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Abstract: This contribution aims to analyze compliance with the rules relating to disturbances in the
domain of health due to exposure to electromagnetic fields (EMF). This concerns safety standards
for exposed living tissue and the integrity of exposed medical devices acting on the body. This
investigation is carried out by reviewing and analyzing these exposure effects. In the paper, the
EMF exposure, the nature of sources and the characters of their interactions with objects are first
illustrated. Then, EMF exposure restrictions accounting for living tissues safety standards as well
as medical devices constancy are discussed. Exposure biological effects comprising both thermal
and non-thermal effects are then detailed. The verification and control of EMF effects are next
illustrated including mathematical modeling of EMF effects, governing equations and body tissues
representation in the solution of these equations. At the end of the paper, two examples representing
the cases of tissues and devices are given to check the rules under exposure to EMF: biological effects
on exposed human tissues and integrity of a magnetic resonance imager under external disturbance.

Keywords: EMF exposure; safety standards; medical device integrity; compliance verification; living
tissues; mathematical modeling

1. Introduction

Through the growth in the exercise of electromagnetic fields (EMF) in everyday life,
various investigation works concerning their consequences have been dedicated in different
domains. One of the most significant concerns is in the health domain. Studies have
focused on the effects of electromagnetic (EM) sources on humans and health care devices.
Two questions generally guide assessments of the effects of exposure to electromagnetic
fields. The first is to assess induced fields in the tissues and physical consequences to
assess possible health effects according to international safety standards [1–3]. The second
challenge is to assess the risk of disruption of medical devices, integrated or associated
with the body, used in therapy or involved in interventions.

Concerning the body tissues’ exposure to the EMF atmosphere, the international
health safety standards relative to exposure to external EMF are an established function
with different parameters. These include, furthermore to the field characters (strength and
frequency) and the interval, the tissue density and its physical properties. Such properties
hang on the fragment of the tissue reflected and the class of the theme exposed along with
the display conditions. These safety health standards fix limits connected to the effects
of exposure to EMF accounting for the mentioned parameters. Regarding the emitted
EMF, typically the mainly involved devices are those exerting significant stray fields as
wireless energy and signal transmission devices. These implicate wide spreads of power
and frequency. Two important categories are involved: digital communication and wireless
power transfer. The circumstances of telecommunications involve ordinary EMF sources—
for instance, radiofrequency (RF) waves emitted by antennas, Wi-Fi points, smartphones,
mobile phones and Bluetooth tools. As the expended frequencies are high, and the exposed
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item regards the body tissues, controlling their safety conditions is necessary; see, e.g., [4–9].
In the case of wireless charging systems, applications vary from small devices such as
telephone sets to high-powered devices, such as electric vehicles (EV). Various works have
been carried out concerning the analysis of safety in the case of low power; see, e.g., [10–13].
High power tools such as those discussed in [14–20] present solid nearby EMF and can
yield large fields in the body tissues, and we must identify the situations in which the
charging scheme can conform to security; see, e.g., [21–26]. Note that the effects of exposure
to EMF are different in these two application categories. In that of wireless communication
tools (WCT), the field asset is relatively modest, but the exploited frequency is great, and
the part of the body exposed is mainly the head area. In such circumstance, the most
important biological effect (BE) is concentrated on the brain. In the situation of wireless
inductive power transfer (IPT), as in EV battery-charging systems, the field intensity may
be strong and display high leakage; the frequency is small; and the exposure regards bodies
near the device. In these conditions, BE concerns the initiation of EMFs in the body.

Concerning disturbances in the operation of medical devices, these are generally
shielded against external fields to avoid disturbing the on-board electronics. Nevertheless,
in the case of devices whose operation is based on electromagnetic fields that could be
disturbed by external fields or objects involved in medical instruments near or inside the
device, typical examples are static fixed-function wearable measuring tools—e.g., [27–29]—
active organ stimulation tools—e.g., [30,31]—and magnetic resonance imagers (MRI) used
in image-guided therapies and interventions. Actually, these image-guided operations
can use several types of imagers, e.g., [32–38]. Among these imagers, only two are free of
ionizing radiation: the MRI and ultrasound imager (USI) [34–38]. However, the USI can only
work without air or bones. The MRI seems to be the best solution, but as mentioned before,
it is subject to perturbation by external EMF or objects involved in medical instruments
near or inside the imager. To control the integrity of the MRI, an analysis of electromagnetic
compatibility (EMC) is needed [39–45]. In general, in all of the above-mentioned medical
devices that are subject to disturbance by EMF, an EMC control is necessary to verify the
integrity of the medical device against the external field.

