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ABSTRACT

The human brain, composed of billions of neurons and synaptic connections, is an intricate

network coordinating a sophisticated balance of excitatory and inhibitory activity between

brain regions. The dynamical balance between excitation and inhibition is vital for adjusting

neural input/output relationships in cortical networks and regulating the dynamic range of

their responses to stimuli. To infer this balance using connectomics, we recently introduced a

computational framework based on the Ising model, first developed to explain phase transitions

in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here,

we show that a generative model based on the Kuramoto phase oscillator can be used to

simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight

coefficients, such that the simulated FC well aligns with the observed FC when compared to

that simulated with traditional structural connectome.
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1 INTRODUCTION

The human brain is a complex neural network that self-organises into different emergent states, crucial

for its functions. Such states include spatiotemporal patterns of neural synchronisation associated with

cognitive processes (Bansal et al., 2019). Brain regions can be modelled as dynamically interacting

nodes in a functional network on a 3D space (functional brain networks), coupled in a complex

manner driven by the structure of these networks. Over the past years, interdisciplinary approaches

using concepts from nonlinear dynamics, physics, biology and medicine to name a few, allowed us to

understand in more depth how the human brain functions, and how certain brain disorders and their

underlying mechanisms can be further studied using mathematical models. It is feasible to ameliorate

even more the predictive performance of such models, since a vast amount of neuroimaging data. e.g.,

electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance

blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) became available

in the last 2 to 3 decades. Such data may provide information not only for healthy or pathological brain

activity but can also be used to fingerprint functional connectomes by identifying individuals using brain

connectivity patterns (Finn et al., 2015).

Together with extensive experimental work, mathematical/computational modelling of the whole brain

dynamics has been an active research topic for years (e.g., (Deco et al., 2008; Sanz-Leon et al., 2015;

Jirsa et al., 2017; Murray et al., 2018; Young, 2020)). In such a setting one can model populations

of neurons as nodes in a graph structure. Then, one can obtain information about relative connection

weights (coupling strength) and communication lag (delay) between different nodes by diffusion-weighted

magnetic resonance imaging (dwMRI) techniques (see e.g., (Ghosh et al., 2008; Hagmann et al., 2010;

Deco et al., 2011)). This is termed as the structural connectivity (SC) of the network and it is in general

subject-dependent with a certain degree of variability (gender/age/healthy vs diseased etc.). Furthermore,

statistical analysis of BOLD time series inferred from fMRI can provide the functional relationships

between different brain regions. It is usually calculated as the Pearson correlation coefficient of the activity

between regions and results in the empirical functional connectivity (FC) matrix per brain recording and

subject (see e.g., (Sporns et al., 2005; Horn et al., 2014)).

By working in silico, one can seek for model parameters that are able to produce simulated time series

and global dynamics that fairly resemble the empirical ones. One way in achieving that is to tune selected

parameters which optimize the similarity between empirical FC with the simulated FC (see e.g., (Cabral

et al., 2011; Deco and Jirsa, 2012)). Hence, these parameters can serve as dynamical biomarkers and

predictors of different brain states and behavioural modes (see (Popovych et al., 2019) for a recent

review). Along this direction, the virtual epileptic patient has been recently proposed, where medical-

treatment approaches using personalised mathematical models for epileptic patients have been illustrated

(see e.g., (Jirsa et al., 2017)). Furthermore, the choice of the brain atlases, (i.e. the mapping of the different

regions of interest (ROIs) based on functional or anatomical criteria using different parcellations) can

affect the quality of model performance and its level of agreement with the empirical data (see (Popovych

et al., 2021) and references therein for more details).

In recent years, substantial research efforts have been directed toward understanding the brain (large-

scale activity) using resting state fMRI (rs-fMRI) employing sophisticated mathematical and statistical
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tools to investigate the FC from rs-fMRI data (Biswal et al., 1997). So far, the mainstream approach is to

consider SC to be static and the FC one dynamic. However, this is not necessarily the case as white matter

tracts can be in use or engaged when the brain is performing certain tasks but inactive or disengaged

during other tasks and hence not static. An altered and more sophisticated “functional connectivity-

informed structural connectivity” has been introduced in (Ajilore et al., 2013) employing information

from fMRI to infer the underlying pattern of white matter engagement specific to the brain’s state. The

resulting connectome, the so-called resting-state informed structural connectome (rsSC), encodes the

structural network that underlies and facilitates the observed rs-fMRI correlation connectome able to

detect altered rsSC community structure in diseased subjects relative to controls. In the original set up

there is no “directionality” inferred, i.e., whether the white matter tract of interest is of “excitatory” versus

“inhibitory” nature.

However, understanding the dynamical balance between excitation and inhibition, a concept termed E-I

balance, is vital for adjusting neural input/output relationships in cortical networks and regulating the

dynamic range of their responses to stimuli (Kinouchi and Copelli, 2006) such that information capacity

and transfer are maximized (Shew et al., 2011). This is the central thesis of the criticality hypothesis

(Beggs and Plenz, 2003; Muñoz, 2018), i.e., that brain activity self-organize into a critical state (Wilting

and Priesemann, 2019), a unique configuration likened to a phase transition in physical systems where a

dynamical system transitions from order (balanced excitation-inhibition) to disorder (disrupted excitation-

inhibition balance) (Cocchi et al., 2017; Hahn et al., 2017; Sornette, 2004; Tagliazucchi, 2017). Indeed,

evidence supporting that the brain is operating near criticality has been reported in studies examining

neuronal signaling (Hahn et al., 2017; Beggs and Plenz, 2003; Shew et al., 2009) as well as BOLD fMRI

signals (Haimovici et al., 2013; Lombardi et al., 2017; Rabuffo et al., 2021; Tagliazucchi et al., 2012).

To incorporate co-activation (excitatory) or silencing (inhibitory) effects into our hybrid rsSC framework

that would allow us to infer the brain’s E-I balance, in (Fortel et al., 2019) we then introduced an improved

framework based on the Ising model representation of the brain as a dynamical system, wherein self-

organized patterns are formed through the spontaneous fluctuations of random spins. This Ising spin-glass

model has been previously used to successfully characterize complex microscale dynamics (Kadirvelu

et al., 2017; Tkačik et al., 2015) and macroscale interactions (Marinazzo et al., 2014; Ezaki et al., 2017;

Nghiem et al., 2018; Niu et al., 2019; Nuzzi et al., 2020; Schneidman et al., 2006) of the human brain, and

to accurately represent spatiotemporal co-activations in neuronal spike trains (Schneidman et al., 2006;

Roudi et al., 2009; Shlens et al., 2006) and patterns of BOLD activity (Ashourvan et al., 2017; Cocco

et al., 2017; Ezaki et al., 2020; Watanabe et al., 2013).

