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Abstract: Monoclonal antibodies are biopharmaceuticals with a very long half-life due to the binding
of their Fc portion to the neonatal receptor (FcRn), a pharmacokinetic property that can be further
improved through engineering of the Fc portion, as demonstrated by the approval of several new
drugs. Many Fc variants with increased binding to FcRn have been found using different methods,
such as structure-guided design, random mutagenesis, or a combination of both, and are described in
the literature as well as in patents. Our hypothesis is that this material could be subjected to a machine
learning approach in order to generate new variants with similar properties. We therefore compiled
1323 Fc variants affecting the affinity for FcRn, which were disclosed in twenty patents. These data
were used to train several algorithms, with two different models, in order to predict the affinity for
FcRn of new randomly generated Fc variants. To determine which algorithm was the most robust, we
first assessed the correlation between measured and predicted affinity in a 10-fold cross-validation
test. We then generated variants by in silico random mutagenesis and compared the prediction
made by the different algorithms. As a final validation, we produced variants, not described in
any patents, and compared the predicted affinity with the experimental binding affinities measured
by surface plasmon resonance (SPR). The best mean absolute error (MAE) between predicted and
experimental values was obtained with a support vector regressor (SVR) using six features and
trained on 1251 examples. With this setting, the error on the log(KD) was less than 0.17. The obtained
results show that such an approach could be used to find new variants with better half-life properties
that are different from those already extensively used in therapeutic antibody development.

Keywords: FcRn; antibody; Fc variant; machine learning

1. Introduction

The wide therapeutic success of monoclonal antibodies (mAbs) in numerous indica-
tions is mainly due to their high target specificity and their long half-life, ranging from
3 days to more than 30 days for non-engineered mAbs. Further enhancing the half-life of
therapeutic antibodies allows a decrease in the periodicity of administration and increases
their efficacy [1–3]. Antibody half-life depends on many factors, such as the target, target-
mediated drug disposition [4], heavy-chain allotype [5,6], and presence of anti-drug Abs.
However, the predominant mechanism determining the half-life is the binding of the IgG
Fc portion to FcRn, which protects IgG from catabolism. This binding is pH-dependent due
to the presence of histidine residues in the Fc portion and glutamic acid residues in FcRn.
The high-affinity complex is formed in endosomal compartments at low pH (pH 6) but not
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extracellularly at physiological pH (pH 7.4). In order to harness this mechanism, many com-
panies have tested Fc mutations improving the binding to FcRn at acidic pH only, which
improves the endosomal recycling efficiency and enhances the pharmacokinetics of the
antibody. For example, Medimmune and Xencor have patented the M252Y/S254T/T256E
and M428L/N434S mutations, respectively [1,7,8]. Finding useful mutations is not trivial,
since increasing binding at acidic pH often results in a simultaneous increase in affinity
at neutral pH, which mitigates the desired effect [9]. Such mutations can even worsen the
pharmacokinetic properties [7,10] because of reduced antibody release from FcRn back
to the plasma. In contrast, some companies voluntarily enhance the binding to FcRn at
neutral pH in order to flush out antigens more rapidly [9,11].

To find the right mutants, alanine scanning combined with rational design was initially
the most commonly used technique [12], leading to the identification of amino acids that are
essential for the binding of Fc to FcRn. For example, mutation of the isoleucine at position
253 [12] or histidine at position 310 [13] by any other amino acid diminishes or abrogates
the binding. Conversely, substitution of asparagine at position 434 by a hydrophobic amino
acid (N434A, N434W, N434Y, N434F) or other types of amino acids (N434H, N434G, N434S,
N434Q) [9,14] enhances the binding. More powerful approaches were then developed to
find new variants, such as phage display [9], random plus directed mutagenesis [15], or
combinations of in silico methods and rational design [16,17]. However, the generated
mutants frequently appear as a combination of already described single mutations. More-
over, these methods still require experimental testing of many variants because of their low
performance in predicting the combinatorial effect of several single mutations.

Several in silico methods have been developed to predict protein/protein binding
affinity [18]. These methods are generally pre-determined equations (scoring functions)
of energy terms, and the weights of the terms are optimized by machine learning on
experimental datasets comprising various protein–protein complex structures. If these
methods perform well with the training dataset, they generally show low correlation with
a new test set, which is certainly due to the fact that the test set diverges too much from the
learning set [19,20]. Indeed, as with all machine learning settings, the final performance is
highly dependent on the quality and diversity of the learning dataset. Algorithms dedicated
to the prediction of Fc/FcRn binding affinity have been developed [21,22]. However, the
precision of these scoring functions is low, especially for evaluating the impact of multiple
mutations. Most of these algorithms suffer from too reduced learning sets. Nevertheless, a
lot of data are available regarding Fc/FcRn variants, but they have not been exploited with
these methods yet. Indeed, only a selection of variants is usually described in the scientific
literature, even in supplementary data, although a larger number of tested variants can
be retrieved from patent applications or patents. For example, researchers from Chugai
Pharma tested more than 1000 variants, but the comprehensive set of mutated variants can
only be found in some patent applications (e.g., WO2013046704), whereas only 7 variants
are described in the corresponding article [23].

In the present work, we collected these data in order to constitute a specific Fc/FcRn
dataset that could be used in machine learning algorithms. Our dataset of Fc variants
was mainly collected from the patent literature. We then trained different algorithms with
Fc/FcRn parameters calculated with bioinformatic tools, together with affinity data, and
assessed the performance of the different algorithms in a 10-fold cross-validation setting.
We also evaluated the algorithms by comparing the distribution of predicted affinities for
thousands of in silico randomly generated Fc variants. Finally, to validate the robustness
of the models, we produced three new variants with three, five, and seven mutations and
compared the predicted affinity with the experimental binding affinities measured by SPR.
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2. Results
2.1. Description of the Fc Variant Dataset and Creation of the Learning Sets

Global patent database software was queried with various keywords, such as FcRn,
antibodies, variant, mutation, or half-life, in the patents claims to specifically retrieve FcRn-
directed antibody-engineering-related documents. This request resulted in 225 documents
(patents or patent applications), which were analyzed in order to eliminate documents
that did not contain relevant examples, or that contained only variants with no amino
acid substitution directly in the interface of the Fc/FcRn complex. As of December 2020,
the dataset contained 1323 variants from 20 patents. Among them, 1099 are variants with
an affinity reported at pH 7.0 only, measured with an accurate technique (SPR), with
the same protocol (T = 25 ◦C, same buffer and procedures), and by the same company.
The 224 other variants are reported at pH 6.0 only, measured by ELISA or Amplified
Luminescent Proximity Homogeneous Assay (temperature unknown, reported as room
temperature). The Fc variants (mainly IgG1) of the dataset can have up to 12 mutations. In
this study, we built two learning sets of different sizes. The first learning set (FLS) contains
very homogeneous data: the 1099 Fc variants evaluated at pH 7.0 by SPR with the same
protocol. The second learning set (SLS) also contains the 224 variants only evaluated at
pH 6.0 in addition to the 1099 variants of the FLS. The contents of the two datasets are
summarized in Table 1. In an attempt to use all the available data, despite the pH difference,
we homogenized the data by multiplying by 68 the KD of the 224 examples reported at
pH 6.0 only, since the wild-type Fc was reported to have a KD of 1.3 × 10−6 M at pH 6.0
and 8.8 × 10−5 M at pH 7.0. Indeed, it has already been proposed by other authors that
the variation in the log(KD) with the pH was fairly linear between pH 6.0 and 7.4 [24]. The
relevance of this first approach will be further discussed in the discussion section.

Table 1. Datasets and machine learning methods used.

Datasets

Name Number of Variants Selection Criteria

First learning set (FLS) 1099 Affinities measured by SPR at 25 ◦C, pH 7.

Second learning set (SLS) 1323 FLS variants + 224 variants with affinities only
measured at pH 6.

Algorithms

Name Description

Support vector regressor (SVR)

The objective of support vector machines (SVMs) is to find the hyperplane separating
at best the two categories of instances defined in a training sample. Support vector

regression (SVR) uses the same principle, adding a constraint on the maximal distance
between the instances and the hyperplane.

Multi-linear regression (MLR) Multiple linear regression optimizes a linear function of the parameters.

Multi-layer perceptron (MLP)
An MLP is a class of feedforward artificial neural networks (ANNs) with at least three

layers of nodes (input, hidden, and output) and the neurons of hidden and output
layers using non-linear activation functions.

Random forest regressor (RFR)
A random forest is a meta-estimator that fits a number of classifying decision trees on

various sub-samples of the dataset and uses averaging to improve the predictive
accuracy and control overfitting.

2.2. Algorithms and Tested Features

The 3D structure of the 1323 Fc variants were modeled from the Fc/FcRn co-crystal
(4N0U.pdb file [13]) with PyMOL v2.5.4, and features reported to be relevant in previous
studies [25–27] were calculated with the CCP4 software v8.0.009. In total, 147 features
were initially considered (Table A1) and collected from the 1323 Fc/FcRn 3D models. In
our model, variants considered as different in the original patent can lead to duplicates
since not all amino acids are used for computing parameters. For example, if a variant has
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the S239K/T256E substitution and the other variant has the L235R/T256E substitution, it
is considered as a duplicate because the influence of the S239K or L235R substitutions is
ignored in our model. Including these positions in the study was nevertheless considered.
However, from our dataset, mutations at these two positions do not significantly alter the
affinity. Consequently, in this example, only the T256E substitution is taken into account,
and the two variants appear as duplicates in our set. We thus eliminated such duplicates,
which could bias the training results. As a result, the FLS contains 1048 examples and the
SLS 1251 examples.

We then tested different machine learning (ML) algorithms using the FLS and SLS
learning sets. Among the scikit-learn library [28], we chose four different algorithms:
support vector regressor (SVR), multi-linear regression (MLR), multi-layer perceptron
(MLP), and random forest regressor (RFR). These methods were well suited for the type
of data we had and the type of predictions we wanted to obtain. Moreover, they are quite
simple in their principles, and we wanted to see if the parameters we had in mind were
sufficient for the task. Using complex and more opaque artificial intelligence methods
hinders problems such as insufficient examples in the learning set or overfitting.

We first used the SelectFromModel method of scikit-learn. This method evaluates the
importance of each parameter based on the optimized models. The parameter with the
lowest importance is removed, and the performance of the new model is computed. If
the performance is not altered, the removal is confirmed, and removal of the next lowest
importance parameter is evaluated. The iteration stops when the performance as compared
to the initial model is altered by removal of the lowest importance parameter. Application
to our two models consistently retained 25 to 28 features for the FLS and 10 to 12 features
for the SLS. This first reduction in the number of features greatly improved the performance
(evaluated by 10-fold cross-validation) of the MLR algorithm. The performance of SVR, RFR,
and MLP remained unchanged (data not shown), but with a net gain in calculation speed.

We then removed features that were highly correlated (evaluated by the
pandas.DataFrame.corr method) and kept 11 features for the FLS and 6 for the SLS
(Figure 1). This second step slightly improved the performance of the MLR with the
FLS and slightly decreased the performance of the other algorithms with the SLS. How-
ever, this further dimension reduction is useful to prevent overfitting. Further dimension
reduction (removing of features) negatively impacted the performance of all algorithms.

We compared the results obtained for the two learning sets using the optimal number
of features: FLS with 11 features and SLS with 6 features. The most important feature of
the FLS model (35% relative importance) is the number of atoms interacting between the
β chain of FcRn (β2-microglobulin) and the Fc (Figure 1). The accessible surface area of
residue at position 255 and buried surface area of residue at position 434 of the Fc come in
second and third position, respectively (Figure 1). The other features have lower impact but
altogether account for about half of the model information (Figure 1). The most important
feature retained with the SLS model is the buried surface area of the amino acid at position
129 of FcRn, with a relative importance of 0.7.
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Figure 1. Parameter selection and machine learning performance; parameters are defined in Table A1.
(A) Impact of the features in the FLS model. (B) Scatterplots of the 10-fold cross-validation predictions
with the 4 algorithms trained on FLS. (C) Impact of the features in the SLS model. (D) Scatterplots of
the 10-fold cross-validation predictions with the 4 algorithms trained on SLS. The scatterplots show
the experimental (X axis) vs predicted (Y axis) affinities of the variants. Regression line is in red;
R2: coefficient of determination; MAE: mean absolute error; MSE: mean squared error; the features
kept for the models have been evaluated with the “SelectFromModel” of scikit-learn.