In both the above-described situations of biological tissues and medical devices, the
most effective means for verification of the external field effect seem to be numerical tools
based on mathematical modeling of the equations involved. The subject modeled can be
the tissue of the body part (represented by an equivalent phantom) or the structure of the
part of the medical device concerned.

The methodology followed in this contribution concerns mainly such verification
of external field effects. In both cases of tissues and devices, the electromagnetic model
facilitates the estimates of local distributed fields allowing the verification of the field
thresholds relative to the tissues as well as the EMC analysis in the devices. Moreover, in
the case of tissues, the bio-thermal model connected to the electromagnetic model allows
the calculation of the temperature rise to verify the thermal threshold in the tissues.

This contribution aims to analyze compliance with the standards relating to health
domain troubles due to exposure to electromagnetic fields (EMF). This concerns the ex-
posed living tissues of the body and the interaction with medical devices acting on the
body. In the paper, first we give a description of EMF exposure involving the nature of
sources and the characters of their interactions. Then we present EMF exposure restrictions
accounting for living tissues’ safety standards as well as medical devices constancy. Expo-
sure biological effects will be detailed next including both thermal and non-thermal effects.
This investigation will be carried out by reviewing and analyzing these exposure effects.
Then, the verification and control of EMF effects will be illustrated including mathematical
modeling of EMF effects, governing equations and tissues representation in these equations.
At the end of the paper, we present two examples of cases of verifications: biological effects
on exposed human tissues and EMC control in an MRI.
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2. EMF Exposure

In different situations, EMFs are consumed every day in several sociable purposes.
Additionally, they are employed securely in medical treatments. Conversely, when these
fields are operated inadvertently, it can crop unfavorable outcomes. These consequences
are intimately linked to the type of the EMF and the exposed substance. The strength of the
field as well as its frequency typify EMF, whereas the physical and geometric properties
describe matter.

2.1. Nature of EMF Sources

Essentially, the outcomes due to EMF exposure can be split into two different groups
regarding the frequency ranges. One comprises the range of 103–1014 Hz for which waves
can be divided into radio, microwaves and infrared that return non-ionizing radiation. The
other interests the range of 1015–1022 Hz divided into ultraviolet, X and gamma rays, which
create ionizing radiation. It is likely in this case to have hostile health effects by creating
tissue damage. EMFs of diverse frequencies, in the scale of non-ionizing class, function in
numerous situations and still can disorder society.

In general, the emitting tools most involved in EMF non-ionizing exposure are, as
mentioned before, those exercising noteworthy escaped fields such as wireless energy
appliances including wide strength and frequency ranges. Two typical classes of such
devices are WCT and IPT apparatuses. The case of WCT includes regular sources of RF,
105–3. 1011 Hz, while the case of IPT uses relatively low frequencies (less than 200 kHz).

2.2. Interactions of Sources and Living Tissues

In general, EMF sources can be divided into two classes: those working close to body
tissues, producing an interacting near field greatly confined in a tissue portion of the body,
and sources happening far away from the body that generate a total-body homogenous
exposure. Roughly, far field relates to source-recipient distance superior to a wavelength,
and its forte reduces quickly through distance. Interaction of the field with body tissues
is influenced by the frequency, the field strength, the exposure time and the dielectric
properties of absorbing matters. The character of interactions can produce effects due to
short- or long-term exposure.

3. EMF Exposure Restrictions

Exposure to external sources of EMF can disrupt many societal domains. Health is a
vital one in this concern. This affects living tissues in general and medical devices mainly
when used in connection with living subjects.

3.1. Living Tissues Safety Standards

The health-safety standards fixed limits linking to tissue-specific absorption rate (SAR),
subsequent temperature elevation and EMFs initiated in the living tissues. These thresholds
account for the source specifications, the tissue properties and the exposure conditions and
duration. These elements denote, on one hand, the part of the body considered that can
be the head, trunk or limbs and the quality of the subject exposed that can be an adult,
child or animal. On the other hand, they designate the exposure nature and duration
for the different types of exposed persons (connected to the association with the source):
employees concerned in fabrication, checking and settling devices, consumers using the
tool and nearby items.

