2 2 43 R
and in turn we conclude the claims (4.17) and (4.18).

Next we claim that if i, j = 1, . . . , 8, then there exists

m ij ∈ Z with m ii ∈ 2Z such that (4.21) ⟨w i , w j ⟩ -m ij ≤ 2 2 46 R 3 α 8 (2 20 R)ε 1 4 .
We deduce from (4.17) and (4.18) that if i = 1, . . . , 8, then there exist s i1 , . . . , s iℓ i ∈ S and ξ i1 , . . . , ξ iℓ i ∈ {-1, 1} with

w i = ℓ i r=1 ξ ir s ir ℓ i ≤ 2 2 44 R.
Next, the definition of S (compare (4.14)) yields that if i = 1, . . . , 8 and r = 1, . . . , ℓ i , then there exists

σ ir ∈ S ′ satisfying ∥s ir -σ ir ∥ ≤ 2 19 α 8 (2 20 R)ε 1 4 ,
where ∥s ir ∥, ∥σ ir ∥ ≤ 2 20 R (we have assumed that RB n ⊂ K). It follows from (4.8) that if i, j = 1, . . . , 8, r = 1, . . . , ℓ i and t = 1, . . . , ℓ j , then there exists

k ir;jt ∈ Z with k ir;ir ∈ 2Z such that ⟨σ ir , σ jt ⟩ -k ir;jt ≤ 3α 8 (2 20 R)ε 1 4 .
We deduce that if i, j = 1, . . . , 8, r = 1, . . . , ℓ i and t = 1, . . . , ℓ j , then

⟨s ir , s jt ⟩ -k ir;jt ≤ ⟨s ir , s jt ⟩ -⟨σ ir , σ jt ⟩ + ⟨σ ir , σ jt ⟩ -k ir;jt ≤ 2 40 Rα 8 (2 20 R)ε 1 4 + 3α 8 (2 20 R)ε 1 4 ≤ 2 41 Rα 8 (2 20 R)ε 1 4 .
Therefore, if i, j = 1, . . . , 8, then there exists an integer m ij such that

⟨w i , w j ⟩ -m ij ≤ ℓ i • ℓ j • 2 41 Rα 8 (2 20 R)ε 1 4 ≤ 2 2 46 R 3 α 8 (2 20 R)ε 1 4 ,
where m ii is even, proving the claim (4.21). In turn, (ii), (iii) and (4.21) imply (C). The lower bound in (B) follows from the lower bound in (i). To prove the upper bound in (B), let D = {x ∈ R 8 : ∥x∥ ≤ ∥x -u∥ for u ∈ L} be the Dirichlet-Voronoi cell of L. Hence L + D is a tiling, and

V (D) = det L.
It follows from the definition of S ⊂ L and the saturatedness of the packing Λ + S that for any x ∈ 4B n , there exists u ∈ S with ∥x -u∥ ≤ 2; therefore,

D ⊂ 2B n .
We deduce using (4.6), S ⊂ L and

V ( S + D) = # S • V (D) that 1 - 4 √ R V (K) • V (D) ≤ V ( S + D) ≤ V (K + 2B n ) ≤ 1 + 2 R 8 V (K),
and hence det[w 1 , . . . ,

w 8 ] = det L = V (D) ≤ 1 + 8 √ R .
With this inequality, we have completed the proof of (A), (B) and (C).

Step 4: Conclusion. We deduce from (B), (C), Lemma 2.4 and Lemma 2.5 that there exists a even unimodular lattice Λ (a) with basis z 1 , . . . , z 8 such that

∥w i -z i ∥ = O R 3 α 8 (2 20 R)ε 1 4
for i = 1, . . . , 8.

In particular, in dimension 8 we can promptly conclude that Λ (a) = Φ (a) E 8 for an orthogonal transformation Φ (a) ∈ O(8). For any x ∈ a ′ + K, if x = 8 i=1 λ i w i , then Lemma 2. Finally, notice that, from this construction, points in S ′ are in bijection to those of Φ (a) Z. Moreover, we know that 1

+ 10 R V (K) ≥ #S ′ ≥ 1 -4 √ R V (K)
, and thus we conclude that #(Φ (a) Z)

#((Φ (a) E 8 ) ∩ (a + K + √ 2B 8 )) -1 ≤ 300 √ R .
By using the explicit bound on α 8 (•) given in Lemma 2.2 and choosing R =

log( 1 ε ) log log( 1 ε )
, we obtain all the claims of Theorem 1.5. □

Proof of Theorem 1.6. As the proof of Theorem 1.6 is, in technical terms, almost identical to that of Theorem 1.5, we only highlight the outcome of each step. Suppose, thus, that Λ + S + B 24 is a packing. Then:

Step 1: discarding a small set. In this first step, we also obtain an exceptional set S 0 ⊂ S such that #S 0 ≤ 2 det Λ √ ε and g 24 (∥v -w + z∥) > -√ ε for v, w ∈ S\S 0 and z ∈ Λ. Moreover, we also obtain that the set A ⊂ R 24 where #((S + Λ) ∩ (x + K)) ≥ 1 -4 √ R V (K) and (S 0 + Λ) ∩ (x + K) = ∅ for each x ∈ A has probability at least 1 -8 √ R .

Step 2: constructing a sublattice close by S ′ . Subsequently, we may exploit the fact that g 24 (∥vw + z∥) > -√ ε for v, w ∈ S\S 0 and z ∈ Λ together with Lemma 2.2 in order to conclude that the origin-translated version S ′ of (S + Λ) ∩ (a + K) satisfies analogues of (4.7) and (4.8). The crucial difference here is that the integers k i , i = 1, 2, 3 in (4.7) are taken to be at least 2.

Step 3: proving the lattice is close to an even, unimodular lattice in dimension 24. Analogously as in Step 3 in the proof of Theorem 1.5 above, one also obtains the existence of a lattice L depending on a and S + Λ so that (A) For any v ∈ (S+Λ)∩(a+K), there exists u ∈ L such that ∥v-(s a +u)∥ ≤ 2 10 10 α 24 (2 10 10 R)ε

1 4 ; (B) 2 -2000 ≤ det L ≤ 1 + 8 √ R ;
(C) L has a basis w 1 , . . . , w 24 such that 24 i=1 ∥w i ∥ ≤ 2 3000 det[w 1 , . . . , w 24 ] , and if i, j = 1, . . . , 24, then 1 2 1000 ≤ ∥w i ∥ ≤ 2 1000 and there exists m ij ∈ Z with m ii ∈ 2Z satisfying ⟨w i , w j ⟩ -m ij ≤ 2 2 2 10 R 15 α 24 (2 10 10 R)ε 1 4 .

Step 4: conclusion. Finally, one concludes that there is an even, unimodular lattice Λ (a) close to the lattice L constructed above, where closeness is to be understood in the sense of two reduced bases of each being close to one another in norm. As in Step 4, we obtain that there exists 4 ). Moreover, we have that

X (a) ⊂ Λ (a) such that d H (S ′ , X (a) ∩ (a + K)) = O(R 20 α 24 (2 10 10 R)ε 1 
(4.22) #(X (a) ) #(Λ (a) ∩ (a + K + 2B 24 )) -1 ≤ 300 √ R .
Thus, we must only conclude that Λ (a) is congruent to the Leech lattice. In order to do so, we shall prove that λ(Λ (a) ) ≥ 2, which characterizes the Leech lattice uniquely among the 24 (classes of equivalence of) distinct even, unimodular lattices in dimension 24. In fact, suppose not, that is λ(Λ (a) ) = √ 2. We then claim that there are two vectors z 1 , z 2 ∈ X (a) ∩ (a + K) with ∥z 1 -z 2 ∥ = √ 2. Indeed, if that were not the case, associate to each z ∈ X (a) ∩ (a + K) the set

V(z) = {z ′ ∈ Λ (a) : ∥z -z ′ ∥ = √ 2}.
By assumption, V(z) ̸ = ∅, ∀z ∈ X (a) . But recall that we have supposed additionally that ∥z i -z j ∥ ≥ 2 whenever z i , z j ∈ X (a) ∩(a+K).

Let then z ∈ V(z 1 )∩V(z 2 ), z 1 , z 2 ∈ X (a) ∩(a+K). Then |z 1 -z 2 | ≤ 2 √ 2.
Consider then a sublattice Λ ′ (a) ⊂ Λ (a) such that λ(Λ ′ (a) ) = 4, and #(Λ (a) /Λ ′ (a) ) ≤ 2 100 . Define then X ′ (a) to be the points in X (a) ∩ Λ ′ (a) ∩ (a + K) at distance at least 2 from ∂(a + K). If ε is small enough, and hence V (K) is sufficiently large, we have