To ensure that the models were not overfitting, despite good learning performance on
the entire training datasets, we used a 10-fold cross-validation scheme. We performed this
cross-validation test several times for each algorithm to ensure that scores were consistent
between different runs, because each run of the algorithms can produce different results.
With optimized parameters (see Materials and Methods), the consistent regression scores of
the M1048/11 model (R2) obtained with MLR, MLP, SVR, and RFR are on average 0.45, 0.60,
0.75, and 0.84, respectively, and 0.77, 0.80, 0.82, and 0.88, respectively, with the M1251/6
model (Figure 2). The scores of MAE (mean absolute error) and MSE (mean squared error)
are also ranked according to the best regression score, with the best scores obtained for
the RFR. Although regression scores are better with the SLS model due to the larger range
of KD values in the training set, MAE and MSE increased significantly for all algorithms
compared to the FLS model. We also shuffled KD values in order to control the fit of our
models. As expected, the correlation dropped drastically with R2 below 0 (R2 with no
intercept can result in a negative value) while MAE and MSE increased dramatically at the
same time for all algorithms. We also tested a model that also incorporated the energy terms
(60 parameters) calculated from the FoldX suite v5.0 [29] with all variants and following
the same procedure of removing duplicates and correlated features, but the performance
did not improve, and the best correlation obtained was 0.89 with 11 parameters with the
RFR (Figure A1).
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2.3. Randomly Generated Variants Predicted Affinity Comparison with the Four Algorithms

For evaluating the capacity of our two models and algorithms to generalize to new
data, we tested both models with the four algorithms with in silico randomly generated Fc
variants. We generated two sets of more than 8000 variants containing three (mut3 set) and
five (mut5 set) random mutations. These mutations were introduced at positions 251, 252,
253, 254, 255, 256, 257, 285, 286, 288, 307, 308, 309, 310, 311, 314, 428, 433, 434, 435, and 436
because the calculated features of our models only included these positions. We generated
one additional set of 1000 Fc variants containing six to eight mutations (mut8 set), with
not too much destabilizing, or with a positive effect on their own according to our dataset.
The number of mutations was limited to eight because the effect of close mutations on the
stability and production of the antibody is hard to predict.
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We first compared the distribution of the predicted log KD values for the SLS (1323 vari-
ants, σ 1.47, log KD values range: [−1.03, −8.49] at pH 7.0) by the four algorithms (Figure 2).
With the FLS model (Figure 2 top), the four algorithms have the same overall distributions
but fail to reproduce the same distribution of log KD values as the SLS set, in contrast to the
SLS models (Figure 2 bottom).

Our two models did not reproduce the same distribution of log KD values with the
three sets of random mutants. With our two models, all the algorithms predicted that
random variants of the mut3 and mut5 sets, but also variants of the mut8 set, would have
on average less affinity at pH 7.0 than variants of the DS with a tendency to predict higher
affinity for the mut8 set. The standard deviations and calculated log KD means are far
higher for the SLS model than for the M1048/11 model.

Interestingly, different algorithms yield different distributions of log KD, especially
for the set of random variants (Figure 2). The RFR has the lowest log KD mean predictions
with the SLS and is the only algorithm that does not predict higher log KD mean for the
mut8 set. The MLP predicted the same type of distribution of KD values as RFR with a
tendency to predict higher values. The MLR is the algorithm with the highest standard
deviation with the two models. Finally, the SVR showed a much narrower range of values
with a standard deviation decreasing with the number of mutations with the first model in
contrast to the second model.

2.4. Experimental Validation

To further validate our prediction method, we predicted the affinity of three new
variants, which to our knowledge have never been tested. We then produced them and
measured their affinities. We chose variants within our sets of in silico randomly generated
variants (A3 (M252W/M428K/N434W), B5 (T256Y/H285Q/N286D/V308A/N434Y), C7
(T256E/N286H/K288E/V308P/L309D/N434Y/Y436K)) and introduced them in
tocilizumab. For the control, we also generated two tocilizumab variants reported in
the patent application: T8 (M252Y/N286E/T307Q/V308P/Q311A/N434Y/Y436V) and T3
(M252Y/T307D/N434Y). Our first two variants contain at least one substitution reported
as a single destabilizing mutation in patents: the M428K for the mut3 variant and T256Y
for the mut5 variant. The variant with seven mutations is a variant with a high predicted
affinity by all the algorithms from the set of eight mutations. Affinities of the variants
T8 and T3 measured in our SPR assay are close to the affinities reported in the patent
application (Figures A2 and A3). Overall, with the FLS and SLS, the four algorithms predict
the affinity within a good range and are in good correlation with the measured affinities
(Table 2, Figures A2 and A3). In accordance with the 10-fold cross-validation results, the
model poorly performs on the WT (tocilizumab) because it belongs to a class of antibodies
with very weak binding for FcRn at neutral pH, whereas our model has better predictive
potency for antibodies with affinities ranging from 1 × 10−9 to 1 × 10−6 for FcRn at neutral
pH. The correlation of the six predicted vs actual measured affinities is better with the SLS
model for the RFR, SVR, and MLR algorithms, in contrast to the MLP. However, the MAE
is reduced for all algorithms (Table 3). For the new variants we produced, the SLS model
has better performance than the FLS for all algorithms, especially for the SVR (Table 3).
Overall, with the SLS model, the SVR algorithm has the best performance followed by the
RFR, MLR, and MLP.
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Table 2. Comparison of predicted versus experimental affinities at pH 7.0 for 3 randomly generated
variants. The 3 variants have 3, 5, and 7 mutations and are predicted with the two different models
and with 4 different algorithms. Measured affinities at pH 6.0 are also shown. Cells in green, yellow,
and red correspond to very good (log err = |log(pred) − log(KD)| ≤ 0.1), correct (0.1 < log err ≤ 1),
and incorrect (log err > 1) predictions, respectively. Statistical analysis is given in Table 3.

Tocilizumab * T8 * T3 * C7 B5 A3

Mutations None

M252Y/N286E/
T307Q/V308P/
Q311A/N434Y/

Y436V

M252Y/T307D/
N434Y

T256E/N286H/
K288E/V308P/
L309D/N434Y/

Y436K

T256Y/H285Q/
N286D/V308A/

N434Y

M252W/M428K/
N434W

KD at pH7
(patent) 8.8 × 10−5 4.4 × 10−9 2.1 × 10−7

KD at pH7
(this work) NB 7.8 × 10−9 3.8 × 10−7 1.6 × 10−7 6.2 × 10−7 5.7 × 10−7

KD at pH6 (this
work) 3.8 × 10−7 1.3 × 10−9 1.3 × 10−8 3.4 × 10−8 4.5 × 10−8 1.1 × 10−8

Prediction setting
SVR/FLS 6.91 × 10−7 7.29 × 10−9 2.54 × 10−8 1.90 × 10−7 1.90 × 10−7 1.40 × 10−7

SVR/SLS 6.70 × 10−6 1.30 × 10−8 9.50 × 10−8 2.30 × 10−7 4.20 × 10−7 4.20 × 10−7

MLR/FLD 6.20 × 10−7 1.30 × 10−8 8.00 × 10−8 1.80 × 10−8 4.40 × 10−8 1.30 × 10−7

MLR/SLS 1.00 × 10−4 5.40 × 10−8 6.50 × 10−8 7.40 × 10−8 1.40 × 10−7 2.70 × 10−7

MLP/FLS 8.00 × 10−7 1.30 × 10−8 8.00 × 10−8 8.70 × 10−8 1.30 × 10−7 7.70 × 10−8

MLP/SLS 1.90 × 10−5 4.40 × 10−8 6.00 × 10−8 6.80 × 10−7 7.10 × 10−6 6.90 × 10−7

RFR/FLS 1.20 × 10−6 3.80 × 10−9 2.47 × 10−7 6.00 × 10−8 1.60 × 10−7 3.30 × 10−7

RFR/SLS 3.40 × 10−6 4.10 × 10−9 1.50 × 10−7 4.90 × 10−8 2.10 × 10−7 3.20 × 10−7

* Tocilizumab, T8, and T3 were removed from the learning set in each prediction setting.

Table 3. Comparison between MAE, Pearson correlation coefficient, and maximum error between
predictions at pH 7.0 and measurements for the 6 antibodies of Table 2 or only for the 3 produced
variants (Mut3, Mut5, and Mut8).

SVR/FLS SVR/SLS MLR/FLS MLR/SLS MLP/FLS MLP/SLS RFR/FLS RFR/SLS

Log KD MAE
(6 Abs) 0.64 0.19 0.81 0.11 0.63 0.26 0.52 0.47

Pearson correlation coefficient
(6 Abs) 0.88 0.98 0.91 0.89 0.98 0.84 0.91 0.97

Log KD Maximum error
(6 Abs) 2.11 1.12 2.15 1.09 2.04 1.06 1.87 1.41

Log KD MAE
(A, B, C Abs) 0.35 0.05 0.91 0.44 0.60 0.59 0.42 0.41

Pearson correlation coefficient
(A, B, C Abs) −0.45 0.99 0.81 0.83 0.35 0.55 0.88 0.96

Log KD Maximum error
(A, B, C Abs) 0.61 0.17 1.15 0.65 0.87 1.06 0.59 0.51

3. Discussion

Altogether, the present results show that it is possible to computationally predict
the affinity for FcRn of Fc variants mutated at the interface of the Fc/FcRn complex with
reasonable precision (+/−1 log). To do so, we carefully collected as many as possible
publicly available Fc variants/FcRn affinity data by scrutinizing the scientific literature and
relevant patents. Since differences exist between protocols used to measure the affinities,
we built two different datasets. The smallest one includes only values obtained using a
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single protocol; the largest includes all available values. To build the two models based
on these data, a large number of features relevant to the affinity prediction of a protein
complex as well as features relevant for this particular type of complex were included.
We also minimized as much as possible the overfitting by eliminating features that were
too correlated between them in each learning set. To further optimize our procedure, we
tested four algorithms. The results of these tests showed that random forest has the best
capacity to adapt to our learning sets as compared to MLP, MLR, or SVR algorithms (with
our hyper-parameters). Indeed, regression, MAE, and MSE scores are always better with
this algorithm, regardless of the model used. This study also shows that the learning set
has a high impact on the importance of features and on average predictions.

Not only are the models important but also the algorithms, as they show some vari-
ability in the predicted values and their distributions. It is, however, difficult to explain the
variability between algorithms since their parameters are different. For example, the larger
standard deviation of the MLR algorithm is probably due to its mathematical function,
which is less sensitive to threshold effects than are MLP, SVR, and RFR. The MLP algorithm
has been tuned with the tanh function (sigmoid function) and with an alpha parameter of
20 to limit overfitting. An alpha parameter of 0.1 would yield a larger range of value, but it
would have a tendency to overfit the data. Algorithms with this kind of threshold are more
relevant from a biochemical point of view, since the affinity of Fc variants is usually limited
to 1 × 10−10, especially for random variants. This is important to keep in mind because
if two algorithms are compared and have more or less the same performance in a cross-
validation scheme, then it becomes difficult to decide which of them will better generalize
to new data. It is also possible that an algorithm with good performance overfits to data,
even with a cross-validation test, and will consequently have less capacity to generalize
to new data than an algorithm with lesser performance on the same cross-validation test.
For example, the RFR has the best performance in the cross-validation test, but the SVR
has better performance with new variants. Moreover, the MLR has the worst performance
on the cross-validation test, but it performs slightly better at predicting affinities for new
variants than the MLP.