In this paper, we use The Virtual Brain (TVB, (Sanz-Leon et al., 2015)), a whole-brain simulation

platform part of the EBRAINS infrastructure (https://ebrains.eu/) to investigate the potential

benefits in employing rsSC instead of the traditional SC for simulating whole-brain dynamical activity.

For example, one major limitation of using traditional SC with certain dynamical models, such as the

Kuramoto phase oscillators (Kuramoto, 2003) and the generic limit-cycle oscillators (Kuznetsov, 1998),

to model each node’s mean neural activity using traditional SC connectomes is that the resulting signals

from different ROIs do not adequately produce negative correlations obtained in the empirical ones, even

in the presence of delays in the system (see e.g. (Popovych et al., 2021)). We here show that by using rsSC

such dynamical systems succeed to produce simulated signals with both positive and negative correlations

which sufficiently follow the trends of the empirical ones.
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2 METHODS AND MATERIALS

2.1 Empirical data & signed resting state structural connectome

The structural and functional connectivity (resting state) for 38 cognitively normal APOE ε4 allele carriers

with the detailed information on the imaging and processing steps can be found in (Korthauer et al.,

2018). The algorithm to obtain rsSC can be found in (Fortel et al., 2019, 2020; Tang et al., 2021; Fortel

et al., 2022) while in the Supplementary Material we provide a concise description with details on its

implementation.

2.2 Models and simulated data

In order to produce simulated fMRI time series in the given connectomes, we employ the Kuramoto phase

oscillator model (Kuramoto, 2003; Lee and Frangou, 2017; Popovych et al., 2021):

θ̇i(t) = 2πfi +
K

N

N∑

j=1

cij sin[θj(t− τij)− θi(t)], i = 1, 2, ..., N (1)

where θi are the phases, N is the number of oscillators, fj are the natural frequencies (Hz), cij and τij
(ms) represent the individual coupling weight and propagation delay in the coupling, respectively, from

oscillator j to oscillator i while K is the global coupling parameter. The time t in the model and delay in

coupling term are measured in ms.

For each individual subject, we produced a “personalized” model Eq. (1) to simulate the network’s

dynamics and to calculate time series. To this end, two cases of connectivity matrices were compared: (i)

in the first one the cij values are defined by simply counting the number of streamlines connecting regions

i and j normalized to 1 and with zero diagonal (i.e., define cij as a normalized version of the empirical

tractography-derived SC or eSC), leading to only excitatory interactions between ROIs; and (ii) in the

second one the cij values are assigned by the corresponding entries of the hybrid rsSC connectomes,

leading to both excitatory and inhibitory interactions between ROIs. The delays τij were calculated as

τij = Lij/V , where Lij (mm) is the average tract (path) length of the streamlines connecting regions i

and j, and V (m/s) is an average velocity of signal propagation. In this particular dataset the exact path

lengths are not available, hence we used instead the euclidean distance between nodes in the Desikan

atlas (Desikan et al., 2006) as proxies. The euclidean distance has been used in the literature in the

construction of structural networks (see e.g. (Ercsey-Ravasz et al., 2013)) and found to closely follow the

trends obtained by anatomical tract-tracing studies. Furthermore in (Deco et al., 2021), the authors showed

that such networks also strongly correlate with MRI tractography-based networks. The matrix L = Lij

can thus be used to calculate the delays τij in the coupling, which can be expressed as τij = τ ·Lij/⟨Lij⟩,
where τ = ⟨Lij⟩/V is the global (or mean) delay. In Eq. (1) the self-connections were excluded by setting

the diagonal elements in the matrices eSC/rsSC and L to zero (i.e. cii = Lii = 0 respectively).

In Figure 1(A), we show the empirical SC matrix (weights of the node-to- node connections) for a Non

Carrier subject from the dataset with 80 nodes (ROIs). Figure 1(B) depicts the corresponding to this SC

and subject rsSC matrix calculated as described earlier. Note that the hybrid rsSC contains negative entry

values as opposed to SC one that is restricted to having only positive values. Figure 1(C) shows the tract

length L matrix (in mm) that we used for all subjects’ simulation in the absence of the actual measured

ones from a neuroimaging prepossessing pipeline.
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Figure 1. Empirical connectivity matrices example (non-carrier subject). (A) Weights of SC matrix.
(B) Hybrid rsSC matrix. (C) Tract length (mm) matrix L based on the euclidean distance of the nodes on
the Desikan atlas (same for all simulations and subjects).

The phases in our model (Eq. 1) were initialized randomly. We set the intrinsic frequencies to be

uniformly distributed with mean = 60 Hz and SD = 1 Hz, corresponding to oscillations within the gamma

frequency range (see e.g. (Cabral et al., 2011; Messé et al., 2014; Váša et al., 2015; Lee and Frangou,

2017) for more details and motivation), as gamma local field potential (LFP) power is coupled to the

BOLD fMRI signal and is considered representative of the overall neuronal activity (see also (Niessing

et al., 2005; Nir et al., 2007; Miller et al., 2009; Schölvinck et al., 2010)).

For our simulations, we used a TVB tailored version for the Kuramoto model and we made adjustments

for efficient parallelisation on CPUs using MPI on the supercomputer JUSUF located at the Jülich

Supercomputing Centre. Our model generates time series which correspond initially to electrical activity

(fast oscillations) for each node, i.e. we register the observable xi = sin(θi) for each brain region. Then, in

order to estimate the simulated BOLD signal, we use the TVB’s built-in tool to calculate the hemodynamic

response function kernel (i.e. “fMRI activity”) associated with a given neural activity time series, also

known as the Balloon-Windkessel model (Friston et al., 2003). Our simulations ran for 500 seconds in

total. The first 20 seconds were discarded to remove transient effects, resulting in T = 480 seconds (8

minutes), i.e. a time interval identical to the time-length of the empirical fMRI signals. We set the time-

step at 0.1 ms and we integrated the system with an Euler scheme. In this particular study we did not

consider the presence of noise.