#(X ′ (a) ) ≥ 1 2 200 V (K). Notice that now, if z 1 , z 2 ∈ X ′ (a)
, the sets V(z 1 ) and V(z 2 ) are disjoint. Moreover, by construction,

V(z) ⊂ a + K if z ∈ X ′ (a)
. Hence, by this and the assumption that there are no two points in X (a) at distance √ 2 from one another,

#((a + K) ∩ (Λ (a) \ X (a) )) ≥ #    z∈X ′ (a) V(z)    ≥ 2#(X ′ (a) ) ≥ 2 -199 V (K).
For ε small enough, this contradicts the fact that X (a) occupies almost all of the space of Λ (a) in a + K, reflected in (4.22). Thus, there are two points z 1 , z 2 ∈ X (a) ∩ (a + K) with ∥z 1 -z 2 ∥ = √ 2, as claimed.

This, however, leads to another contradiction: for each z ∈ X (a) ∩ (a + K) there is a unique element v ∈ S ′ so that ∥v -z∥ = O(R 20 α 24 (2 10 10 R)ε 4 ) < 1 20 . Let v 1 , v 2 ∈ S ′ be the corresponding such elements to z 1 , z 2 ∈ X (a) ∩ (a + K) found above. We would have ∥v 1 -v 2 ∥ ≤ √ 2 + 1 10 , while (4.7) in the 24-dimensional case, as remarked above, gives that ∥v 1 -v 2 ∥ > 2 -1 10 for ε sufficiently small. This contradiction stems from supposing that λ(Λ (a) ) = √ 2, hence λ(Λ (a) ) ≥ 2, and therefore Λ (a) is congruent to the Leech lattice, as desired.

□

Corollaries about bin packings and general packings

This section is devoted to a series of generalizations of our main results, in particular, to the contexts of bin packings and general packings. We start by discussing a version of our results for bin packings. In more precise words, these are pakings of congruent spheres in a large convex container C. Our main result regarding such types of packings is as follows. 

-c8 R -1 2 ε with respect to the uniform density in C, x ∈ C satisfies that #(Ξ ∩ (x + K)) ≥ (1 -c8 R -1 2 ε )V (K) and d H ΦZ, Ξ ∩ (x + K) ≤ ε 1 9
where Z ⊂ E 8 and Φ is an isometry of R 8 . Moreover, the set Z has small gaps when compared to a localized version of E 8 , in the sense that

#(ΦZ) #((ΦE 8 ) ∩ (x + K)) -1 ≤ C √ R ε ,
for some absolute computable constant C > 0. 

C, x ∈ C satisfies that #(Ξ ∩ (x + K)) ≥ (1 -c24 R -1 2 ε )V (K) and d H ΦZ, Ξ ∩ (x + K) ≤ ε 1 9
where Z ⊂ Λ 24 and Φ is an isometry of R 24 .

Moreover, the set Z has small gaps when compared to a localized version of Λ 24 , in the sense that

#(ΦZ) #((ΦΛ 24 ) ∩ (x + K)) -1 ≤ C ′ √ R ε , where C ′ > 0 is an absolute computable constant. Remark 5.3. More precisely, d H ΦZ, Ξ ∩ (x + K) ≤ c8 e 1 c8
Rε ε 1 8 = ε Before moving on to the proofs of Theorems 5.1 and 5.2, we first prove that their statement are, in fact, nontrivial. This is the content of the following proposition Proposition 5.4. The following assertions hold.

(1) Given C ⊂ R 8 with inradius r(C) ≥ 16, there exists a finite packing Ξ +

√ 2 2 B 8 ⊂ C with (5.1) #Ξ ≥ 1 - 8 r(C) V (C);
(2) Given C ⊂ R 24 with inradius r(C) ≥ 48, there exists a finite packing Ξ + B 24 ⊂ C with

(5.2) #Ξ ≥ 1 - 24 r(C) V (C).
We note that for any finite packing Ξ + Proof of the proposition. We may assume that r(C)•B 8 ⊂ C, and hence

C 0 = (1-1 r(C) )C satisfies C 0 + B 8 ⊂ C. Now, there exists some x ∈ R 8 such that # C 0 ∩ (E 8 -x) ≥ V (C 0 ) = 1 - 1 r(C) 8 V (C) ≥ 1 - 8 r(C) V (C); thus Ξ = C 0 ∩ (E 8 -x)
is a suitable set for the packing construction in dimension 8. The 24-dimensional argument is entirely analogous. □

We now present a proof of Theorems 5.1 and 5.2. As the proof in the 24-dimensional context is almost identical to the 8-dimensional one, we decided to omit the former and only include the latter.