3.1. Model FLS

Our entire dataset is composed of 1323 variants. However, we built our FLS model
selecting only homogenous data, derived from an accurate technique (SPR), in order to
limit noise that could be induced by outliers. The drawback is that the FLS model is biased
towards a particular type of variants, namely variants engineered to have better affinity at
pH 7.0. Indeed, despite our efforts to get a maximum of unique variants from the patent
database, our approach is still limited by the number and quality of data. For example,
the exact KD value of a variant described as a non-binder cannot be known, yet the impact
of its mutations would certainly increase performance. In addition, companies tend to
only publish good results, i.e., variants with better affinity, and not those with decreased
affinity. This results in a dataset with a majority of variants with high affinities for FcRn,
which decreases the performance in estimating low affinities. The quality and consistency
of data is also a prerequisite of any model. However, the accuracy of measures may be low,
especially for variants that are discarded from the first round of selection. Moreover, there
are also sometimes discrepancies between studies reporting affinities. For example, in a
recent study [17], mutation N434S has been reported to reduce the binding affinity of Fc to
FcRn, whereas in patent US20100204454 this sole mutation has been reported to enhance
the binding by threefold. Another effect of the dataset bias is that not only KD but also the
weight of the features could be over- or underestimated. The difference in importance of
the features in this model can be explained by the composition of the FLS. Indeed, most of
the variants of this learning set contain a hydrophobic amino acid at position 434, but they
do not systematically have mutations in the region of the Fc near the β2m, which changes
the number of interactions between the two molecules. As a result, this feature has a higher
importance than the buried surface of residue 434 of the Fc. The relative importance of
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features with this model is also due to the absence of variants containing mutations at
positions that are deeply buried (252, 253, and 310), explaining the very low importance
(although crucial for the binding of the complex) of these positions in this model.

3.2. Model SLS

It has been shown that antibodies binding to FcRn with affinities lower than 860 nM
at physiologic pH have reduced half-lives [30]. Having data on the same variants at both
acidic and physiological pH could help to better quantify the impact of this parameter.
However, affinities at physiological pH are almost always reported as “no binding” because
of the low sensitivity of the methods. It has been proposed that the pH impact was fairly
linear between pH 6.0 and 7.4 on a log scale [24]; hence, a constant value could suffice
to approximate the pH change. We made the second model M1251/6 with KD at pH 7.0
based on this assumption, since all new examples of this second model were only reported
at pH 6.0, or with no binding measure at neutral pH, and were mainly variants with a
single destabilization mutation introducing an interpretation bias for the pH parameter
(the algorithms interpret the diminution of pH as a factor reducing the binding). We
homogenized the data by lowering the KD of the examples reported only at pH 6.0 by
68-fold, since tocilizumab was reported to have a KD of 1.3 × 10−6 M at pH 6.0 and
8.8 × 10−5 M at pH 7.0. Although this is a crude approximation, the correlation increased
for all algorithms. However, the MAE and MSE increased, probably because the 68-fold
change in KD cannot be applied to all variants, or because these new examples had their
affinities measured by less sensitive techniques such as ELISA. Indeed, we also evaluated
the prediction of the four algorithms with our two models. The same transformation was
applied on the reported affinities at pH 6.0, but the resulting precision for the described
affinity was only +/−1.5 log KD by the four algorithms with the second model (Table A2).
In addition, if several histidine mutations are considered, the KD change between the
two pH values could be more drastic. In model M1251/6, the buried surface area of the
FcRn amino acid 129 is the most discriminant feature (importance: 0.7) because most
variants with no hydrophobic mutation at this position have decreased affinities for FcRn
in the SLS. The weights of other features calculated by MLR, MLP, and SVR are negligible,
which explains why the correlation curves of the second model show very little change in
predicted KDs for large, measured KD ranges and can cluster into two groups.

Cross-validation is the classical test to evaluate if a model does not overfit. Even
if the algorithms performed well with the two models, both models are biased towards
variants engineered to have high affinity at neutral pH as explained above. To evaluate the
impact of this bias, we tested whether the models would reproduce the same distribution
of predicted KD of the learning set with the random variant sets (mut3 and mut5 sets). All
the algorithms predicted ranges of values of lower affinity for the random variant sets than
the learning set of the M1251/6 model (Figure 2). Conversely, the M1048/11 model tends
to stick to the range of value of the learning set except for the SVR (Figure 2).

In contrast to the SVR and MLR, the RFR and MLP algorithms did not predict higher
affinities within the set of eight “good” random mutations in which only individual mu-
tations shown to increase the affinity were kept. However, some mutation combinations
incorporated in this set might have decreased affinities.

We also compared the first 20 variants for each set with the higher predicted affinity,
considering each algorithm. Most of the experimental Fc variants with significantly better
affinity for FcRn at neutral pH have hydrophobic substitution at position 434, whereas
histidine 310 and isoleucine 253 are not substituted. However, none of the algorithms tested
shows this pattern in its top 20 ranked variants (Table A3).

We challenged our models with mutation combinations not diverging too much from
the examples of the learning set. We choose two variants from the set of three and five
mutations, each containing a destabilizing mutation. To ensure that we would be able
to measure an affinity for these variants, they also had to contain at least one mutation
which showed great improvement in affinity (such as the N434Y or N434W mutations) to
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counterbalance the negative effect on affinity. Although the chosen mutants do not diverge
too much from the learning sets, the results of the experimental measurements show that
we are able to accurately predict their affinities.

3.3. Further Improvements

Although our experimental validations show the reliability of the method, the robust-
ness and predictive power of the models would be significantly increased with a larger
experimental validation set. In addition, our DS comprises 1323 variants, but this number
could be larger if we had taken into account intramolecular interaction or long-range effects.
Indeed, some mutations that are not at the interaction surface can impact the affinity of
the complex. For example, Booth et al. [16] hypothesized that M428L and A378V could
stabilize the 250 pseudo-helix. They also proposed in their study to complement the posi-
tively charged N-terminal region of the FcRn β-domain with T256, T307, H285, N286, and
N315. Other general descriptors to consider could be the electrostatic complementarity
between regions of the complex or the rigidity of the 250 pseudo-helix. It has also been
shown that the destabilization of the region of the Fc at low pH could be responsible for
higher binding [31]. Although the reasons are not very well understood, Monnet et al. [15]
showed that the positions that are not in the interaction site (264 and 389) could favorably
impact the binding. More intriguingly, they have also shown that mutations far away from
the interaction site (P230S, P228L, or P228R) could enhance FcRn binding, although not
consistently. In the same way, Ternant et al. [5] reported the influence of four different
G1m allotypes regarding FcRn binding, although amino acids 214, 356, and 358 are distant
from the interaction site. Some of these mutations outside of the Fc/FcRn interaction site
have been introduced for optimizing binding to Fcγ receptors (or already exist in natural
sequences), and they could still have an impact on FcRn binding. These new parameters
could thus enhance the performance of our method.

As explained at the beginning of this paper, we chose using rather simple methods
for learning because we did not know whether we had enough data, because we wanted
to avoid overfitting, and because we wanted to demonstrate the validity of the global
approach. The results bring positive answers to these three points, and it would now be
worth trying more complex methods such as evolutionary algorithms or neural networks.

Finally, we focused on predicting the overall affinity (KD) because there were too few
data on kon and koff. However, to obtain variants with desirable properties, kon and koff
should also be taken into account [24]. Indeed, it has been shown that the endosomal
trafficking time of the antibody was very short (a half-life time less than 10 min). Thus,
it would be important for an antibody to have a very high kon at pH 6.0 rather than a
low koff, which could prevent the antibody from being released back into the circulation.
However, generated variants with a slow off-rate exhibited an extended half-life in mice
and cynomolgus monkeys [16]. In any case, integrating these data could help to improve
in silico design methods.

4. Materials and Methods
4.1. Antibody Expression and Purification

T3, T8, A3, B5, and C7 antibodies were produced by RD-Biotech (Besançon, France)
following standard procedures by transient transfection of CHO cells. Antibodies were
purified with protein A.

4.2. Surface Plasmon Resonance

SPR experiments were performed on Bia3000 apparatus at 25 ◦C in 50 mM phosphate
buffer with 150 mM NaCl containing 0.05% P20 surfactant (GE Healthcare, Chicago, IL,
USA) adjusted at pH 7 or pH 6 as required. hFcRn (Immunitrack, Copenhagen, Denmark)
was immobilized in acetate buffer at pH 5 on CM5 sensor chips at a level lower than 200 RU.
Increasing concentrations of antibody variants were injected over 180 s. After a dissociation
phase of 400 s, the FcRn-coated sensor chip was regenerated by a pulse of 10 mM NaOH and
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PBS. The multi-cycle kinetics were evaluated by a bivalent model fitting (BiaEvaluation 4.1.1,
GE Healthcare). Each variant was analyzed on freshly immobilized hFcRn.

4.3. Structure-Based Feature Extraction

To model the 3D structures of the Fc mutants, the 4N0U.pdb file was used as a
template. Using the mutagenesis tool from PyMOL v2.5.4, the 3D structure of the complex
between FcRn and each mutant from the dataset was generated and exported as a pdb
file. CCP4 software v8.0.009 was used to compute the different features used in the
algorithms. Features calculated for each residue by CCP4 were: BSA (buried surface area),
ASA (accessible surface area), and solvation energy. General features calculated by CCP4
for the whole complex were: number of interface residues, ∆G (solvation energy gain score),
p-value (hydrophobic score), BE (theoretical binding energy), and number of hydrogen and
salt bridges between interfaces. Total number of hydrogen bonds (cutoff: 3.5 angstroms),
total number of salt bridges (cutoff: 4.0 angstroms), total number of contacts between amino
acids’ cα (cutoff: 4.0 angstroms), average distance between hydrogen bonds and number of
paired hydrophilic amino acids were also added in addition to CCP4-calculated parameters.

Algorithms from scikit-learn v0.20.3 were used. Data were standardized.
The estimator’s parameters were set to:
RFR: (n_estimators = ‘warn’, criterion = ‘mse’, max_depth = 10, min_samples_split = 2,

min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, max_features = ‘auto’,
max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_split = None, boot-
strap = True, oob_score = False, n_jobs = None, random_state = None, verbose = 0,
warm_start = False).

SVR: (kernel = ‘rbf’, degree = 3, gamma = ‘auto_deprecated’, coef0 = 0.0, tol = 0.001,
C = 1.0, epsilon = 0.1, shrinking = True, cache_size = 200, verbose = False, max_iter = −1).

MLPRegressor: (solver = ‘lbfgs’, alpha = 20, hidden_layer_sizes = (20,2),
random_state = 10, activation = ‘tanh’, max_iter = 4000, tol = 0.00001,
early_stopping = True).

LR: (fit_intercept = True, normalize = False, copy_X = True, n_jobs = None).

5. Conclusions

Affinity prediction is one of the toughest bioinformatics challenges, and although
progress has been made, there is still room for improvement. We chose to focus on one
particular protein complex type for which many data were available. The results of the
training show that this kind of approach is appropriate and also that the diversity of the
training set is crucial to avoid bias and to correctly evaluate the importance of the different
features. Despite all the limitations of our models, we were able to correctly predict the
affinities of the three variants that were produced in this study. However, the obtained
results do not allow us to make an educated choice between the methods. The SLS-trained
algorithms appear to perform better than the FLS-trained ones, both in 10-fold cross-
validation (Figure 1) and in predicting the affinities of the new variants (Tables 2 and 3).
However, the MLS and MLP algorithms perform better in predicting the new variants, but
the RFR algorithm is better in the 10-fold cross-validation. Thus, deciding between the
three methods will require more validations.

The advantage of this method is that it does not require initial knowledge to generate
in silico random variants and select mutants with high affinity. However, like most artificial-
intelligence-based methods, it does not explain how various combinations of mutations
can modulate the affinity of the Fc to FcRn. Still, it provides new interesting combinations
of mutations while reducing the number of variants to test.
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Appendix A

Table A1. List of descriptors investigated.

No. Feature Name Meaning

1 FcSOLV251A Solvation effect of the 251 residue in Å2

2 FcSOLV252A Solvation effect of the 252 residue in Å2

3 FcSOLV253A Solvation effect of the 253 residue in Å2

4 FcSOLV254A Solvation effect of the 254 residue in Å2

5 FcSOLV309A Solvation effect of the 309 residue in Å2

6 FcSOLV310A Solvation effect of the 310 residue in Å2

7 FcSOLV311A Solvation effect of the 311 residue in Å2

8 FcSOLV314A Solvation effect of the 314 residue in Å2

9 FcSOLV428A Solvation effect of the 428 residue in Å2

10 FcSOLV433A Solvation effect of the 433 residue in Å2

11 FcSOLV434A Solvation effect of the 434 residue in Å2

12 FcSOLV435A Solvation effect of the 435 residue in Å2

13 FcSOLV436A Solvation effect of the 436 residue in Å2

14 FcSOLV253B Solvation effect of the 253 residue in Å2

15 FcSOLV255B Solvation effect of the 255 residue in Å2

16 FcSOLV256B Solvation effect of the 256 residue in Å2

17 FcSOLV257B Solvation effect of the 257 residue in Å2

18 FcSOLV285B Solvation effect of the 285 residue in Å2

19 FcSOLV286B Solvation effect of the 286 residue in Å2

20 FcSOLV288B Solvation effect of the 288 residue in Å2

21 FcSOLV307B Solvation effect of the 307 residue in Å2

22 FcSOLV308 Solvation effect of the 308 residue in Å2

23 FcSOLV309B Solvation effect of the 309 residue in Å2

24 FcSOLV310B Solvation effect of the 310 residue in Å2

25 FcBSA251A Buried surface of the 251 residue in Å2
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Table A1. Cont.