3 RESULTS

We numerically simulate BOLD time series varying two model parameters, namely the global coupling

strength K and the delay τ in Eq. (1), with respective ranges K ∈ [1, 75] and τ ∈ [1, 33] resulting in a

32 × 32 grid. For each pair of parameters, we begin by producing the matrix of the simulated FC (sFC).

The latter is measured by the Pearson Correlation Coefficient (CC) between the simulated BOLD signals

xi, i = 1, 2, ..., N from different ROIs (also referred to as Static Functional Connectivity in the literature,

see e.g. (Cabral et al., 2017)), namely:

CCBOLD = corr(xi, xj). (2)
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Figure 2. Parameter Sweep Exploration, correlation & Statistical analysis for eFC vs. sFC example.
First row (using the respective subject’s standard SC matrix to define the weights in model Eq. (1): (A)
The colormap depicts the CCFC = corr(sFC,eFC) for the parameters (K, τ). The 5 circles on the red
regions indicate the highest correlations found (larger circles’ sizes correspond to larger CCFC values).
(B) The eFC calculated from the empirical BOLD signal. (C) The sFC matrix with the larger CCFC.
Second row (using the respective subject’s hybrid rsSC matrix to define the weights in model Eq. (1). (D)
The respective colormap for CCFC = corr(sFC,eFC). (E) The eFC calculated from the empirical BOLD
signal (same as (B)). (F) The sFC matrix with the larger CCFC. Note the ranges for the two colorbars
in (A) and (D) are kept intact (i.e. no scaling) for visualization purposes. (G-H) Scatterplots between
empirical (y−axis) and optimal simulated BOLD correlations (x−axis) aggregated across all entries in
the corresponding FC matrices, i.e., panels (B) and (C). (G) eFC vs. sFC using rsSC, (H) eFC vs. sFC
using standard SC. Both panels refer to same subject (blue lines indicate the linear regression model). (I-
J) boxplots for the non-carriers and carriers dataset (38 subjects per type) correlation coefficients between
eFC and sFC using SC and rsSC matrices for the simulated time series respectively. For each subject
we considered the 5 maximum values (see circles in panels (A), (D)). The difference in the respective
mean values of the two datasets is statistically significant measured by the t-test with very small p−value
(p ≤ 0.0001) for both non-carriers and carriers sets.
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Then, we compare each sFC with the eFC ones using, again, the Pearson Correlation Coefficient,

however this time we calculate it for the two respective matrices (upper triangular parts), i.e.:

CCFC = corr(sFC,eFC). (3)

The optimal match between sFC and eFC in the parameter space is acquired for (K, τ)-values where

CCFC becomes maximal (see also (Popovych et al., 2021) and references therein for more details and

motivation).

In Figure 2, we present the first main result, namely, the superiority of hybrid rsSC over standard SC

matrices in generating simulated BOLD time series with models like Eq. (1) which better approximate

the empirical BOLD signals (shown here for one example healthy subject). The upper row refers to

simulations performed using the respective subject’s standard SC matrix to define the coupling weights

in Kuramoto model. Figure 2(A) shows the parameter sweep exploration (PSE) for eFC vs. sFC and for

the parameters (K, τ) and measured as CCFC = corr(sFC,eFC). The 5 white circles on the red regions

indicate the highest correlations found (larger circles’ sizes correspond to larger CCFC values). In Figure

2(B) we present the eFC calculated from the empirical BOLD signal while in Figure 2(C) the sFC matrix

with the larger ccFC. We can observe that sFC did not capture adequately the negative correlations that are

present in eFC (compare the minimum values in the barplots of panel (B) and (C)).

In the second row of Figure 2 (panels (D),(E),(F)), we perform similar simulations, however we now

use the respective subject’s hybrid rsSC matrix to define the coupling weights in the Kuramoto model).

Note the significant improvement in the maximum value of the CCFC ≈ 0.86 compared to the one found

when using the standard SC matrix (CCFC ≈ 0.33). Note also the better agreement between the two FC

matrices(empirical (E) and simulated (F)) and how better the sFC captures both positive and negative

correlations (indicated by the range of the respective colorbars). We should stress that we did not opt to

use the same range for the two colorbars in Figure 2(A) and (D), as in this way it would be difficult to

visually identify the PSE region in (A) depicting the optimal parameter values.

The respective scatterplots and CC values between empirical and optimal simulated FC matrices are

presented in the third row of Figure 2 using rsSC (G) and standard SC (H) matrices. Here we plot the

empirical (y-axis) against the optimal simulated BOLD correlations (x-axis) aggregated across all entries

in the corresponding FC matrices, thus a perfect match between the two would place all the points along

the line x = y. The higher CCFC(sFC,eFC) value (using hybrid rsSC matrices) is well reflected by a

rather clear linear trend in the distribution of the points (panel (A)), On the other hand, only a relatively

weak linear trend is obtained using standard SC matrices (panel (B)). Both panels refer to same subject

presented in Figure 2 with the lines indicating the corresponding linear fit in each case.

In the forth row of Figure 2 we present a statistical analysis for all subjects per category, i.e. 38 non-

carriers (I) and 38 carriers (J). For each subject we considered the 5 maximum values of correlation

coefficients between eFC and sFC using SC and rsSC matrices for the simulated time series respectively

(circles in (A),(D)) and produced boxplots. We then used the t-test to measure the difference in each

group’s (carriers or non-carriers) mean Pearson correlation value between the empirical FC vs simulated

FC (5 optimal cases) when using standard SC and rsSC ones. The difference in the respective mean

values of the two datasets is found to be statistically significant with very small p−value (p ≤ 0.0001)
for both non-carriers. The respective BOLD time series (empirical, optimal simulated using SC and

rsSC respectively) from this example can be found in the Supplementary Material (Figure S1). The

separation of the 2 groups is indeed biologically important given the already demonstrated differences
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Figure 3. Statistical Analysis for negative and positive correlations in empirical and simulated FCs.
Boxplots of the correlation coefficients for eFC and sFC obtained by using either SC or rsSC as the
coupling coefficient matrices (non-carriers group) in the simulations.. For each subject we considered
the parameters (K, τ) which correspond to the 5 maximum values that optimize the similarity between
eFC and sFC matrices (indicated with circles in Figures2(A),(D)). The 3 leftmost boxplots indicate the
negative correlations in the actual eFC (light green), simulated using rsSC (light blue) and using standard
structural connectome SC (red). Similarly, the 3 rightmost boxplots compare the maximum (positive)
correlation values. Similar results were also obtained for the carriers, see Figure S2 in the Supplementary
Material.

in E-I dynamics (see e.g. (Fortel et al., 2019, 2020, 2022, 2023). As this current study leveraged one of

the several datasets that we previously used to demonstrate sex-by-ε4 hyperexcitation, by showing that

the model fits between the two groups are equally optimal we further establish that differences in E-I

dynamics are not an artifact secondary to differences in model fit.