3.2. Medical Devices Constancy

Most of daily use devices are normally protected against external EMF exposure due
to fabrication regulations of the emitting sources and the shielding of these exposed devices.
Such protection concerns mainly the embedded electronics in these devices. The case of
medical devices where the functioning is based on EMF and which are used nearby or
on the body tissues is more complicated relative to the exposure to external EMF that can
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perturb the device’s self EMF. The complication can be augmented when using instruments
employing EMF or involving materials perturbing fields nearby or inside the medical
device. Typical examples are, as mentioned before, static fixed-function wearable sensing
devices, active organ stimulation tools and MRI used in guided therapies and interventions.
In these cases, as mentioned earlier, EMC analysis is necessary to verify the consistency of
the medical device against the external field or perturbing materials.

4. Biological Effects of Exposure

Regarding BE, the case of exposure to great EMF (intensity and interval) can be
hazardous to living tissues. Standards thresholds of induced EMF in the tissues can verify
this. Such exposure may guide to tissue heating, in particular, for high frequencies (RF),
causing heating that may provoke tissue harm. Two features reinforce such incidence. One
links to the capacity of RF energy to quickly heat tissues. The other corresponds to the
body’s failure to endure the inconsistent temperature rise that can be created. Remark
that the fragments of the tissues least defended from RF-EMF heating are those presenting
deficiency in blood flow, which is the key method for dealing with severe heat. Note that
disproportionate force fields can exhibit non-thermal effects.

4.1. Thermal Effects

The BE corresponding to thermal effect are related to the dissipation of electric power
in living tissues. The density of this power per volume for conducting or dielectric materials
is respectively given by

Pd = σ·E2/2 lowω such that σ >>ω·ε mainly conductor (1)

Pd =ω · ε′′ · E2/2 highω such that σ <<ω·ε mainly dielectric (2)

The corresponding SAR is given by

SAR = Pd/ρ = σ·E2/(2 ρ) or =ω · ε′′ · E2/(2 ρ) (3)

In (1–3), the parameters are as follows: σ is the electric conductivity of the heated
material; ε′′ is the imaginary part of the complex permittivity of the absorbing material; and
ρ is the material density. The variableω is the angular frequency = 2πf; f is the frequency
(Hz) of the exciting EMF; and E is the absolute peak value of the electric field strength
(V/m), Pd (W/m3) and SAR (W/kg).

The power dissipation density given by (2) relates to foremost dielectric heating of
EMF energy loss relative to RF; see the discussion (Section 8) for more details.

The SAR, Equation (3), which values the energy absorbed by an element of a matter,
can quantify the thermal effect induced by exposure to EMF. If multiplied by the exposure
interval, the SAR signifies the specific absorbed energy amount. This energy generates a
rise in matter temperature.

Generally, the quantity of heat absorbed by a lossy dielectric can be given as

∆Q = c m ∆T (4)

where Q is the heat energy absorbed or dissipated in joule (J); m is the mass of the substance
(kg); ∆T is the change in substance temperature (◦C); c is the specific heat of the substance
(the heat required to change a substance unit mass by one degree) in J/(kg·◦C).

The power absorbed per unit mass of substance exposed to EMF, SAR (W/kg), which
corresponds to the time derivative of the energy (J) absorbed per unit mass (kg) of substance
can be given for an exposure time ∆t (s) by

SAR = ∆Q/(m·∆t) = c·∆T/∆t = σ. E2/(2 ρ) or =ω · ε′′ · E2/(2·ρ) (5)



Standards 2023, 3 231

Expression (5) implies that SAR value of substance varies with the induced electric
field intensity, the exposure interval and the matter electrical-thermal properties. The
energy absorbed by the substance is converted to thermal energy, triggering an increase in
the temperature.

The temperature increase ∆T due to power dissipated by an electric field interacting
with a lossy dielectric material specimen given for an exposure time ∆t is obtained from (5):

∆T =ω · ε′′·E2. ∆t/(2·c·ρ) (6)

Note that Equation (6) gives the temperature rise in an element of a dielectric. For a
living tissue, the heat transfer is usually represented by Penne’s bio-heat equation [46] as is
shown in Section 6.

4.2. Non-Thermal Effects

Apart from thermal effects, other types of interactions of RF EMF sources and tissues
can also be more intricate, creating non-thermal effects relating various biochemical or
bioelectrical concerns that affect cellular, molecular and chemical arrangements in living
tissues [47–58]. These effects can be developed due to long-standing exposures or excessive
short-range exposure involving high SAR values.