No. Feature Name Meaning

26 FcBSA252A Buried surface of the 252 residue in Å2

27 FcBSA253A Buried surface of the 253 residue in Å2

28 FcBSA254A Buried surface of the 254 residue in Å2

29 FcBSA309A Buried surface of the 309 residue in Å2

30 FcBSA310A Buried surface of the 310 residue in Å2

31 FcBSA311A Buried surface of the 311 residue in Å2

32 FcBSA314A Buried surface of the 314 residue in Å2

33 FcBSA428A Buried surface of the 428 residue in Å2

34 FcBSA433A Buried surface of the 433 residue in Å2

35 FcBSA434A Buried surface of the 434 residue in Å2

36 FcBSA435A Buried surface of the 435 residue in Å2

37 FcBSA436A Buried surface of the 436 residue in Å2

38 FcBSA253B Buried surface of the 253 residue in Å2

39 FcBSA255B Buried surface of the 255 residue in Å2

40 FcBSA256B Buried surface of the 256 residue in Å2

41 FcBSA257B Buried surface of the 257 residue in Å2

42 FcBSA285B Buried surface of the 285 residue in Å2

43 FcBSA286B Buried surface of the 286 residue in Å2

44 FcBSA288B Buried surface of the 288 residue in Å2

45 FcBSA307B Buried surface of the 307 residue in Å2

46 FcBSA308 Buried surface of the 308 residue in Å2

47 FcBSA309B Buried surface of the 309 residue in Å2

48 FcBSA310B Buried surface of the 310 residue in Å2

49 FcASA251A Surface accessible to the solvent of the 251 residue in Å2

50 FcASA252A Surface accessible to the solvent of the 252 residue in Å2

51 FcASA253A Surface accessible to the solvent of the 253 residue in Å2

52 FcASA254A Surface accessible to the solvent of the 254 residue in Å2

53 FcASA309A Surface accessible to the solvent of the 309 residue in Å2

54 FcASA310A Surface accessible to the solvent of the 310 residue in Å2

55 FcASA311A Surface accessible to the solvent of the 311 residue in Å2

56 FcASA314A Surface accessible to the solvent of the 314 residue in Å2

57 FcASA428A Surface accessible to the solvent of the 428 residue in Å2

58 FcASA433A Surface accessible to the solvent of the 433 residue in Å2

59 FcASA434A Surface accessible to the solvent of the 434 residue in Å2

60 FcASA435A Surface accessible to the solvent of the 435 residue in Å2

61 FcASA436A Surface accessible to the solvent of the 436 residue in Å2

62 FcASA253B Surface accessible to the solvent of the 253 residue in Å2

63 FcASA255B Surface accessible to the solvent of the 255 residue in Å2
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Table A1. Cont.

No. Feature Name Meaning

64 FcASA256B Surface accessible to the solvent of the 256 residue in Å2

65 FcASA257B Surface accessible to the solvent of the 257 residue in Å2

66 FcASA285B Surface accessible to the solvent of the 285 residue in Å2

67 FcASA286B Surface accessible to the solvent of the 286 residue in Å2

68 FcASA288B Surface accessible to the solvent of the 288 residue in Å2

69 FcASA307B Surface accessible to the solvent of the 307 residue in Å2

70 FcASA308B Surface accessible to the solvent of the 308 residue in Å2

71 FcASA309B Surface accessible to the solvent of the 309 residue in Å2

72 FcASA310B Surface accessible to the solvent of the 310 residue in Å2

73 FcRnSOLV88A Solvation effect of the 88

74 FcRnSOLV112A Solvation effect of the 112

75 FcRnSOLV113A Solvation effect of the 113

76 FcRnSOLV114A Solvation effect of the 114

77 FcRnSOLV115A Solvation effect of the 115

78 FcRnSOLV116A Solvation effect of the 116

79 FcRnSOLV128A Solvation effect of the 128

80 FcRnSOLV129A Solvation effect of the 129

81 FcRnSOLV130A Solvation effect of the 130

82 FcRnSOLV131A Solvation effect of the 131

83 FcRnSOLV132A Solvation effect of the 132

84 FcRnSOLV133A Solvation effect of the 133

85 FcRnSOLV135A Solvation effect of the 135

86 FcRnSOLV1B Solvation effect of the 1

87 FcRnSOLV2B Solvation effect of the 2

88 FcRnSOLV3B Solvation effect of the 3

89 FcRnSOLV4B Solvation effect of the 4

90 FcRnSOLV85B Solvation effect of the 85

91 FcRnSOLV86B Solvation effect of the 86

92 FcRnBSA88A Buried surface of the 88

93 FcRnBSA112A Buried surface of the 112

94 FcRnBSA113A Buried surface of the 113

95 FcRnBSA114A Buried surface of the 114

96 FcRnBSA115A Buried surface of the 115

97 FcRnBSA116A Buried surface of the 116

98 FcRnBSA128A Buried surface of the 128

99 FcRnBSA129A Buried surface of the 129

100 FcRnBSA130A Buried surface of the 130

101 FcRnBSA131A Buried surface of the 131

102 FcRnBSA132A Buried surface of the 132
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Table A1. Cont.

No. Feature Name Meaning

103 FcRnBSA133A Buried surface of the 133

104 FcRnBSA135A Buried surface of the 135

105 FcRnBSA1B Buried surface of the 1

106 FcRnBSA2B Buried surface of the 2

107 FcRnBSA3B Buried surface of the 3

108 FcRnBSA4B Buried surface of the 4

109 FcRnBSA85B Buried surface of the 85

110 FcRnBSA86B Buried surface of the 86

111 FcRnASA88A Surface accessible to the solvent of the 88

112 FcRnASA112A Surface accessible to the solvent of the 112

113 FcRnASA113A Surface accessible to the solvent of the 113

114 FcRnASA114A Surface accessible to the solvent of the 114

115 FcRnASA115A Surface accessible to the solvent of the 115

116 FcRnASA116A Surface accessible to the solvent of the 116

117 FcRnASA128A Surface accessible to the solvent of the 128

118 FcRnASA129A Surface accessible to the solvent of the 129

119 FcRnASA130A Surface accessible to the solvent of the 130

120 FcRnASA131A Surface accessible to the solvent of the 131

121 FcRnASA132A Surface accessible to the solvent of the 132

122 FcRnASA133A Surface accessible to the solvent of the 133

123 FcRnASA135A Surface accessible to the solvent of the 135

124 FcRnASA1B Surface accessible to the solvent of the 1

125 FcRnASA2B Surface accessible to the solvent of the 2

126 FcRnASA3B Surface accessible to the solvent of the 3

127 FcRnASA4B Surface accessible to the solvent of the 4

128 FcRnASA85B Surface accessible to the solvent of the 85

129 FcRnASA86B Surface accessible to the solvent of the 86

130 nbaainterFcA Number of atoms interacting between Fc and the FcRns alpha chain

131 nbaainterFcB Number of atoms interacting between Fc and the FcRns beta chain

132 nbliaiHFcA Number of hydrogen bonds between Fc and the FcRns alpha chain

133 nbliaiHFcB Number of hydrogen bonds between Fc and the FcRns beta chain

134 nbsaltFcA Number of salt bridges between Fc and the FcRns alpha chain

135 nbsaltFcB Number of salt bridges between Fc and the FcRns beta chain

136 interFace_solv_en_FcA Solvation energy gain score calculated by PISA between Fc and the FcRns alpha chain

137 interface_solv_en_FcB Solvation energy gain score calculated by PISA between Fc and the FcRns beta chain

138 p_valueFcA Hydrophobic score calculated by PISA between Fc and the FcRns alpha chain

139 p_valueFcB Hydrophobic score calculated by PISA between Fc and the FcRns beta chain

140 delta_g_theoriqueFcA Theoretical binding energy score calculated by PISA between Fc and the FcRns alpha chain
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No. Feature Name Meaning

141 delta_g_theoriqueFcB Theoretical binding energy score calculated by PISA between Fc and the FcRns beta chain

142 Bond Strength Average distance between bonds

143 paired hydrophilic Number of paired hydrophilic amino acids

144 pH pH

145 nbr_bounds_h Total number of hydrogen bonds

146 nbr_ bounds _s Total number of salt bridges

147 nbr_ bounds _c Total number of contacts between amino acids’ cα atoms

A and B stand for FcRns α chain and β chain, respectively.

Table A2. Predictions of affinities at pH 7 of variants for which the measure has been done at pH 6.0
reported in [17].

Variant # KD pH 7
Predicted

KD pH 7
Computed

KD pH 6
Measured

RFR

T256E/T307Q 4.06 × 10−5 1.58 × 10−5 2.32 × 10−7

T256D/T307W 1.78 × 10−4 1.15 × 10−5 1.69 × 10−7

M252Y/T256D 3.23 × 10−5 6.39 × 10−6 9.40 × 10−8

M252Y/T256E 1.87 × 10−6 8.70 × 10−6 1.28 × 10−7

M252Y/T307W 2.31 × 10−5 8.02 × 10−6 1.18 × 10−7

M252Y/T256D/T307Q 5.48 × 10−7 7.82 × 10−6 1.15 × 10−7

M252Y/T256E/T307Q 6.69 × 10−7 1.48 × 10−5 2.18 × 10−7

MLP

T256E/T307Q 4.45 × 10−5 1.58 × 10−5 2.32 × 10−7

T256D/T307W 4.50 × 10−5 1.15 × 10−5 1.69 × 10−7

M252Y/T256D 8.66 × 10−6 6.39 × 10−6 9.40 × 10−8

M252Y/T256E 8.74 × 10−6 8.70 × 10−6 1.28 × 10−7

M252Y/T307W 1.33 × 10−6 8.02 × 10−6 1.18 × 10−7

M252Y/T256D/T307Q 1.46 × 10−6 7.82 × 10−6 1.15 × 10−7

M252Y/T256E/T307Q 1.48 × 10−6 1.48 × 10−5 2.18 × 10−7

MLR

T256E/T307Q 9.25 × 10−5 1.58 × 10−5 2.32 × 10−7

T256D/T307W 1.03 × 10−4 1.15 × 10−5 1.69 × 10−7

M252Y/T256D 7.33 × 10−5 6.39 × 10−6 9.40 × 10−8

M252Y/T256E 6.92 × 10−5 8.70 × 10−6 1.28 × 10−7

M252Y/T307W 3.00 × 10−5 8.02 × 10−6 1.18 × 10−7

M252Y/T256D/T307Q 2.81 × 10−5 7.82 × 10−6 1.15 × 10−7

M252Y/T256E/T307Q 2.72 × 10−5 1.48 × 10−5 2.18 × 10−7

SVR

T256E/T307Q 9.25 × 10−5 1.58 × 10−5 2.32 × 10−7

T256D/T307W 1.03 × 10−4 1.15 × 10−5 1.69 × 10−7

M252Y/T256D 7.33 × 10−5 6.39 × 10−6 9.40 × 10−8

M252Y/T256E 6.92 × 10−5 8.70 × 10−6 1.28 × 10−7

M252Y/T307W 3.00 × 10−5 8.02 × 10−6 1.18 × 10−7

M252Y/T256D/T307Q 2.81 × 10−5 7.82 × 10−6 1.15 × 10−7

M252Y/T256E/T307Q 2.72 × 10−5 1.48 × 10−5 2.18 × 10−7



Int. J. Mol. Sci. 2023, 24, 5724 18 of 40

Table A3. For the two different models and the four different algorithms, 20 variants predicted with
the highest KD.