Proof of Theorems 5.1 and 5.2. We first consider auxiliary cubes of edge length ε -1 in C; namely, let Θ = {z ∈ ε -1 Z 8 : z + [0, ε -1 ] 8 ⊂ C}, and hence, as r(C) ≥ ε -2 , (5.3)

z∈Θ # (x + [0, ε -1 ) 8 ) ∩ Ξ ≥ (1 -O(ε))V (C).
For the following set of regular translates in Θ,

Θ 0 = z ∈ Θ : # (z + [0, ε -1 ) 8 ) ∩ Ξ ≥ (1 - √ ε)V [0, ε -1 ) 8 ,
an analogous argument as that in Theorem 1.5 shows that (5.4)

#Θ 0 ≥ 1 -O √ ε • #Θ.
For a fixed z ∈ Θ 0 , we consider the periodic sphere packing Rε √ ε

1 4
= O e

1 c8
Rε ε 1 8 .

As εR ε < R Rε ε 1 8 .

The small gap assertion on Z follows directly from the application of Theorem 1.5. We observe that for any absolute constant c > 0, there exists ε 0 such that c • e

1 c8
Rε ε 1 8 < ε 1 9 if ε ∈ (0, ε 0 ). Therefore, combining (5.3), (5.4) and (5.5) yields the result.

□

Finally, we comment on general packings. In that case, the statements are even less precise because arbitrarily large holes can be left out even from the densest possible packing. According to Groemer [START_REF] Groemer | Existenzsatze für Lagerungen im Euklidischen Raum[END_REF], however, the upper density of any general packing can be approximated by densities of periodic packings. In particular, if Ξ + 

2 B 8 ) ≥ 1 -ε. By the aforementioned result in [START_REF] Groemer | Existenzsatze für Lagerungen im Euklidischen Raum[END_REF], rhere exists a sequence of radii ϱ i > 1, i = 1, 2, . . . with ϱ i → ∞ such that for each ϱ i sufficiently large, we have

#(Ξ ∩ ϱ i B 8 ) > (1 -2ε)V (ϱ i B 8 ).
This shows that the bin packing Ξ ∩ ϱ i B 8 satisfies the hypotheses of Theorem 5.1 with 2ε, as long as ϱ i > R 2 2ε . Applying that result, we obtain directly the following theorem: ) ≥ 1 -ε, and K is a centered convex body containing a ball of radius R ε and having diameter diam K ≤ 2 20 R ε , then there exists a sequence of radii ϱ i > 1, i = 1, 2, . . . with ϱ i → ∞ such that for each ϱ i , with probability at least

1 -c8 R -1 2 ε
with respect to the uniform density in ϱ i B 8 , x ∈ ϱ i B 8 satisfies that #(Ξ ∩ (x + K)) ≥

(1 -c8 R -1 2 ε )V (K) and d H ΦZ i , Ξ ∩ (x + K) ≤ ε 1 9
where Z i ⊂ E 8 and Φ is an isometry of R 8 . Moreover, the sets Z i have small gaps when compared to a localized version of E 8 , in the sense that #(ΦZ i ) #((ΦE 8 ) ∩ (x + K))

-

1 ≤ C √ R ε ,
for some absolute computable constant C > 0.

The proof above may be completely adapted to the 24 dimensional case, which yields the following result on stability of general packings in dimension 24: Theorem 5.6. There exist explicitly computable values ε24 , c24 > 0 such for any ε ∈ (0, ε24 ), if R ε = | log ε| log | log ε| , then the following property holds: If a packing Ξ + B 24 ⊂ R 24 of balls satisfies ∆ upp (Ξ, B 24 ) ≥ 1 -ε, and K is a centered convex body containing a ball of radius R ε and having diameter diam K ≤ 2 140 R ε , then there exists a sequence of radii ϱ i > 1, i = 1, 2, . . . with ϱ i → ∞ such that for each ϱ i sufficiently large, with probability at least 1 -c24 R where Z i ⊂ Λ 24 and Φ is an isometry of R 24 . Moreover, the sets Z i have small gaps when compared to a localized version of Λ 24 , in the sense that #(ΦZ i ) #((ΦΛ 24 ) ∩ (x + K))

-1 ≤ C ′ √ R ε ,
where C ′ > 0 is an absolute computable constant.