Next, we conducted a statistical analysis of negative and positive correlations in empirical (eFC) and

simulated (sFC) functional connectomes (Figure 3). We used boxplots to visualize correlation coefficients

for eFC and sFC matrices informed by structural connectivity (SC) or resting-state SC (rsSC) for the non-

carriers group. We considered sFC matrices produced by the 5 parameters (K, τ) that maximized eFC and

sFC similarity per subject, (marked with circles in Figure 2(A),(D)). The leftmost three boxplots depict

minimum (negative) correlations in actual eFC (light green), simulated using rsSC (light blue) and using

standard SC (red) respectively, while the rightmost three boxplots depict maximum (positive) correlation

values.

The simulated functional connectomes (sFC), generated using both rsSC (used here for the first time in

simulating BOLD time series) and standard SC, sufficiently recovered the positive correlations observed

in the empirical BOLD signals. However, the sFC derived from SC (left red boxplots) do not correctly
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recover the negative correlations present in the empirical data (left light green boxplots). In contrast,

the BOLD signals generated with rsSC (left light blue boxplots) exhibit negative correlations much

closer to those observed in the empirical data. This consistent trend holds true for both non-carriers and

carriers datasets (see Figure S2 in the Supplementary Material). A more detailed analysis on the role of

positive and negative coupling coefficients in rsSC vs SC connectommes in simulating high-fidelity fMRI

correlations with a dynamical system can be found in the discussion and figures of the Supplementary

Material.

Next, to further explore the advantage in using the hybrid rsSC matrices beyond Static Functional

Connectivity matrices, we sought out to perform a similar PSE analysis for Dynamic Functional

Connectivity, which allows us to capture switching trends in the resting-state activity. To this end, we

calculate the Phase Coherence Connectivity (see e.g. (see e.g. (Cabral et al., 2017; Hancock et al.,

2022) and references therein) which does not suffer from time-window length effects like other similar

techniques based on calculating successive FC(t) matrices using a sliding-window (see discussion in

(Cabral et al., 2017; Hancock et al., 2022)). Hence, we use BOLD Phase Coherence Connectivity to

measure time-resolved dynamic FC matrices (dFC), with size N ×N × T , where N refers to the number

of ROIs and T = 236 the total number of recording frames. Then, we begin by estimating the phases from

the BOLD time series (empirical and simulated) for all ROIs i (θ(i, t)) applying a Hilbert transform and

we bandpass filter the parcellated fMRI time-series within 0.01− 0.1Hz (see e.g. (Popovych et al., 2021)

and references therein) using a discrete Fourier transform computed with a fast Fourier transform. Then,

the phase coherence between brain areas i and j at time t, dFC(i, j, t) is defined as:

dFC(i, j, t) = cos(θ(i, t)− θ(j, t)). (4)

When two ROIs have temporarily aligned BOLD signals their respective dFC(i, j, t) ≈ 1 while their

BOLD signals are orthogonal dFC(i, j, t) ≈ 0. Note the matrix dFC serves as the foundation of Leading

Eigenvector Dynamic Analysis (LEiDA) which has been used to detect subtle FC patterns that distinguish

healthy versus diseased BOLD signals (see e.g. (Cabral et al., 2017; Hancock et al., 2022)).

In Figure 4, we present the Phase Coherence Connectivity PSE for edFC vs. sdFC (in a similar way as

in Figure 2). However, we now compare each simulated mean dFC (sdFC) calculated by Eq. (5) with the

empirical (edFC) ones using the Pearson Correlation Coefficient, from the upper triangular section of the

two respective matrices, i.e.:

CCdFC = corr(sdFC,edFC). (5)

The optimal match between sdFC and edFC in the parameter space is acquired for (K, τ)-values where

CCdFC becomes maximal (in panels (A) and (D) we indicate 5 maximum values with white circles).

The upper row shows the results when we use the respective subject’s standard SC matrix to define

the weights in model Eq. (1). Figure 4(A) depicts the CCdFC = corr(sdFC,edFC) for the parameters

(K, τ), while Figure 4(B) the edFC calculated from the empirical BOLD signal. Figure 4(C) shows the

sdFC matrix obtained by the larger CCdFC. In the lower row, we show the same analysis using now the

respective subject’s hybrid rsSC matrix. Once again, we find that the use of hybrid rsSC yields substantial

improvement in the best fit between empirical and simulated BOLD activity (CCdFC(rsSC) ≈ 0.72 while

CCdFC(SC) ≈ 0.29), this time in the context of dynamical functional connectivity. In Figures 4(G-H),

we present the corresponding correlation analysis and scatterplots and conclusions as those found earlier

(Figure 2). Here, we have presented the output for the same example subject (as the one in previous
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Figure 4. Parameter Sweep Exploration for Phase Coherence Connectivity (edFC vs. sdFC). First
row (using the respective subject’s standard SC matrix to define the weights in model Eq. (1): (A) The
colormap depicts the CCdFC = corr(sdFC,edFC) for the parameters (K, τ). (B) The edFC calculated
from the empirical BOLD signal. (C) The sFC matrix with the larger CCdFC. Second row (using the
respective subject’s hybrid rsSC matrix to define the weights in the model. (D) The respective colormap
for CCdFC = corr(sdFC,edFC). (E) The edFC calculated from the empirical BOLD signal (same as (B)).
(E) The sdFC matrix with the larger CCdFC. Note the different ranges in the respective colorbars of panels
(B), (C), (E) and (F) capturing the different temporal alignment of the phase of the respective BOLD
signals. See text for more details. (G-H) Scatterplots between empirical (y−axis) and optimal simulated
dFC correlations (x−axis) aggregated across all entries in the corresponding dFC matrices, i.e., panels (B)
and (C). (G) edFC vs. sdFC using rsSC (H) edFC vs. sdFC using standard SC. Both panels refer to same
subject (blue lines indicate the linear regression model). (I-J) Boxplots for the non-carriers (I) and carriers
(J) dataset (38 subjects per type) correlation coefficients between edFC and sdFC using SC and rsSC
matrices for the simulated time series respectively. For each subject we considered the 5 maximum values
(see circles in (A), (D). The difference in the respective mean values of the two datasets is statistically
significant measured by the t-test with very small p−value (p ≤ 0.0001) for both non-carriers and carriers
sets.
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figures). However, this conclusion holds for all subjects similar to what we did in Figure 2, in Figures

4(I-J), we show the respective statistical analysis and boxplots.