Model FL

RFR Learning_Set

Variant # Mutations KD

833 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.46 × 10−9

831 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.61 × 10−9

802 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.70 × 10−9

829 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.70 × 10−9

832 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.77 × 10−9

800 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.87 × 10−9

801 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.06 × 10−9

828 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.06 × 10−9

568 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 4.24 × 10−9

1 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 4.55 × 10−9

2 239K, 252W, 286E, 308P, 428Y, 434Y 6.50 × 10−9

3 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 6.51 × 10−9

567 252Y, 286E, 307Q, 308P, 311A, 434Y 6.78 × 10−9

527 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 7.15 × 10−9

5 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 7.45 × 10−9

7 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 7.47 × 10−9

8 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 7.63 × 10−9

4 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 7.68 × 10−9

565 252Y, 286E, 308P, 428I, 434Y 7.92 × 10−9

6 239K, 252Y, 286E, 308P, 428I, 434Y 7.97 × 10−9

MLP learning_set

Variant # Mutations KD

568 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 7.65 × 10−9

1 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 7.65 × 10−9

29 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 7.98 × 10−9

5 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 8.07 × 10−9

802 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 8.19 × 10−9

829 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 8.19 × 10−9

800 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 8.32 × 10−9

801 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 8.32 × 10−9

828 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 8.32 × 10−9

831 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 8.66 × 10−9

832 239K, 252W, 286E, 308P, 428Y, 434Y 8.66 × 10−9

19 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 8.69 × 10−9

47 252Y, 286E, 307Q, 308P, 311A, 434Y 8.72 × 10−9
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Model FL

24 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 8.72 × 10−9

495 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 8.72 × 10−9

833 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 9.13 × 10−9

567 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 9.44 × 10−9

527 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 9.44 × 10−9

3 252Y, 286E, 308P, 428I, 434Y 1.02 × 10−8

570 239K, 252Y, 286E, 308P, 428I, 434Y 1.09 × 10−8

MLR learning_set

Variant # Mutations KD

544 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 5.13 × 10−9

530 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 6.30 × 10−9

244 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 7.93 × 10−9

247 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 8.08 × 10−9

343 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 8.10 × 10−9

543 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 9.51 × 10−9

568 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 9.56 × 10−9

1 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 9.69 × 10−9

5 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 9.77 × 10−9

567 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 1.10 × 10−8

527 239K, 252W, 286E, 308P, 428Y, 434Y 1.11 × 10−8

29 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 1.11 × 10−8

47 252Y, 286E, 307Q, 308P, 311A, 434Y 1.12 × 10−8

833 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 1.16 × 10−8

24 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 1.18 × 10−8

495 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 1.18 × 10−8

19 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 1.27 × 10−8

802 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 1.31 × 10−8

829 252Y, 286E, 308P, 428I, 434Y 1.31 × 10−8

536 239K, 252Y, 286E, 308P, 428I, 434Y 1.45 × 10−8

SVR learning_set

Variant # Mutations KD

831 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 4.90 × 10−9

832 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 4.90 × 10−9

800 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 5.24 × 10−9

801 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 5.24 × 10−9

828 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 5.24 × 10−9

833 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 5.87 × 10−9

2 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 6.92 × 10−9
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Model FL

3 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 7.08 × 10−9

802 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 7.28 × 10−9

829 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 7.28 × 10−9

5 239K, 252W, 286E, 308P, 428Y, 434Y 8.13 × 10−9

565 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 8.71 × 10−9

6 252Y, 286E, 307Q, 308P, 311A, 434Y 8.71 × 10−9

7 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 8.71 × 10−9

8 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 8.71 × 10−9

763 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 1.02 × 10−8

818 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 1.02 × 10−8

783 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 1.02 × 10−8

567 252Y, 286E, 308P, 428I, 434Y 1.20 × 10−8

527 239K, 252Y, 286E, 308P, 428I, 434Y 1.20 × 10−8

RFR 3mut

Variant # Mutations KD

22,717 L309Q, N434D, Y436L 3.14 × 10−8

27,638 H310N, H435G, Y436L 3.72 × 10−8

21,828 M252R, H310E, H433N 4.01 × 10−8

23,131 H310E, N434L, Y436K 4.03 × 10−8

26,871 H310R, N434F, Y436K 4.18 × 10−8

22,177 K288G, H310G, N434W 5.50 × 10−8

27,282 Q311R, M428F, N434F 6.17 × 10−8

21,781 K288G, H310G, H433T 6.34 × 10−8

23,175 M252W, I253D, N286R 7.10 × 10−8

25,334 M252R, K288S, H433S 7.47 × 10−8

20,956 M252R, I253G, H433G 8.59 × 10−8

26,312 I253D, H433A, Y436K 8.70 × 10−8

25,958 K288A, H310T, N434H 8.87 × 10−8

23,441 Q311R, M428N, N434F 9.07 × 10−8

28,117 K288R, H310D, H433Y 9.16 × 10−8

27,621 T256W, H435G, Y436N 9.43 × 10−8

20,844 P257V, N286D, T307Y 9.79 × 10−8

27,672 M252Q, T256N, H433Y 9.80 × 10−8

20,219 M252K, T256Y, H433N 1.01 × 10−7

22,805 N286R, T307R, Y436I 1.02 × 10−7

MLP 3mut

Variant # Mutations KD

25,115 L309Q, N434D, Y436L 9.91 × 10−9
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Model FL

23,790 H310N, H435G, Y436L 1.18 × 10−8

27,256 M252R, H310E, H433N 1.30 × 10−8

27,568 H310E, N434L, Y436K 1.36 × 10−8

27,086 H310R, N434F, Y436K 1.40 × 10−8

22,280 K288G, H310G, N434W 1.42 × 10−8

21,044 Q311R, M428F, N434F 1.49 × 10−8

20,905 K288G, H310G, H433T 1.61 × 10−8

21,807 M252W, I253D, N286R 1.64 × 10−8

22,937 M252R, K288S, H433S 1.67 × 10−8

22,638 M252R, I253G, H433G 1.71 × 10−8

20,841 I253D, H433A, Y436K 1.74 × 10−8

25,914 K288A, H310T, N434H 1.76 × 10−8

21,608 Q311R, M428N, N434F 1.77 × 10−8

27,445 K288R, H310D, H433Y 1.79 × 10−8

26,619 T256W, H435G, Y436N 1.79 × 10−8

21,178 P257V, N286D, T307Y 1.83 × 10−8

24,744 M252Q, T256N, H433Y 1.84 × 10−8

21,756 M252K, T256Y, H433N 1.85 × 10−8

21,891 N286R, T307R, Y436I 1.85 × 10−8

MLR 3mut

Variant # Mutations KD

23,046 L309Q, N434D, Y436L 8.56 × 10−10

23,821 H310N, H435G, Y436L 1.90 × 10−9

20,005 M252R, H310E, H433N 1.90 × 10−9

21,325 H310E, N434L, Y436K 2.65 × 10−9

20,606 H310R, N434F, Y436K 2.72 × 10−9

25,146 K288G, H310G, N434W 3.56 × 10−9

23,660 Q311R, M428F, N434F 3.96 × 10−9

23,971 K288G, H310G, H433T 4.53 × 10−9

26,091 M252W, I253D, N286R 4.68 × 10−9

27,856 M252R, K288S, H433S 4.85 × 10−9

25,298 M252R, I253G, H433G 5.72 × 10−9

28,072 I253D, H433A, Y436K 5.80 × 10−9

28,288 K288A, H310T, N434H 5.88 × 10−9

27,058 Q311R, M428N, N434F 6.28 × 10−9

21,705 K288R, H310D, H433Y 6.42 × 10−9

25,221 T256W, H435G, Y436N 6.85 × 10−9
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Model FL

22,944 P257V, N286D, T307Y 6.95 × 10−9

22,506 M252Q, T256N, H433Y 7.37 × 10−9

25,804 M252K, T256Y, H433N 7.59 × 10−9

27,795 N286R, T307R, Y436I 7.70 × 10−9

SVR 3mut

Variant # Mutations KD

22,166 L309Q, N434D, Y436L 1.09 × 10−7

25,716 H310N, H435G, Y436L 1.16 × 10−7

26,932 M252R, H310E, H433N 1.26 × 10−7

20,339 H310E, N434L, Y436K 1.42 × 10−7

26,518 H310R, N434F, Y436K 1.44 × 10−7

27,880 K288G, H310G, N434W 1.46 × 10−7

21,576 Q311R, M428F, N434F 1.51 × 10−7

27,672 K288G, H310G, H433T 1.51 × 10−7

22,597 M252W, I253D, N286R 1.58 × 10−7

20,333 M252R, K288S, H433S 1.64 × 10−7

22,168 M252R, I253G, H433G 1.64 × 10−7

23,757 I253D, H433A, Y436K 1.69 × 10−7

21,145 K288A, H310T, N434H 1.70 × 10−7

20,273 Q311R, M428N, N434F 1.71 × 10−7

27,350 K288R, H310D, H433Y 1.72 × 10−7

22,409 T256W, H435G, Y436N 1.73 × 10−7

24,464 P257V, N286D, T307Y 1.73 × 10−7

26,610 M252Q, T256N, H433Y 1.74 × 10−7

27,113 M252K, T256Y, H433N 1.76 × 10−7

23,602 N286R, T307R, Y436I 1.77 × 10−7

RFR 5mut

Variant # Mutations KD

31,995 M252K, H285Q, T307D, L309K, H433Y 1.24 × 10−8

32,898 M252R, N286Q, H310R, M428I, H435N 1.49 × 10−8

31,966 M252W, I253H, N286D, Q311K, H433P 1.67 × 10−8

37,526 L251I, L309K, H433N, N434Q, Y436L 1.72 × 10−8

36,771 I253F, N286R, T307Q, M428F, H435E 1.85 × 10−8

33,965 L251A, M252K, L309K, L314S, H433Y 1.94 × 10−8

37,863 L309K, Q311E, H433G, N434H, Y436R 2.09 × 10−8

32,948 S254N, T307A, L309K, H433T, Y436R 2.45 × 10−8

30,050 T256E, N286Q, Q311N, N434H, Y436N 2.53 × 10−8

35,099 I253D, P257S, Q311E, M428Y, H433D 2.64 × 10−8
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Model FL

38,056 N286E, L309D, L314H, H435N, Y436N 2.90 × 10−8

34,584 L251D, M252Q, N286D, V308A, H433A 2.97 × 10−8

32,714 M252W, S254T, V308F, H310R, H435S 2.98 × 10−8

35,697 M252K, N286R, L309Q, H435N, Y436F 3.14 × 10−8

31,821 L251H, M252Q, N286H, Q311N, H433A 3.34 × 10−8

37,707 T256S, Q311K, L314R, M428W, N434W 3.44 × 10−8

38,325 K288T, V308A, L309K, H433G, Y436K 3.68 × 10−8

30,121 I253W, N286Y, L309V, M428F, H433D 3.72 × 10−8

32,551 M252F, P257W, H285E, Q311E, N434H 3.84 × 10−8

34,867 H285E, N286Y, L309Y, M428H, H433Y 3.88 × 10−8

MLP 5mut

Variant # Mutations KD

36,622 M252K, H285Q, T307D, L309K, H433Y 5.13 × 10−9

38,413 M252R, N286Q, H310R, M428I, H435N 7.18 × 10−9

32,294 M252W, I253H, N286D, Q311K, H433P 7.20 × 10−9

34,399 L251I, L309K, H433N, N434Q, Y436L 7.91 × 10−9

35,394 I253F, N286R, T307Q, M428F, H435E 8.58 × 10−9

34,608 L251A, M252K, L309K, L314S, H433Y 8.68 × 10−9

31,958 L309K, Q311E, H433G, N434H, Y436R 8.91 × 10−9

34,236 S254N, T307A, L309K, H433T, Y436R 9.17 × 10−9

36,343 T256E, N286Q, Q311N, N434H, Y436N 9.26 × 10−9

35,234 I253D, P257S, Q311E, M428Y, H433D 9.47 × 10−9

38,030 N286E, L309D, L314H, H435N, Y436N 9.53 × 10−9

30,188 L251D, M252Q, N286D, V308A, H433A 9.83 × 10−9

35,109 M252W, S254T, V308F, H310R, H435S 9.98 × 10−9

32,632 M252K, N286R, L309Q, H435N, Y436F 1.00 × 10−8

30,914 L251H, M252Q, N286H, Q311N, H433A 1.04 × 10−8

35,398 T256S, Q311K, L314R, M428W, N434W 1.05 × 10−8

32,539 K288T, V308A, L309K, H433G, Y436K 1.05 × 10−8

35,860 I253W, N286Y, L309V, M428F, H433D 1.06 × 10−8

35,943 M252F, P257W, H285E, Q311E, N434H 1.07 × 10−8

37,387 H285E, N286Y, L309Y, M428H, H433Y 1.07 × 10−8

MLR 5mut

Variant # Mutations KD

36,120 M252K, H285Q, T307D, L309K, H433Y 4.79 × 10−10

31,116 M252R, N286Q, H310R, M428I, H435N 5.14 × 10−10

37,434 M252W, I253H, N286D, Q311K, H433P 1.40 × 10−9

33,162 L251I, L309K, H433N, N434Q, Y436L 1.44 × 10−9
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35,517 I253F, N286R, T307Q, M428F, H435E 1.66 × 10−9