1 4 -o( 1 ) 1 4

 111 as ε goes to zero. It is an interesting question whether this may be improved to d H ΦZ, Ξ ∩ (x + K) ≲ ε for all ε > 0.

4 ,

 4 3 and (C) yield that |λ i | = O(R) for i = 1, . . . , 8. It follows that there exists Z ⊂ E 8 such that d H ( S, Φ (a) Z) = O R 4 α 8 (2 20 R)ε 1 and hence (4.14) yields that d H (S ′ , Φ (a) Z) = O R 4 α 8 (2 20 R)ε 1 4 .

Theorem 5 . 1 . 2 2 B 8 ⊂

 5128 There exist explicitly computable values ε8 , c8 > 0 such for ε ∈ (0, ε8 ), R ε = | log ε| log | log ε| and a convex body C in R 8 with r(C) ≥ ε -2 , the following property holds: If a packing Ξ + √ C of balls satisfies #Ξ ≥ (1 -ε)V (C), and K is a convex body containing a ball of radius R ε and having diameter diam K ≤ 2 20 R ε , then with probability at least 1

Theorem 5 . 2 . 1 2 ε

 5212 There exist explicitly computable values ε24 , c24 > 0 such for ε ∈ (0, ε24 ), R ε = | log ε| log | log ε| and a convex body C in R 24 with r(C) ≥ ε -2 , the following property holds: If a packing Ξ+B 24 ⊂ C of balls satisfies #Ξ ≥ (1-ε)V (C), and K is a convex body containing a ball of radius R ε and having diameter diam K ≤ 2 140 R ε , then with probability at least 1-c 24 R with respect to the uniform density in

1 8 -o( 1 )

 11 holds in Theorem 5.1 as ε goes to zero. Analogously, d H ΦZ, Ξ ∩ (x + K) ≤ c24 e

1 8 2 2

 12 -o(1) also holds in Theorem 5.2 as ε → 0. It follows from (5.1) (resp (5.2)) that Theorem 5.1 (resp. Theorem 5.2) applies to the densest (finite) packing of balls of radius √ into C.

√ 2 2 B 8 ⊂

 28 C, we have #Ξ ≤ 1 + 8 r(C) V (C) by Lemma 4.1. Similarly, for any finite packing Ξ + B 24 ⊂ C, we have #Ξ ≤ 1 + 24 r(C) V (C) by Lemma 4.1.

√ 2 + 8 > 1 2 2 B 8 . 2 √ ε Rε = 1 2 ; 2 ε 2 εV

 281282222 ε -1 • Z 8 + ((z + [0, ε -1 ) 8 ) ∩ Ξ + -2 √ε, as long as ε is sufficiently small. Now, we wish to apply Theorem 1.5 to the periodic sphere packing Ξ z + √ We observe that lim ε→0 + R therefore, we may safely use R ε in place of R 2 √ ε . It follows thus from Theorem 1.5 that with probability at least 1-O R -1 , x ∈ R 8 satisfies that #(Ξ z ∩ (x + K)) ≥ 1 -O R -1 (K)and there exist a Z ⊂ E 8 and an isometry Φ of R 8 such thatd H ΦZ, Ξ z ∩ (x + K) = O e 1 c8

-1 2 ε 1 2 ε 1 2 εV

 21212 , we deduce that with probability at least 1-O R with respect to the uniformprobability measure on z + [0, ε -1 ) 8 , x ∈ z + [0, ε -1 ) 8 satisfies that x + K ⊂ int z + [0, ε -1 ) 8 , #(Ξ ∩ (x + K)) ≥ 1 -O R -(K)and there exist a Z ⊂ E 8 and an isometry Φ of R 8 such that (5.5) d H ΦZ, Ξ ∩ (x + K) = O e 1 c8

Theorem 5 . 5 . 2 2 B 8 ⊂

 5528 There exist explicitly computable values ε8 , c8 > 0 such for any ε ∈ (0, ε8 ), if R ε = | log ε| log | log ε| , then the following property holds: If a packing Ξ + √ R 8 of balls satisfies ∆ upp (Ξ, B 8

-1 2 ε 1 2ε

 21 with respect to the uniform density in ϱ i B, x ∈ ϱ i B satisfies that#(Ξ ∩ (x + K)) ≥ (1 -c24 R -)V (K) and d H ΦZ i , Ξ ∩ (x + K) ≤ ε 1 9

  ), a basis w 1 , . . . , w 8 of E 8 of length at most 2 and a basis u 1 , . . . , u 8 of L such that ∥u i -Φw i ∥ ≤ c 8 ε

	1
	2

for i = 1, . . . , 8 , where ε 8 , c 8 > 0 are computable parameters.