4 DISCUSSION

In this study, we showed that a coupled Kuramoto oscillator system built on a novel brain connectome

can yield simulated BOLD brain activities that strongly resemble actual BOLD signals observed during

resting-state fMRI. We used the TVB computational platform with the Kuramoto model (Kuramoto,

2003) and generated simulated BOLD time series across a range of different model parameters (K, τ)
(producing PSE colormaps like in Figure 2). This allowed us to optimize model parameters and tune

generated synthetic BOLD signals that produce simulated functional connectivity (FC) most similar to

actual observed FC. Overall, we found that there are important advantages in using hybrid rsSC as it can

produce BOLD sequences and synthetic FC that follow well the general trends of the empirical BOLD

time series and empirical FC (Figures 2 and 4).

Despite the fact that in general both sFC (simulated with rsSC/SC matrices) perform rather well in

capturing the positive correlations observed in the empirical BOLD signals, only the rsSC ones can

effectively produce negative correlations closely matching those occurring in the empirical BOLD signals

(Figure 3, see also (Zhan et al., 2017)).

Our study has a few limitations. First, we restricted ourselves to a specific frequency band during

simulations and thus future studies should further explore different ranges of frequencies in the Kuramoto

model, e.g. either in different Hz ranges or extracted directly from the empirical BOLD signals per

node and per subject (see e.g. (Lee and Frangou, 2017; Popovych et al., 2021) and references therein).

Furthermore one may validate these findings for different dynamical models, or to furthermore consider

additional relevant dynamical features such as noise or the use of neuroimaging data where the path

lengths is also available. In (Popovych et al., 2021), the authors compared BOLD simulated signals

(with SC) obtained using different dynamical models, namely the Kuramoto phase oscillators and the

Hopf limit-cycle oscillators. They reported that both models perform rather similarly and that the role

of such a model is not crucial as well as differences in the quality of the simulated optimal BOLD

signals when using different atlases (structural vs functional) and parcellations. In our study, we achieved

a significantly better agreement between optimal sFC and eFC compared the ones reported in the literature

(e.g., (Popovych et al., 2021)). Let us also stress that in this work we do not seek to detect model

parameters settings that could distinguish between carriers and non-carriers based on the presence or

not of the APOE ε4 gene or age and gender factors, which is a research direction we plan to take in the

near future.

In summary, here we showed that our recently proposed hybrid connectome rsSC can produce simulated

synthetic BOLD signals that yield functional connectivity matrices strikingly similar to those actually

obtained during the resting-state. Thus, we conclude by highlighting that existing publicly available open-

source pipelines, such as the TVB platform, could be easily equipped to include an add-on module that

incorporates rsSC for the neuroscientific community interested in the modeling of simulated fMRI BOLD

time series.
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Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel Soares, J., et al. (2017).

Cognitive performance in healthy older adults relates to spontaneous switching between states of

functional connectivity during rest. Scientific Reports 7, 5135. doi:10.1038/s41598-017-05425-7

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the brain: A synthesis of

neurobiology, models and cognition. Progress in Neurobiology 158, 132–152. doi:https://doi.org/10.

1016/j.pneurobio.2017.07.002

Cocco, S., Monasson, R., Posani, L., and Tavoni, G. (2017). Functional networks from inverse modeling

of neural population activity. Current Opinion in Systems Biology 3, 103–110. doi:https://doi.org/10.

1016/j.coisb.2017.04.017

Deco, G. and Jirsa, V. K. (2012). Ongoing cortical activity at rest: Criticality, multistability, and ghost

attractors. Journal of Neuroscience 32, 3366–3375. doi:10.1523/JNEUROSCI.2523-11.2012

Deco, G., Jirsa, V. K., and McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of

resting-state activity in the brain. Nature Reviews Neuroscience 12, 43–56. doi:10.1038/nrn2961

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and Friston, K. (2008). The dynamic brain:

From spiking neurons to neural masses and cortical fields. PLOS Computational Biology 4, 1–35.

doi:10.1371/journal.pcbi.1000092

Deco, G., Sanz Perl, Y., Vuust, P., Tagliazucchi, E., Kennedy, H., and Kringelbach, M. L. (2021). Rare

long-range cortical connections enhance human information processing. Current Biology 31, 4436–

4448.e5

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An

automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based

regions of interest. NeuroImage 31, 968–980. doi:https://doi.org/10.1016/j.neuroimage.2006.01.021

Ercsey-Ravasz, M., Markov, N., Lamy, C., Van Essen, D., Knoblauch, K., Toroczkai, Z., et al. (2013).

A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80,

184–197. doi:https://doi.org/10.1016/j.neuron.2013.07.036

Ezaki, T., Fonseca dos Reis, E., Watanabe, T., Sakaki, M., and Masuda, N. (2020). Closer to critical

resting-state neural dynamics in individuals with higher fluid intelligence. Communications Biology 3,

52. doi:10.1038/s42003-020-0774-y

Ezaki, T., Watanabe, T., Ohzeki, M., and Masuda, N. (2017). Energy landscape analysis of neuroimaging

data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences 375, 20160287. doi:10.1098/rsta.2016.0287

13



REFERENCES Manos et al.

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., et al. (2015).

Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

Nature Neuroscience 18, 1664–1671. doi:10.1038/nn.4135

Fortel, I., Butler, M., Korthauer, L. E., Zhan, L., Ajilore, O., Driscoll, I., et al. (2019). Brain

dynamics through the lens of statistical mechanics by unifying structure and function. In Medical

Image Computing and Computer Assisted Intervention – MICCAI 2019, eds. D. Shen, T. Liu, T. M.

Peters, L. H. Staib, S. Essert, Carolineand Zhou, P.-T. Yap, and A. Khan (Cham: Springer International

Publishing), 503–511

Fortel, I., Butler, M., Korthauer, L. E., Zhan, L., Ajilore, O., Sidiropoulos, A., et al. (2022). Inferring

excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function.