37,684 L251A, M252K, L309K, L314S, H433Y 1.88 × 10−9

37,301 L309K, Q311E, H433G, N434H, Y436R 1.88 × 10−9

30,930 S254N, T307A, L309K, H433T, Y436R 1.94 × 10−9

36,097 T256E, N286Q, Q311N, N434H, Y436N 1.95 × 10−9

38,430 I253D, P257S, Q311E, M428Y, H433D 1.97 × 10−9

38,202 N286E, L309D, L314H, H435N, Y436N 2.09 × 10−9

37,863 L251D, M252Q, N286D, V308A, H433A 2.09 × 10−9

30,545 M252W, S254T, V308F, H310R, H435S 2.15 × 10−9

31,317 M252K, N286R, L309Q, H435N, Y436F 2.25 × 10−9

34,813 L251H, M252Q, N286H, Q311N, H433A 2.34 × 10−9

36,045 T256S, Q311K, L314R, M428W, N434W 2.40 × 10−9

38,596 K288T, V308A, L309K, H433G, Y436K 2.55 × 10−9

33,006 I253W, N286Y, L309V, M428F, H433D 2.69 × 10−9

33,288 M252F, P257W, H285E, Q311E, N434H 2.72 × 10−9

33,871 H285E, N286Y, L309Y, M428H, H433Y 2.75 × 10−9

SVR 5mut

Variant # Mutations KD

31,131 M252K, H285Q, T307D, L309K, H433Y 6.12 × 10−8

37,573 M252R, N286Q, H310R, M428I, H435N 8.12 × 10−8

34,132 M252W, I253H, N286D, Q311K, H433P 8.81 × 10−8

32,677 L251I, L309K, H433N, N434Q, Y436L 9.49 × 10−8

38,342 I253F, N286R, T307Q, M428F, H435E 1.10 × 10−7

31,134 L251A, M252K, L309K, L314S, H433Y 1.12 × 10−7

37,613 L309K, Q311E, H433G, N434H, Y436R 1.23 × 10−7

36,014 S254N, T307A, L309K, H433T, Y436R 1.29 × 10−7

32,967 T256E, N286Q, Q311N, N434H, Y436N 1.48 × 10−7

30,390 I253D, P257S, Q311E, M428Y, H433D 1.52 × 10−7

31,621 N286E, L309D, L314H, H435N, Y436N 1.58 × 10−7

30,551 L251D, M252Q, N286D, V308A, H433A 1.63 × 10−7

32,946 M252W, S254T, V308F, H310R, H435S 1.68 × 10−7

32,204 M252K, N286R, L309Q, H435N, Y436F 1.74 × 10−7

30,254 L251H, M252Q, N286H, Q311N, H433A 1.75 × 10−7

31,168 T256S, Q311K, L314R, M428W, N434W 1.77 × 10−7

32,902 K288T, V308A, L309K, H433G, Y436K 1.78 × 10−7

30,243 I253W, N286Y, L309V, M428F, H433D 1.79 × 10−7

30,417 M252F, P257W, H285E, Q311E, N434H 1.83 × 10−7

30,211 H285E, N286Y, L309Y, M428H, H433Y 1.84 × 10−7
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Model FL

RFR 8mut

Variant # Mutations KD

30,849 M252W, T256P, N286K, L309K, Q311A, M428F, Y436G 5.67 × 10−9

30,198 L251R, I253T, H285N, N286D, L309K, M428F, N434D 1.21 × 10−8

30,864 L251T, M252Y, I253P, N286K, V308F, L309R, H433G 1.52 × 10−8

30,501 M252Y, I253E, H285I, N286D, V308A, N434H 1.73 × 10−8

30,454 M252Y, N286Q, K288F, L309W, Q311L, N434Y 1.77 × 10−8

30,390 R255Y, P257N, H285D, V308A, L309K, M428W, N434H 1.94 × 10−8

30,947 M252W, I253Y, R255F, N286E, L309D, Q311K, H433P 2.32 × 10−8

30,169 L251T, I253D, R255S, T256S, Q311A, M428F, H433G 2.60 × 10−8

30,358 M252E, P257V, L309K, M428L, H433F, H435K 2.85 × 10−8

30,582 P257A, H285I, T307W, M428W, N434H 2.85 × 10−8

30,338 R255Q, N286K, T307Q, L309P, M428F, H433I, H435R 3.57 × 10−8

30,211 H285E, N286K, T307R, L309E, Q311K, M428W, N434F 3.59 × 10−8

30,974 I253S, T256S, H285D, N286E, V308A, M428L, H435E 3.94 × 10−8

30,696 M252D, N286W, L309R, Q311V, N434H, H435K 4.33 × 10−8

30,401 M252W, I253D, P257A, V308F, L309E, N434W 4.42 × 10−8

30,416 I253P, T256V, N286R, Q311K, M428W, N434F 4.79 × 10−8

30,777 M252W, P257T, N286H, T307F, L309G, H433L 5.22 × 10−8

30,280 M252V, R255Q, T256N, N286H, M428F, N434Y, Y436K 5.47 × 10−8

30,913 L251P, T256P, N286Q, L309K, Q311I, Y436G 5.66 × 10−8

30,948 L251G, T256N, N286E, V308A, L309K, H433L, N434T 5.66 × 10−8

MLP 8mut

Variant # Mutations KD

30,126 M252W, T256P, N286K, L309K, Q311A, M428F, Y436G 5.75 × 10−9

30,501 L251R, I253T, H285N, N286D, L309K, M428F, N434D 6.73 × 10−9

30,603 L251T, M252Y, I253P, N286K, V308F, L309R, H433G 7.09 × 10−9

30,947 M252Y, I253E, H285I, N286D, V308A, N434H 8.43 × 10−9

30,070 M252Y, N286Q, K288F, L309W, Q311L, N434Y 9.86 × 10−9

30,582 R255Y, P257N, H285D, V308A, L309K, M428W, N434H 1.09 × 10−8

30,198 M252W, I253Y, R255F, N286E, L309D, Q311K, H433P 1.14 × 10−8

30,822 L251T, I253D, R255S, T256S, Q311A, M428F, H433G 1.18 × 10−8

30,554 M252E, P257V, L309K, M428L, H433F, H435K 1.37 × 10−8

30,950 P257A, H285I, T307W, M428W, N434H 1.40 × 10−8

30,154 R255Q, N286K, T307Q, L309P, M428F, H433I, H435R 1.46 × 10−8

30,942 H285E, N286K, T307R, L309E, Q311K, M428W, N434F 1.47 × 10−8

30,842 I253S, T256S, H285D, N286E, V308A, M428L, H435E 1.49 × 10−8

30,454 M252D, N286W, L309R, Q311V, N434H, H435K 1.52 × 10−8



Int. J. Mol. Sci. 2023, 24, 5724 26 of 40

Table A3. Cont.

Model FL

30,259 M252W, I253D, P257A, V308F, L309E, N434W 1.55 × 10−8

30,042 I253P, T256V, N286R, Q311K, M428W, N434F 1.59 × 10−8

30,782 M252W, P257T, N286H, T307F, L309G, H433L 1.60 × 10−8

30,241 M252V, R255Q, T256N, N286H, M428F, N434Y, Y436K 1.62 × 10−8

30,171 L251P, T256P, N286Q, L309K, Q311I, Y436G 1.64 × 10−8

30,365 L251G, T256N, N286E, V308A, L309K, H433L, N434T 1.68 × 10−8

MLR 8mut

Variant # Mutations KD

30,835 M252W, T256P, N286K, L309K, Q311A, M428F, Y436G 2.34 × 10-11

30,259 L251R, I253T, H285N, N286D, L309K, M428F, N434D 8.60 × 10-11

30,184 L251T, M252Y, I253P, N286K, V308F, L309R, H433G 3.28 × 10−10

30,558 M252Y, I253E, H285I, N286D, V308A, N434H 4.17 × 10−10

30,317 M252Y, N286Q, K288F, L309W, Q311L, N434Y 5.83 × 10−10

30,395 R255Y, P257N, H285D, V308A, L309K, M428W, N434H 6.03 × 10−10

30,787 M252W, I253Y, R255F, N286E, L309D, Q311K, H433P 6.18 × 10−10

30,968 L251T, I253D, R255S, T256S, Q311A, M428F, H433G 1.34 × 10−9

30,762 M252E, P257V, L309K, M428L, H433F, H435K 1.36 × 10−9

30,253 P257A, H285I, T307W, M428W, N434H 1.68 × 10−9

30,500 R255Q, N286K, T307Q, L309P, M428F, H433I, H435R 2.17 × 10−9

30,926 H285E, N286K, T307R, L309E, Q311K, M428W, N434F 2.26 × 10−9

30,023 I253S, T256S, H285D, N286E, V308A, M428L, H435E 2.27 × 10−9

30,515 M252D, N286W, L309R, Q311V, N434H, H435K 2.49 × 10−9

30,087 M252W, I253D, P257A, V308F, L309E, N434W 2.51 × 10−9

30,209 I253P, T256V, N286R, Q311K, M428W, N434F 3.25 × 10−9

30,832 M252W, P257T, N286H, T307F, L309G, H433L 3.36 × 10−9

30,947 M252V, R255Q, T256N, N286H, M428F, N434Y, Y436K 3.49 × 10−9

30,179 L251P, T256P, N286Q, L309K, Q311I, Y436G 3.51 × 10−9

30,577 L251G, T256N, N286E, V308A, L309K, H433L, N434T 3.74 × 10−9

SVR 8mut

Variant # Mutations KD

30,401 M252W, T256P, N286K, L309K, Q311A, M428F, Y436G 1.53 × 10−7

30,245 L251R, I253T, H285N, N286D, L309K, M428F, N434D 1.71 × 10−7

30,105 L251T, M252Y, I253P, N286K, V308F, L309R, H433G 1.84 × 10−7

30,625 M252Y, I253E, H285I, N286D, V308A, N434H 1.91 × 10−7

30,022 M252Y, N286Q, K288F, L309W, Q311L, N434Y 1.92 × 10−7

30,142 R255Y, P257N, H285D, V308A, L309K, M428W, N434H 1.96 × 10−7

30,501 M252W, I253Y, R255F, N286E, L309D, Q311K, H433P 2.02 × 10−7

30,097 L251T, I253D, R255S, T256S, Q311A, M428F, H433G 2.03 × 10−7
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30,974 M252E, P257V, L309K, M428L, H433F, H435K 2.04 × 10−7

30,684 P257A, H285I, T307W, M428W, N434H 2.04 × 10−7

30,186 R255Q, N286K, T307Q, L309P, M428F, H433I, H435R 2.04 × 10−7

30,955 H285E, N286K, T307R, L309E, Q311K, M428W, N434F 2.04 × 10−7

30,582 I253S, T256S, H285D, N286E, V308A, M428L, H435E 2.05 × 10−7

30,012 M252D, N286W, L309R, Q311V, N434H, H435K 2.05 × 10−7

30,905 M252W, I253D, P257A, V308F, L309E, N434W 2.05 × 10−7

30,502 I253P, T256V, N286R, Q311K, M428W, N434F 2.05 × 10−7

30,785 M252W, P257T, N286H, T307F, L309G, H433L 2.05 × 10−7

30,685 M252V, R255Q, T256N, N286H, M428F, N434Y, Y436K 2.06 × 10−7

30,261 L251P, T256P, N286Q, L309K, Q311I, Y436G 2.06 × 10−7

30,206 L251G, T256N, N286E, V308A, L309K, H433L, N434T 2.06 × 10−7

Model FLS

RFR Learning_Set

Variant # Mutations KD

833 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.66 × 10−9

831 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.79 × 10−9

832 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.92 × 10−9

802 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.09 × 10−9

829 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.09 × 10−9

800 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.24 × 10−9

801 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.39 × 10−9

828 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 4.39 × 10−9

568 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 4.71 × 10−9

1 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 5.40 × 10−9

567 252Y, 286E, 307Q, 308P, 311A, 434Y 7.07 × 10−9

5 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 7.27 × 10−9

2 239K, 252W, 286E, 308P, 428Y, 434Y 7.34 × 10−9

7 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 7.60 × 10−9

527 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 7.90 × 10−9

6 239K, 252Y, 286E, 308P, 428I, 434Y 7.95 × 10−9

8 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 8.12 × 10−9

4 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 8.41 × 10−9

3 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 8.59 × 10−9

565 252Y, 286E, 308P, 428I, 434Y 1.03 × 10−8

MLP learning_set

Variant # Mutations KD

20 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 2.96 × 10−8

90 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.42 × 10−8
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40 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 3.42 × 10−8