5. Verification and Control of EMF Effects

EMF effects on biological tissues and medical devices must be verified and controlled.
The most effective means for accomplishing such a task is the use of numerical tools
based on mathematical modeling. The electromagnetic model allows procurement of local
distributed fields permitting the verification of the field thresholds relative to the tissues as
well as the control by EMC analysis in the devices. The verification of thermal threshold in
tissues can be accomplished by the computation of the local distribution of the temperature.
This can performed through the bio-thermal model connected to the electromagnetic model.

6. Mathematical Modeling of EMF Effects

The evaluation of EMF effects can be performed through mathematical modeling of
the EMF equations and the bio-heat tissue equation [46]. These governing equations can
be locally solved in the object or tissues related to the effects. This can be achieved by
means of numerical discretized techniques or other means permitting local calculations;
see, e.g., [59–65].

6.1. Governing Equations

In the mentioned governing equations, the junction between EMF and heat equa-
tions is Pd or SAR, which can be obtained from EMF equations and used as input to the
heat equation.

The EMF equations can be expressed as

∇ × H = J (7)

J = σ E + jω D + Je (8)

E =−∇ V − jω A (9)

B =∇ × A (10)

In the EMF Equations (7)–(10), H and E are the magnetic and electric fields; B and
D are the magnetic and electric inductions; and A and V are the magnetic vector and
electric scalar potentials. J and Je are the total and source current densities; σ is the electric
conductivity; andω is the radial frequency pulsation. The symbol∇ is a vector of partial
derivative operators, and its three possible implications are gradient (product with a scalar
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field), divergence and curl (dot and cross products, respectively, with a vector field). The
magnetic and electric comportment laws between B/H and D/E are represented by the
permeability µ and the permittivity ε, respectively.

Generally, in EM systems, the current is supplied by a voltage source across an external
electric circuit. The next relation connecting the voltage v and the current i in the external
circuit can be expressed as

v = 1/C.
∫

i dt + r i + L. di/dt + dΨ/dt +
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is a
non-linear voltage drop (case of semiconductor component, e.g., a diode); and Ψ is the flux
linkage in the coil.

The input source term in EM Equations (7)–(10) is Je or its equivalent electric field σ
Ee. In case of IPT, the source Je is related to “i” of Equation (11), and the EM equations
to solve will be (7–11). In the case of WCT EMF exposure, the source will be σ Ee, which
corresponds toω ε” Ee in living tissue, and the EM equations to solve will be (7–10).

Pd given by (1) or (2), depending on the material—respectively, conductor or dielectric—
and SAR given by (3) can be determined from the solution of (7–10, 11).

The general heat transfer equation can be given by

c ρ ∂T/∂t =∇ · (k∇T) + Pd + Pconv (12)

The bio-heat tissue equation can be given by

c ρ ∂T/∂t =∇ · (k∇T) + ρ (SAR) + qmet − cb ρb ωb (T − Tb) (13)

where Pconv is convective power density in (W/m3); k is thermal conductivity; T is the local
temperature in ◦C; qmet is the basal metabolic heat source in W/m3; cb is blood-specific
heat in J/ (kg. ◦C); ρb is blood density in kg/m3; ωb is blood perfusion rate (1/s); Tb blood
temperature in ◦C.∇ · (k∇T) symbolizes heat equation in differential form; and ρ (SAR)
is the power density in (W/m3) absorbed in the tissues.

6.2. Solution Approach

The solution of EMF Equations (7)–(11) permits us to calculate the provoked EMFs,
for a given frequency, in the object or tissues. The SAR value as well as the EMC analysis
checking the perturbations of devices (embedded or not) can be obtained from the values of
these EMFs. Penne’s bio-heat equation given by (13) permits us to determine heat transfer
in living tissues. Thermal conduct in tissues due to exposure within the SAR is governed
by Equations (2), (3), (7)–(10) and (13).

Concerning the solution of Equations (7)–(11) and (13) that correspond to EMF, external
circuit and bio-thermal behaviors, note that the approach of solution depends on the relative
values of time constants of the involved phenomena. When these time constants are near,
the equations of concerned phenomena need to be solved through a strong (simultaneous)
coupling; this is the case of EMF and external circuit equations. Opposing, with far
time constants, the corresponding equations can be solved in a weak coupling manner
(iteratively); this is the case of EMF and thermal equations; see, e.g., [66,67].