Network Neuroscience 6, 420–444. doi:10.1162/netn a 00220

Fortel, I., Korthauer, L. E., Morrissey, Z., Zhan, L., Ajilore, O., Wolfson, O., et al. (2020). Connectome

Signatures of Hyperexcitation in Cognitively Intact Middle-Aged Female APOE-ε4 Carriers. Cerebral

Cortex 30, 6350–6362. doi:10.1093/cercor/bhaa190

Fortel, I., Zhan, L., Ajilore, O., Wu, Y., Mackin, S., and Leow, A. (2023). Disrupted Excitation-Inhibition

balance in cognitively normal individuals at risk of alzheimer’s disease. J Alzheimers Dis 95, 1449–

1467. doi:10.3233/JAD-230035.PMID:37718795

Friston, K., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. NeuroImage 19, 1273–1302.

doi:https://doi.org/10.1016/S1053-8119(03)00202-7

Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., and Jirsa, V. K. (2008). Noise during rest enables the

exploration of the brain’s dynamic repertoire. PLOS Computational Biology 4, 1–12. doi:10.1371/

journal.pcbi.1000196

Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., et al. (2010). Mr

connectomics: Principles and challenges. Journal of Neuroscience Methods 194, 34–45. doi:https:

//doi.org/10.1016/j.jneumeth.2010.01.014. Proceedings of the Workshop ”Neuroanatomical Tracing

and Systems Neuroscience: The State of the Art”

Hahn, G., Ponce-Alvarez, A., Monier, C., Benvenuti, G., Kumar, A., Chavane, F., et al. (2017).

Spontaneous cortical activity is transiently poised close to criticality. PLOS Computational Biology

13, 1–29. doi:10.1371/journal.pcbi.1005543

Haimovici, A., Tagliazucchi, E., Balenzuela, P., and Chialvo, D. R. (2013). Brain organization into

resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110,

178101. doi:10.1103/PhysRevLett.110.178101

Hancock, F., Cabral, J., Luppi, A. I., Rosas, F. E., Mediano, P. A., Dipasquale, O., et al. (2022).

Metastability, fractal scaling, and synergistic information processing: What phase relationships reveal

about intrinsic brain activity. NeuroImage 259, 119433. doi:https://doi.org/10.1016/j.neuroimage.2022.

119433

Horn, A., Ostwald, D., Reisert, M., and Blankenburg, F. (2014). The structural-functional connectome

and the default mode network of the human brain. NeuroImage 102 Pt 1, 142—151. doi:10.1016/j.

neuroimage.2013.09.069

Jirsa, V., Proix, T., Perdikis, D., Woodman, M., Wang, H., Gonzalez-Martinez, J., et al. (2017). The virtual

epileptic patient: Individualized whole-brain models of epilepsy spread. NeuroImage 145, 377–388.

doi:https://doi.org/10.1016/j.neuroimage.2016.04.049

Kadirvelu, B., Hayashi, Y., and Nasuto, S. J. (2017). Inferring structural connectivity using ising couplings

in models of neuronal networks. Scientific Reports 7, 8156. doi:10.1038/s41598-017-05462-2

14



Manos et al. REFERENCES

Kinouchi, O. and Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature

Physics 2, 348–351. doi:10.1038/nphys289

Korthauer, L., Zhan, L., Ajilore, O., Leow, A., and Driscoll, I. (2018). Disrupted topology of the resting

state structural connectome in middle-aged apoe ε4 carriers. NeuroImage 178, 295–305. doi:https:

//doi.org/10.1016/j.neuroimage.2018.05.052

Kuramoto, Y. (2003). Chemical Oscillations, Waves, and Turbulence. Dover Books on Chemistry Series

(Dover Publications)

Kuznetsov, Y. A. (1998). Elements of applied bifurcation theory. No. 112 in Applied Mathematical

Sciences (Berlin: Springer), 2 edn.

Lee, W. H. and Frangou, S. (2017). Linking functional connectivity and dynamic properties of resting-

state networks. Scientific Reports 7, 16610. doi:10.1038/s41598-017-16789-1

Lombardi, F., Herrmann, H. J., and de Arcangelis, L. (2017). Balance of excitation and inhibition

determines 1/f power spectrum in neuronal networks. Chaos: An Interdisciplinary Journal of Nonlinear

Science 27, 047402. doi:10.1063/1.4979043

Marinazzo, D., Pellicoro, M., Wu, G., Angelini, L., Cortés, J. M., and Stramaglia, S. (2014). Information

transfer and criticality in the ising model on the human connectome. PLOS ONE 9, 1–7. doi:10.1371/

journal.pone.0093616
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SUPPLEMENTARY MATERIAL

Empirical data

Structural and functional connectivity for 38 cognitively normal APOE ε4 allele carriers aged 40–60

(µ = 50.8, σ = 0.99 ) are compared with 38 age (µ = 50.9, σ = 0.99) and sex-matched (16 male/22

female) non-carriers (control - non-carriers). Resting state functional MRI (rs-fMRI)—A T2*-weighted

functional scan was obtained with an echo-planar pulse imaging (EPI) sequence (28 axial slices, 20× 20
cm2 FOV, 64 × 64 matrix, 3.125 mm × 3.125 mm × 4 mm voxels, TE = 40 ms, TR = 2,000 ms).

The 8-minute rs-fMRI scan was acquired under a task-free condition (i.e., resting state): subjects were

instructed to relax with eyes closed and to “not think about anything in particular”. Imaging included

T1-weighted MRI, resting state fMRI and diffusion weighted MRI. Freesurfer cortical parcellation and

sub-cortical segmentation was performed to derive 80 regions-of-interest (ROIs) registered on the Desikan

atlas (Desikan et al., 2006). The mean time-course was extracted from the pre-processed rs-fMRI data.

Probabilistic tractography was used to create the structural connectome matrices, and normalized by the

way-total of the corresponding seed ROIs. The detailed information on the imaging and processing steps

can be found in (Korthauer et al., 2018).