566 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.51 × 10−8

570 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.51 × 10−8

569 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.51 × 10−8

204 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.51 × 10−8

119 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 3.51 × 10−8

110 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 3.51 × 10−8

44 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 3.51 × 10−8

131 252Y, 286E, 307Q, 308P, 311A, 434Y 3.51 × 10−8

581 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 3.54 × 10−8

23 239K, 252W, 286E, 308P, 428Y, 434Y 3.54 × 10−8

19 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 3.55 × 10−8

568 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 3.57 × 10−8

1 239K, 252Y, 286E, 308P, 428I, 434Y 3.57 × 10−8

5 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 3.59 × 10−8

53 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 3.80 × 10−8

98 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 3.80 × 10−8

59 252Y, 286E, 308P, 428I, 434Y 3.84 × 10−8

MLR learning_set

Variant # Mutations KD

684 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 9.96 × 10−9

163 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 1.79 × 10−8

167 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 2.03 × 10−8

216 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 2.03 × 10−8

182 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 2.55 × 10−8

128 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 2.60 × 10−8

94 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 2.64 × 10−8

231 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 2.64 × 10−8

120 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 2.68 × 10−8

495 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 2.69 × 10−8

24 252Y, 286E, 307Q, 308P, 311A, 434Y 2.69 × 10−8

192 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 2.84 × 10−8

127 239K, 252W, 286E, 308P, 428Y, 434Y 2.84 × 10−8

145 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 2.85 × 10−8

496 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 2.89 × 10−8

235 239K, 252Y, 286E, 308P, 428I, 434Y 2.89 × 10−8

130 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 2.89 × 10−8

77 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 2.89 × 10−8
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Model FL

82 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 2.89 × 10−8

107 252Y, 286E, 308P, 428I, 434Y 2.89 × 10−8

SVR learning_set

Variant # Mutations KD

243 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 7.25 × 10−9

276 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 7.26 × 10−9

208 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y, 436V 1.29 × 10−8

8 235R, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 1.31 × 10−8

7 235K, 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 1.31 × 10−8

6 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 1.31 × 10−8

565 235R, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 1.31 × 10−8

4 235K, 239K, 250V, 252Y, 286E, 307Q, 308P, 311A, 434Y, 436V 1.31 × 10−8

800 252Y, 286E, 307Q, 308P, 311A, 428I, 434Y 1.34 × 10−8

828 239K, 252Y, 270F, 286E, 307Q, 308P, 311A, 428I, 434Y 1.34 × 10−8

801 252Y, 286E, 307Q, 308P, 311A, 434Y 1.34 × 10−8

802 239K, 252Y, 270F, 286E, 307Q, 308P, 428I, 434Y 1.34 × 10−8

829 239K, 252W, 286E, 308P, 428Y, 434Y 1.34 × 10−8

633 239K, 252Y, 270F, 286E, 308P, 387E, 428I, 434Y 1.36 × 10−8

59 239K, 252Y, 286E, 307Q, 308P, 311A, 434Y 1.42 × 10−8

43 239K, 252Y, 286E, 308P, 428I, 434Y 1.67 × 10−8

38 239K, 252Y, 270F, 286E, 308P, 428I, 434Y 1.67 × 10−8

37 239K, 252Y, 270F, 286E, 308P, 311A, 428I, 434Y 1.67 × 10−8

42 239K, 252W, 256E, 286E, 308P, 428Y, 434Y 1.67 × 10−8

41 252Y, 286E, 308P, 428I, 434Y 1.67 × 10−8

RFR 3mut

Variant # Mutations KD

24,936 H310L, N434H, Y436Q 3.32 × 10−8

23,681 T307K, H310D, N434F 3.80 × 10−8

22,900 P257H, H310G, N434F 4.03 × 10−8

22,177 K288G, H310G, N434W 4.59 × 10−8

24,569 H310V, Q311Y, N434F 4.84 × 10−8

23,303 H310D, H433S, N434F 4.85 × 10−8

24,652 H310E, Q311G, N434F 4.88 × 10−8

22,597 H285W, H310E, N434W 4.98 × 10−8

20,285 P257I, T307G, N434F 5.05 × 10−8

23,152 I253E, H310A, N434W 5.38 × 10−8

27,018 H310A, M428K, N434F 6.27 × 10−8

25,958 K288A, H310T, N434H 6.53 × 10−8
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26,256 R255K, T307K, N434F 8.46 × 10−8

23,826 S254A, T307D, N434F 9.36 × 10−8

26,389 R255K, T307F, N434W 9.95 × 10−8

21,973 H285T, L309N, N434F 1.04 × 10−7

27,024 M252F, L309D, N434H 1.17 × 10−7

26,949 T256L, V308P, N434W 1.26 × 10−7

20,052 L309G, M428L, N434F 1.27 × 10−7

23,029 R255Y, T307S, N434H 1.28 × 10−7

MLP 3mut

Variant # Mutations KD

20,285 H310L, N434H, Y436Q 2.53 × 10−8

23,242 T307K, H310D, N434F 2.71 × 10−8

26,256 P257H, H310G, N434F 3.19 × 10−8

22,900 K288G, H310G, N434W 3.77 × 10−8

20,052 H310V, Q311Y, N434F 4.56 × 10−8

26,389 H310D, H433S, N434F 5.99 × 10−8

23,681 H310E, Q311G, N434F 6.05 × 10−8

22,715 H285W, H310E, N434W 6.82 × 10−8

23,826 P257I, T307G, N434F 6.94 × 10−8

21,576 I253E, H310A, N434W 7.11 × 10−8

20,293 H310A, M428K, N434F 7.80 × 10−8

21,093 K288A, H310T, N434H 8.15 × 10−8

22,166 R255K, T307K, N434F 8.20 × 10−8

21,460 S254A, T307D, N434F 9.15 × 10−8

27,689 R255K, T307F, N434W 1.10 × 10−7

20,625 H285T, L309N, N434F 1.12 × 10−7

26,125 M252F, L309D, N434H 1.15 × 10−7

22,533 T256L, V308P, N434W 1.15 × 10−7

26,616 L309G, M428L, N434F 1.16 × 10−7

20,670 R255Y, T307S, N434H 1.21 × 10−7

MLR 3mut

Variant # Mutations KD

20,285 H310L, N434H, Y436Q 2.00 × 10−8

23,242 T307K, H310D, N434F 2.28 × 10−8

26,256 P257H, H310G, N434F 3.15 × 10−8

22,900 K288G, H310G, N434W 3.73 × 10−8

21,460 H310V, Q311Y, N434F 5.02 × 10−8

20,052 H310D, H433S, N434F 5.07 × 10−8



Int. J. Mol. Sci. 2023, 24, 5724 31 of 40

Table A3. Cont.

Model FL

23,681 H310E, Q311G, N434F 5.34 × 10−8

23,826 H285W, H310E, N434W 6.64 × 10−8

20,625 P257I, T307G, N434F 6.95 × 10−8

26,616 I253E, H310A, N434W 7.54 × 10−8

20,293 H310A, M428K, N434F 7.62 × 10−8

21,093 K288A, H310T, N434H 7.68 × 10−8

23,441 R255K, T307K, N434F 7.70 × 10−8

27,689 S254A, T307D, N434F 8.09 × 10−8

25,977 R255K, T307F, N434W 8.61 × 10−8

21,576 H285T, L309N, N434F 8.84 × 10−8

26,389 M252F, L309D, N434H 8.84 × 10−8

22,715 T256L, V308P, N434W 9.07 × 10−8

22,166 L309G, M428L, N434F 9.34 × 10−8

27,485 R255Y, T307S, N434H 1.02 × 10−7

SVR 3mut

Variant # Mutations KD

22,166 H310L, N434H, Y436Q 3.15 × 10−8

22,050 T307K, H310D, N434F 3.63 × 10−8

26,109 P257H, H310G, N434F 5.30 × 10−8

20,052 K288G, H310G, N434W 1.15 × 10−7

23,242 H310V, Q311Y, N434F 1.21 × 10−7

23,889 H310D, H433S, N434F 1.28 × 10−7

25,411 H310E, Q311G, N434F 1.40 × 10−7

22,409 H285W, H310E, N434W 1.66 × 10−7

25,263 P257I, T307G, N434F 1.69 × 10−7

21,432 I253E, H310A, N434W 1.70 × 10−7

22,743 H310A, M428K, N434F 1.78 × 10−7

22,378 K288A, H310T, N434H 1.82 × 10−7

20,285 R255K, T307K, N434F 1.88 × 10−7

23,826 S254A, T307D, N434F 1.93 × 10−7

24,481 R255K, T307F, N434W 2.00 × 10−7

21,447 H285T, L309N, N434F 2.01 × 10−7

23,303 M252F, L309D, N434H 2.05 × 10−7

28,002 T256L, V308P, N434W 2.15 × 10−7

26,447 L309G, M428L, N434F 2.32 × 10−7

25,009 R255Y, T307S, N434H 2.35 × 10−7

RFR 5mut

Variant # Mutations KD

37,435 S254G, T256Q, H310I, Q311W, N434H 1.07 × 10−8
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Table A3. Cont.

Model FL

35,309 M252Q, R255K, L309N, N434H, Y436R 1.16 × 10−8

35,463 H285Y, N286R, H310N, H433Y, N434H 1.36 × 10−8

37,379 S254T, K288G, H310S, M428V, N434F 2.91 × 10−8

38,616 M252R, P257E, T307Q, V308L, N434H 4.50 × 10−8

31,621 I253E, V308Y, H310D, L314I, N434Y 5.33 × 10−8

30,182 I253T, K288N, V308T, H310D, N434W 5.58 × 10−8

37,088 R255K, T256Q, V308H, L314S, N434Y 5.96 × 10−8

31,104 S254A, V308D, H310I, M428Q, N434H 6.29 × 10−8

37,174 M252P, T307Y, V308R, Q311E, N434F 6.62 × 10−8

33,328 S254G, H285S, N286F, L309A, N434Y 6.77 × 10−8

33,978 M252F, R255A, N286R, H310N, N434H 7.29 × 10−8

31,320 V308I, L309N, M428S, N434W, H435D 8.29 × 10−8

33,091 R255K, T307W, Q311D, H433Q, N434F 8.31 × 10−8

31,232 I253P, P257G, T307E, L309Y, N434H 8.36 × 10−8

33,342 I253D, S254D, T256V, T307G, N434F 8.43 × 10−8

33,591 M252T, I253V, N286G, H310L, N434H 8.67 × 10−8

30,984 P257K, T307A, V308F, M428H, N434Y 8.69 × 10−8

30,585 M252T, P257H, V308Y, L309F, N434F 8.74 × 10−8

38,371 M252E, S254F, P257Y, T307A, N434H 8.88 × 10−8

MLP 5mut

Variant # Mutations KD

33,091 S254G, T256Q, H310I, Q311W, N434H 3.22 × 10−8

37,254 M252Q, R255K, L309N, N434H, Y436R 3.28 × 10−8

33,646 H285Y, N286R, H310N, H433Y, N434H 3.42 × 10−8

34,469 S254T, K288G, H310S, M428V, N434F 4.33 × 10−8

34,320 M252R, P257E, T307Q, V308L, N434H 4.47 × 10−8

32,501 I253E, V308Y, H310D, L314I, N434Y 4.61 × 10−8

34,132 I253T, K288N, V308T, H310D, N434W 5.00 × 10−8

30,984 R255K, T256Q, V308H, L314S, N434Y 5.02 × 10−8

32,098 S254A, V308D, H310I, M428Q, N434H 5.06 × 10−8

34,494 M252P, T307Y, V308R, Q311E, N434F 5.83 × 10−8

34,889 S254G, H285S, N286F, L309A, N434Y 5.97 × 10−8

33,342 M252F, R255A, N286R, H310N, N434H 6.06 × 10−8

31,505 V308I, L309N, M428S, N434W, H435D 6.15 × 10−8

35,586 R255K, T307W, Q311D, H433Q, N434F 6.60 × 10−8

37,174 I253P, P257G, T307E, L309Y, N434H 6.85 × 10−8

31,465 I253D, S254D, T256V, T307G, N434F 7.08 × 10−8

36,149 M252T, I253V, N286G, H310L, N434H 7.21 × 10−8
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Table A3. Cont.