Theorem 1.4. If L is a lattice in R 24 such that λ(L) ≥ 1 and det L ≤ 1 + ε for 0 < ε < ε 24 , then there exist Φ ∈ O(24), basis w 1 , . . . , w 24 of Λ 24 of length at most 2 140 and a basis u 1 , . . . , u 24 of L such that ∥u i -Φw i ∥ ≤ c 24 ε 1 2

  Finally, we show that λ(Λ) ≥ 2. Let ∥z∥ ≤ 2 for a z ∈ Λ\{o}, and let z = 24 j=1 λ j zj for λ 1 , . . . , λ 24 ∈ Z. It follows from Lemma 2.3 and zj > 1 that |λ 2Z, we conclude that ∥z∥ ≥ 2, and hence λ(Λ) ≥ 2. We have already verified that Λ is even and unimodular; therefore, Λ is congruent to Λ 24 .□We are now ready to prove our first main results.Proof. of Theorems 1.3 and 1.4 For Theorem 1.3, consider the ε 0 of Proposition 3.1 and α 8 (R) L\{o} satisfies ∥x∥ ≤ 2 16 , then 0 ≥ g 8 (∥x∥) ≥ -ε, and hence Lemma 2.2 yields an integer k ≥ 1 such that | ∥x∥ 2 -2k| ≤ α 8 (2 16 ) √ ε. It follows from Proposition 3.1 that there exist a Φ ∈ O(8), a basis u 1 , . . . , u 8 of L, and a basis z 1 , . . . , z 8 of E 8 with max i ∥z i ∥ = 2 such that

	of Lemma 2.2, we assume that ε > 0 satisfies	
							α 8 (2 16 )	√	ε < ε 0 .
	Let L be a lattice in R 8 such ∆(L) ≥ (1 -ε)∆(E 8 ). First, we notice that, by scaling, we may suppose that the packing at hand is of the form L + √ 2 2 B n . Thus, λ(L) ≥ √ 2. In the present case,
	(2.3) reads as						
	As λ(L) ≥	√	1 + 2 by definition, and g 8 (t) ≤ 0 for t ≥ g 8 (∥x∥) ≥ 1 det Λ x∈L\{o} √ 2, we deduce that if x ∈ ≥ 1 -2ε.
	(3.16)								24.
	It follows from (3.14) and (3.15) that the determinant of the Gramm matrix associated to
	z1 , . . . , z8 is an integer; therefore,				
	(3.17)				(det[ z1 , . . . , z8 ]) 2 ∈ N\{0}.
	24	∥z i ∥ ≤ 1 + 2 15000 • ε	24	24	∥ũ i ∥ ≤ 1 + 2 15000 • ε	24 • 2	24•(24-1) 4	det L < 2 139 .
	i=1					i=1		

Combing Lemma 2.4 and (3.16) yields that det[z 1 , . . . , z24 ] -det[ũ 1 , . . . , ũ24 ] ≤ 2 24 M 23 • 2 10000 ε < 2 15000 ε 24 < 1 2 ; therefore, we deduce from det[ũ 1 , . . . , ũ24 ] ≤ 10 9 and (3.17) that det[z 1 , . . . , z24 ] = 1. Taking also (3.14) into account, we deduce that the lattice Λ generated by z1 , . . . , z24 is an even unimodular lattice. As ũ1 , . . . , ũ24 is an LLL basis of L, (3.16) yields that j | ≤ 2 139 • ∥z∥ ≤ 2 140 for j = 1, . . . , 24, and hence u = 24 j=1 λ j ũj ∈ L satisfies that ∥u -z∥ ≤ 24 • 2 140 • 2 15000 • ε < 1 10 by (3.16). Since ∥u∥ ≥ 2 -2ε and ∥z∥ ∈ √

√ 2 2

 2 B 8 is a general packing, then Theorem 1.1 yields that ∆ upp (Ξ, B 8 ) ≤ 1. Similarly, if Ξ + B 24 is a general packing, then Theorem 1.2 implies that ∆ upp (Ξ, B 24 ) ≤ 1. B 8 is a general sphere packing in dimension 8, such that ∆ upp (Ξ,

	√	2
	2 Suppose now Ξ + √ 2 2 √

B 8 is a periodic packing in R 8 , then its center density is at most 1, with equality if and only if Ξ is congruent to E 8 .
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