Signed resting state structural connectome

In constructing a signed resting state structural connectome, we use a novel approach introduced

in (Ajilore et al., 2013) and has already been used in several studies (see e.g. (Fortel et al., 2019,

2020, 2022, 2023) which takes into account both structural connectivity and functional time series to

form a signed coupling interaction network or “signed resting state structural connectome” (signed

rsSC) to describe neural excitation and inhibition. To this end, an energy representation of neural

activity based on the Ising model from statistical mechanics which ultimately bypasses traditional BOLD

correlations. The spin model is a function of a coupling interaction (with positive or negative values)

and spin-states of paired brain regions. Observed functional time series represent brain states over

time. A maximum pseudolikelihood with a constraint is used to estimate the coupling interaction. The

constraint is introduced as a penalty function such that the learned interactions are scaled relative to

structural connectivity; the sign of the interactions may infer inhibition or excitation over an underlying

structure. The efficiency of this approach was validated in comparing a group of healthy APOE-ε4 carriers

(associated with genetic risk factor for Alzheimer’s disease with a control (healthy) group of non APOE-ε4
subjects.

Here, we briefly describe the computational aspect of this approach. First, we adapted the Ising

model, a well-known spin-glass model from statistical physics in which the states, also referred to

as “spin configurations”, of interacting units – in our case brain regions connected by white matter

edges – are constrained to be either 1 (“active”) or -1 (“inactive”). As described in (Fortel et al.,

2022; Tang et al., 2021) we construct a function-by-structure embedding (FSE) using a constrained

pseudolikelihood estimation technique wherein pairwise interaction coefficients (represented as (Ji,j),
with i and j representing ROIs in the brain network) are inferred from the observed data (BOLD time

series). As the model assumes binary data, we binarize the resting-state fMRI signals. The binarized

activity pattern of all ROIs at time t (t = 1, 2, . . . , tmax) is (s(t) = s1(t), s2(t), . . . sN (t) ∈ {−1,+1}N ).

The time series data was thresholded at zero (after global signal regression), yielding a binarized

sequence of −1 or +1. Note that our procedure follows the same procedure as previously proposed by
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other groups in this general research area that leverages the Ising model (see (Fortel et al., 2022, 2023) for

more details).

Note that tmax is determined as a result of the fMRI scan time. Here (s1(t) = ±1) indicates that an

ROI is either active (+1) or inactive (−1). First, the time series goes through a z-score normalization

procedure, resulting in zero mean and unitary variance. The interaction (Ji,j) between two regions should

be directly linked back to the diffusion MRI-derived structural connectivity between them as informed by

tractography, so we add a constraint to the Hamiltonian function as:

H(s) = −
∑

i<j

Ji,jsisj , (6)

such that |Ji,j | ∝ Wi,j , where (Wi,j) is the structural connectivity between pairs of ROIs, and the external

force or bias terms are dropped in the case of resting-state. This ensures that in the pseudolikelihood

estimation of (J), we constrain it with the structural connectivity (under the assumption that structural

connectivity informs spin models governing brain dynamics). Thus, the optimal interaction matrix (J) is

derived by maximizing the pseudo-likelihood function as:

Lpseudo (J,β) =
tmax∏

t=1

k∏

i=1

Pr
(
si(t)

∣∣∣J,β, s
−i(t)

)
. (7)

Pseudolikelihood substitutes Pr(s) by the product of the conditional probabilities p̃ = Pr(si(t)|J, β, s−i(t))
observing one element si(t) with all the other elements (denoted s−i(t)) fixed. To ensure that the

magnitude of the coupling interactions is scaled relative to structural connectivity, the constraint is

formulated as |Ji,j | ≈ µWi,j , where µ is a normalization constant and Wi,j is the structural connectivity

between ROI pairs. Without loss of generality, we assume that µ = 1 with appropriate normalization. We

therefore present a penalty-based optimization scheme to maximize the constrained log-pseudolikelihood

function as:

ℓ(J,β) =
1

tmax
lnLpseudo(J,β)−

λ

2

∑

i<j

(Ji,j − sgn(Ji,j)Wi,j)
2. (8)

And the pseudolikelihood component expands as follows:

1

tmax
lnLpseudo (J,β) =

=
1

tmax

tmax∑

t=1

N∑

i=1

ln(
exp(β

∑N
k=1 Ji,ksi(t)sk(t))

exp(β
∑N

k=1 Ji,ksk(t)) + exp(−β
∑N

k=1 Ji,ksk(t))
). (9)

Our formulation here is based on the Boltzmann distribution under pseudolikelihood conditions. Thus, the

numerator describes the energy of the system, while the denominator is the sum of all possible energies.

Hence, there are only two terms in the denominator since si(t) is binary (one positive, and one negative).
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The likelihood function may be simplified by setting Ci(t) = β
∑k

m=1 Ji,msm(t), resulting in:

ℓ(J,β) =
1

tmax

tmax∑

t=1

N∑

i=1

Ci(t)si(t)− ln(exp(Ci(t)) + exp(−Ci(t)))−

−
λ

2

∑

i<j

(Ji,j − sgn(Ji,jWi,j))
2. (10)

Here we may construct the gradient ascent procedure with respect to Ji,j by computing the partial

derivative of the log-pseudolikelihood as:

∂ℓ

∂J i,j
=

1

tmax

tmax∑

t=1

β{si(t)sj(t)− sj(t) tanh(Ci(t))} − λ(Ji,j − sgn(Ji,j)Wi,j). (11)

The updating scheme follows:

Jn+1
i,j = Jn

i,j + γ
∂ℓ

∂Ji,j

∣∣∣∣∣
n

. (12)

Here, n is the iteration number and γ is the learning rate. In this way, the penalty function ensures that

the inferred pairwise interaction is scaled relative to the estimated structure of the brain. This procedure is

followed for all subjects in constructing an optimized J matrix per subject, which we term the resting-state

structural connectome or rsSC.

In Figure 5 we show the respective BOLD time series, In more detail, in Figure 5(A) we show the

time evolution of the empirical BOLD signal. Figure 5(B) depicts the simulated BOLD signal with the

parameters (K, τ) ≈ (27, 20) found when optimizing CCFC using the respective rsSC matrix while in

Figure 5(C) we plot the respective simulated BOLD signal with the parameters (K, τ) ≈ (39, 18) using

the SC matrix. All BOLD signals in all three panels are scaled to range in [−1, 1].

Analysis on the role of positive and negative coupling coefficients in rsSC vs SC

connectommes in simulating high-fidelity fMRI correlations with a dynamical system

The inferred matrix rsSC with cij entries from the inverse Ising model (via a pseudo-likelihood

maximization procedure that is further constrained by the structural connectivity, see (Fortel et al., 2022))

encodes information that reveals excitation vs inhibitory relationship between brain regions. Thus, by

deploying the cij as coupling coefficients in a dynamical system (here coupled Kuramoto oscillators) we

generate high-fidelity positive and negative fMRI correlations.