Model FL

33,080 P257K, T307A, V308F, M428H, N434Y 7.22 × 10−8

37,661 M252T, P257H, V308Y, L309F, N434F 7.23 × 10−8

30,906 M252E, S254F, P257Y, T307A, N434H 7.32 × 10−8

MLR 5mut

Variant # Mutations KD

30,906 S254G, T256Q, H310I, Q311W, N434H 1.22 × 10−8

37,580 M252Q, R255K, L309N, N434H, Y436R 1.33 × 10−8

33,885 H285Y, N286R, H310N, H433Y, N434H 1.39 × 10−8

32,098 S254T, K288G, H310S, M428V, N434F 1.75 × 10−8

33,646 M252R, P257E, T307Q, V308L, N434H 3.23 × 10−8

34,320 I253E, V308Y, H310D, L314I, N434Y 3.36 × 10−8

34,469 I253T, K288N, V308T, H310D, N434W 3.62 × 10−8

33,091 R255K, T256Q, V308H, L314S, N434Y 3.74 × 10−8

37,954 S254A, V308D, H310I, M428Q, N434H 4.06 × 10−8

30,984 M252P, T307Y, V308R, Q311E, N434F 4.59 × 10−8

37,254 S254G, H285S, N286F, L309A, N434Y 4.88 × 10−8

34,889 M252F, R255A, N286R, H310N, N434H 5.60 × 10−8

33,342 V308I, L309N, M428S, N434W, H435D 5.62 × 10−8

31,505 R255K, T307W, Q311D, H433Q, N434F 6.39 × 10−8

33,080 I253P, P257G, T307E, L309Y, N434H 6.61 × 10−8

34,248 I253D, S254D, T256V, T307G, N434F 6.68 × 10−8

35,586 M252T, I253V, N286G, H310L, N434H 6.86 × 10−8

33,509 P257K, T307A, V308F, M428H, N434Y 6.93 × 10−8

37,174 M252T, P257H, V308Y, L309F, N434F 7.15 × 10−8

34,132 M252E, S254F, P257Y, T307A, N434H 7.67 × 10−8

SVR 5mut

Variant # Mutations KD

31,465 S254G, T256Q, H310I, Q311W, N434H 9.50 × 10−9

33,646 M252Q, R255K, L309N, N434H, Y436R 2.70 × 10−8

30,585 H285Y, N286R, H310N, H433Y, N434H 2.83 × 10−8

31,612 S254T, K288G, H310S, M428V, N434F 3.98 × 10−8

30,423 M252R, P257E, T307Q, V308L, N434H 4.17 × 10−8

31,505 I253E, V308Y, H310D, L314I, N434Y 4.66 × 10−8

38,216 I253T, K288N, V308T, H310D, N434W 6.22 × 10−8

34,132 R255K, T256Q, V308H, L314S, N434Y 7.10 × 10−8

32,098 S254A, V308D, H310I, M428Q, N434H 7.50 × 10−8

37,379 M252P, T307Y, V308R, Q311E, N434F 9.68 × 10−8

33,080 S254G, H285S, N286F, L309A, N434Y 1.03 × 10−7

36,338 M252F, R255A, N286R, H310N, N434H 1.03 × 10−7
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Table A3. Cont.

Model FL

31,469 V308I, L309N, M428S, N434W, H435D 1.14 × 10−7

37,661 R255K, T307W, Q311D, H433Q, N434F 1.23 × 10−7

36,149 I253P, P257G, T307E, L309Y, N434H 1.30 × 10−7

37,777 I253D, S254D, T256V, T307G, N434F 1.37 × 10−7

34,998 M252T, I253V, N286G, H310L, N434H 1.37 × 10−7

38,029 P257K, T307A, V308F, M428H, N434Y 1.44 × 10−7

34,712 M252T, P257H, V308Y, L309F, N434F 1.49 × 10−7

32,754 M252E, S254F, P257Y, T307A, N434H 1.51 × 10−7

RFR 8mut

Variant # Mutations KD

30,401 M252W, I253D, P257A, V308F, L309E, N434W 3.06 × 10−8

30,320 L251Q, P257S, N286P, V308W, L309E, Q311A, N434H 5.89 × 10−8

30,747 M252G, T256A, L309D, N434W, H435E 6.07 × 10−8

30,663 I253S, P257V, K288G, T307G, N434H, Y436S 7.74 × 10−8

30,083 L251P, P257T, K288N, T307R, V308P, L309K, N434H 8.02 × 10−8

30,582 P257A, H285I, T307W, M428W, N434H 9.00 × 10−8

30,549 T256G, H285D, T307Y, L309T, N434F, H435T 9.50 × 10−8

30,647 M252W, T256P, P257A, K288L, T307S, M428I, N434H 9.59 × 10−8

30,596 L251Q, K288F, T307I, L309K, Q311T, M428I, N434W 1.01 × 10−7

30,548 L251R, M252H, V308R, L309D, N434H, Y436G 1.06 × 10−7

30,915 K288E, T307E, V308N, L309W, M428W, N434Y 1.07 × 10−7

30,501 M252Y, I253E, H285I, N286D, V308A, N434H 1.10 × 10−7

30,848 M252V, T256A, L309G, H433S, N434W, H435K 1.11 × 10−7

30,912 R255S, P257N, H285R, L309D, M428I, N434Y 1.14 × 10−7

30,116 M252I, I253S, N434W, H435P, Y436K 1.17 × 10−7

30,780 I253T, N286Q, V308P, Q311A, N434Y, Y436S 1.21 × 10−7

30,625 T256N, N286L, K288P, T307P, Q311A, M428L, N434Y 1.23 × 10−7

30,245 M252E, P257T, H285N, V308P, Q311L, N434Y 1.24 × 10−7

30,045 P257Y, Q311T, M428L, N434Y, H435P 1.36 × 10−7

30,560 P257A, K288T, T307F, Q311V, N434H, H435K 1.38 × 10−7

MLP 8mut

Variant # Mutations KD

30,829 M252W, I253D, P257A, V308F, L309E, N434W 4.39 × 10−8

30,549 L251Q, P257S, N286P, V308W, L309E, Q311A, N434H 4.75 × 10−8

30,625 M252G, T256A, L309D, N434W, H435E 6.72 × 10−8

30,061 I253S, P257V, K288G, T307G, N434H, Y436S 7.36 × 10−8

30,860 L251P, P257T, K288N, T307R, V308P, L309K, N434H 8.15 × 10−8

30,721 P257A, H285I, T307W, M428W, N434H 8.68 × 10−8
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Table A3. Cont.

Model FL

30,045 T256G, H285D, T307Y, L309T, N434F, H435T 9.13 × 10−8

30,234 M252W, T256P, P257A, K288L, T307S, M428I, N434H 9.13 × 10−8

30,852 L251Q, K288F, T307I, L309K, Q311T, M428I, N434W 9.38 × 10−8

30,063 L251R, M252H, V308R, L309D, N434H, Y436G 9.75 × 10−8

30,022 K288E, T307E, V308N, L309W, M428W, N434Y 1.09 × 10−7

30,565 M252Y, I253E, H285I, N286D, V308A, N434H 1.09 × 10−7

30,490 M252V, T256A, L309G, H433S, N434W, H435K 1.10 × 10−7

30,669 R255S, P257N, H285R, L309D, M428I, N434Y 1.13 × 10−7

30,401 M252I, I253S, N434W, H435P, Y436K 1.13 × 10−7

30,583 I253T, N286Q, V308P, Q311A, N434Y, Y436S 1.17 × 10−7

30,245 T256N, N286L, K288P, T307P, Q311A, M428L, N434Y 1.21 × 10−7

30,211 M252E, P257T, H285N, V308P, Q311L, N434Y 1.26 × 10−7

30,596 P257Y, Q311T, M428L, N434Y, H435P 1.42 × 10−7

30,683 P257A, K288T, T307F, Q311V, N434H, H435K 1.43 × 10−7

MLR 8mut

Variant # Mutations KD

30,829 M252W, I253D, P257A, V308F, L309E, N434W 2.17 × 10−8

30,669 L251Q, P257S, N286P, V308W, L309E, Q311A, N434H 2.84 × 10−8

30,549 M252G, T256A, L309D, N434W, H435E 4.85 × 10−8

30,583 I253S, P257V, K288G, T307G, N434H, Y436S 7.34 × 10−8

30,022 L251P, P257T, K288N, T307R, V308P, L309K, N434H 7.90 × 10−8

30,721 P257A, H285I, T307W, M428W, N434H 8.09 × 10−8

30,063 T256G, H285D, T307Y, L309T, N434F, H435T 8.84 × 10−8

30,100 M252W, T256P, P257A, K288L, T307S, M428I, N434H 1.05 × 10−7

30,625 L251Q, K288F, T307I, L309K, Q311T, M428I, N434W 1.05 × 10−7

30,401 L251R, M252H, V308R, L309D, N434H, Y436G 1.11 × 10−7

30,683 K288E, T307E, V308N, L309W, M428W, N434Y 1.11 × 10−7

30,565 M252Y, I253E, H285I, N286D, V308A, N434H 1.12 × 10−7

30,225 M252V, T256A, L309G, H433S, N434W, H435K 1.13 × 10−7

30,045 R255S, P257N, H285R, L309D, M428I, N434Y 1.24 × 10−7

30,605 M252I, I253S, N434W, H435P, Y436K 1.30 × 10−7

30,860 I253T, N286Q, V308P, Q311A, N434Y, Y436S 1.36 × 10−7

30,061 T256N, N286L, K288P, T307P, Q311A, M428L, N434Y 1.40 × 10−7

30,245 M252E, P257T, H285N, V308P, Q311L, N434Y 1.52 × 10−7

30,211 P257Y, Q311T, M428L, N434Y, H435P 1.66 × 10−7

30,085 P257A, K288T, T307F, Q311V, N434H, H435K 1.67 × 10−7

SVR 8mut

Variant # Mutations KD

30,501 M252W, I253D, P257A, V308F, L309E, N434W 3.20 × 10−8
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Table A3. Cont.

Model FL

30,401 L251Q, P257S, N286P, V308W, L309E, Q311A, N434H 4.26 × 10−8

30,848 M252G, T256A, L309D, N434W, H435E 8.11 × 10−8

30,479 I253S, P257V, K288G, T307G, N434H, Y436S 1.19 × 10−7

30,829 L251P, P257T, K288N, T307R, V308P, L309K, N434H 1.26 × 10−7

30,045 P257A, H285I, T307W, M428W, N434H 1.27 × 10−7

30,397 T256G, H285D, T307Y, L309T, N434F, H435T 1.69 × 10−7

30,116 M252W, T256P, P257A, K288L, T307S, M428I, N434H 1.70 × 10−7

30,157 L251Q, K288F, T307I, L309K, Q311T, M428I, N434W 1.74 × 10−7

30,336 L251R, M252H, V308R, L309D, N434H, Y436G 1.86 × 10−7

30,061 K288E, T307E, V308N, L309W, M428W, N434Y 1.88 × 10−7

30,560 M252Y, I253E, H285I, N286D, V308A, N434H 1.89 × 10−7

30,549 M252V, T256A, L309G, H433S, N434W, H435K 2.00 × 10−7

30,891 R255S, P257N, H285R, L309D, M428I, N434Y 2.26 × 10−7

30,228 M252I, I253S, N434W, H435P, Y436K 2.27 × 10−7

30,911 I253T, N286Q, V308P, Q311A, N434Y, Y436S 2.31 × 10−7

30,386 T256N, N286L, K288P, T307P, Q311A, M428L, N434Y 2.50 × 10−7

30,605 M252E, P257T, H285N, V308P, Q311L, N434Y 2.62 × 10−7

30,150 P257Y, Q311T, M428L, N434Y, H435P 2.76 × 10−7

30,924 P257A, K288T, T307F, Q311V, N434H, H435K 2.79 × 10−7
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