Our contribution is not in any way artificial, as the whole point of the paper is to outline and validate

a Kuramoto-oscillator generative model with a novel brain connectome as the coupling coefficients for

accurate simulations of resting-state fMRI dynamics. No prior attempt to our best knowledge has been

able to match our reported accuracy in any artificial or non-artificial way.

Figure 7 depicts a visual comparison between the structural connectome (panel A), the cij matrix of

the resting-state structural connectome (panel B), and functional connectome (panel C) presented in the

manuscript. One can clearly observe that, at least visually, the rsSC matrix (panel B) actually looks more

similar to the structural connectivity (panel A) than to the function connectivity (panel C).
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Figure 5. Bold signals. (A) Empirical BOLD signals. (B) Simulated BOLD signals with the parameters
(K, τ) found when optimizing CCFC using the respective rsSC matrix. (C) Simulated BOLD signals with
the parameters (K, τ) found as in (B) but using the respective SC matrix. Note that all BOLD signals
in all three panels are scaled to the range [−1, 1]. The small figures on top of the main panels show the
respective zoomed areas for the first 20 seconds.

Figure 6. Statistical Analysis for negative and positive correlations in empirical and simulated FCs.
Boxplots of the correlation coefficients for eFC and sFC obtained by using either SC or rsSC as the
coupling coefficient matrices (non-carriers group) in the simulations. For each subject we considered
the parameters (K, τ) which correspond to the 5 maximum values that optimize the similarity between
eFC and sFC matrices (indicated with circles in Figures 2 (A),(D)). The 3 leftmost boxplots indicate the
negative correlations in the actual eFC (light green), simulated using rsSC (light blue) and using standard
structural connectome SC (red).
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Figure 7. A visual comparison. Structural connectome (A), resting-state structural connectome (B) and
functional connectome (C).

In the Figure 8, we show the Pearson correlation coefficient boxplots between empirical (i) SC and

rsSC, (ii) SC and FC and (iii) rsSC and FC matrices for all non-carriers (panle A) and carriers (panel B)

datasets. Out of the three comparisons, the SC and rsSC connectomes are most similar as their Pearson

correlation coefficient indicates, while the SC and FC connectomes are the least similar. The rsSC and FC

connectomes exhibit intermediate similarity with a Pearson correlation coefficient ≈ 0.6. If simply going

by the value of the correlation, then one must (also by mistake) argue that the rsSC artificially captures

mostly the structural connectivity information.

Figure 8. Pearson correlation coefficient boxplots. Empirical (i) SC and rsSC, (ii) SC and FC and (iii)
rsSC and FC matrices for all (A) non-carriers and (B) carriers datasets.

Next, we also studied what happens when some random weights of the SC are made negative, to check

whether the presence of negative weights alone allows for more expressive dynamical regimes.

SC matrices

To this end, we modified the SC matrices as follows: We used the same original SC from the non-carrier

subject in Figures 1-4 of the main manuscript. Then 10% of the positive connections were selected

randomly and their signs were reversed to negative (all connections in the original SC matrix are non-

negative). This produced the first matrix. Similarly, we repeated the same procedure to randomly select
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and sign-flip an additional 20% of the non-zero positive connections to produce the second matrix. In total,

this produced the 10%, 30%, 50%, 70% and 90% sign-reversed SC matrices Figures 9 and 10 shows the

result for 10% and 30% respectively.

Figure 9. A SC matrix with 10% random negative entries. Upper row: we selected 10% of the positive
connections randomly and reversed their signs to negative. All connections in the original SC matrix are
non-negative. Bottom row: parameter sweep exploration performing a similar analysis to the one presented
in Figures 2 & 4 of the manuscript.

Indeed, with a low fraction (10%) of sign-reversal the agreement between empirical FC and simulated

FC (after fitting our proposed Kuramoto model) improved, suggesting that the presence of negative-valued

coupling in the Kuramoto model is indeed necessary to sufficiently recover negative correlations in the

functional connectivity. However, as expected with higher-fraction (50%, 70% and 90%, not shown here)

sign-reversals of SC the agreement between empirical and simulated FC decreased again, supporting the

notion of an optimal Excitation-Inhibition balance as we argue in this manuscript.

rsSC matrices

We have also performed a similar experiment by modifying the rsSC matrix of the same representative

subject as follows: We first calculated the total amount of negative connections in rsSC. Then, we

randomly selected 10% of these negative connections and turned them into positive by taking their

absolute values. This produced the first sign-flipped rsSC matrix. We repeated the same process as before,

yielding a total of 5 sign-flipped rsSC matrices at various fractions (10%, 30%, 50%, 70% and 90%)

with randomly reversed signs from negative to positive. The general trend of the rsSC findings here is

complementary to those in the previous SC sign-reversal experiments. Here, as the rsSC sign-reversal
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Figure 10. A SC matrix with 30% random negative entries. Upper row: we selected 30% of the positive
connections randomly and reversed their signs to negative. All connections in the original SC matrix are
non-negative. Bottom row: parameter sweep exploration performing a similar analysis to the one presented
in Figures 2 & 4 of the manuscript.

percentage (negative to positive) increased the agreement between simulated and empirical FC matrices

worsened. Figures 11 and 12 show the result for 10% and 30% respectively.

Taken together, given that structural connectivity is always non-negative, our simulations demonstrated

that with structural connectivity as the coupling coefficients of a Kuramoto-oscillator model the recovery

of negative correlations in FC is suboptimal even with the consideration of global delay. Thus, the main

contribution of our manuscript is a principled biophysically-informed generative framework that leads

to a signed coupling matrix (i.e. the rsSC) capable of generating substantially more accurate functional

connectivity. Indeed, our model exhibits more expressive dynamical regimes and hence a better fit with

the data.

24



Manos et al. REFERENCES

Figure 11. A rsSC matrix with 10% random negative entries Upper row: After having calculated the
total amount of negative connections in rsSC, we randomly selected 10% of these negative connections
and turned them into positive by taking their absolute values. Bottom row: parameter sweep exploration
performing a similar analysis to the one presented in Figures 2 & 4 of the manuscript.

Figure 12. A rsSC matrix with 30% random negative entries Upper row: After having calculated the
total amount of negative connections in rsSC, we randomly selected 30% of these negative connections
and turned them into positive by taking their absolute values. Bottom row: parameter sweep exploration
performing a similar analysis to the one presented in Figures 2 & 4 of the manuscript.
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