The equations can be solved in a coupled way (strong or weak) and locally (by
discretized techniques) in the proper part of the device or the tissue. The obtained outputs
are the local distributions in the device or the tissue of Pd, SAR, ∆T and produced EMFs.

6.3. Tissues Representation

In the practice of local computations of EMF in body tissues, we need suitable models
of the body and ample data of the tissues properties at the actual frequency. These models
are of homogeneous or non-homogeneous types. For the former, the dielectric properties
of the tissues are regularly labeled as a 2/3 equivalent model [68]. For the other, layered
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tissue, phantom models are attuned on data attained from MRI techniques, suggesting
tissue shape accuracy in the order of mm [69]. Figure 1 shows an anatomical whole model
of the body and its various details. Such a high-resolution tissue model is well suited with
the approaches expended for the calculation of produced fields in human tissues. The
dielectric possessions of tissues are extensively presented in [70].
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7. Cases of Verifications

In this section, two examples of standards or compatibility are verified through the
approach explained in the last section. For this, we will consider the case of safety standard
verification for an EMF exposure of a human body by an IPT and the control of the integrity
of the RF field involved in a MRI under perturbation conditions due to the introduction of
external matter in the imager.

7.1. Human-Induced EMFs due to Exposure to an IPT

In this section, we will consider the instance of EMF exposure of body tissues by IPT
of EV battery charging system. As the used frequencies in this case are relatively low,
the main important standard thresholds to verify are those of EMF induced in the tissues.
Figure 2 displays an illustration of the induced fields distributions in human body tissues
exposed to an IPT of EV. The modeled elements are the body (phantom) placed on the
ground alongside the vehicle, the IPT coils, ferrites and the vehicle chassis [71,72]. The used
human body phantom is the one shown in Figure 1, which is compatible with the employed
numerical approach. The obtained results are in conformity with safety standards (27 µT
for B and 4.05 V/m for E).
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Figure 2. Provoked field distributions in a body exposed to an IPT below an EV, for a horizontal
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7.2. EMC Control in a MRI

In this section, we will consider the instance of disturbances in the MRI-involved RF
magnetic field distribution inside its tunnel, which can generally be triggered by external
EMF or the introduction of conductive or magnetic matters in the RF coil placed into
the tunnel inside the imager. Both of these external intrusions, field or matter, have the
same perturbation effect on the RF MRI field. Due to this, external fields are restricted,
and only compatible matter can be introduced. One of the most efficient image-guided
operation sets, as mentioned earlier, is the one using MRI. In MRI-guided interventions
and therapies, only compatible devices and actuation tools constructed of materials which
are not magnetic or conductive can be used. Piezoelectric material is ordinarily permitted,
and actuators built of such material can normally be used [73–79]. In such actuation, we
need electrodes (skinny conductive coverings) allowing the control of the piezoelectric. The
checking of the disruption due to the insertion of different structures has been investigated
in [71,72]. EMC analysis of different material structures indicated that only the conductive
one is incompatible. Moreover, a simple configuration of piezo material layered with two
electrodes of skinny layers was controlled by EMC examination. The two situations of
electrodes perpendicular or parallel to the field direction have been examined. Figure 3
shows the MRI RF magnetic field distribution (vertically oriented) in the cross-section of
the cage within the MRI tunnel for the no material reference case. In Figure 4, the case of
piezoelectric material of cubic form (µr = 1, εr = [450,990,990], σ = 0 S/m) covered on two
opposite faces by conductive tiny electrodes (µr = 1, εr = 1, σ = 3.77 × 107 S/m) is reflected
(see Figure 4a). The figure displays the field distribution in the two situations of electrodes
perpendicular (Figure 4b) and parallel (Figure 4c) to the field direction.

Remark that the piezoelectric almost does not perturb the field, and that the relative
orientation of the fine conductive layers to the field acts a central role; this is due to the
surface of the conductor facing the field direction. In Figure 4, it can be seen that only
the electrodes perpendicular to the field perturb its distribution, and that the influence
of conductive electrodes can be considerably diminished by putting them parallel to the
field. Note that the distributions of Figures 3 and 4 are attained for identical source states;
thus, they can give a behavioral suggestion. In addition, it is assumed that the other MRI
fields are compensated and shielded. This EMC analysis in MRI illuminates a policy for
monitoring any disorders during image-guided operations.
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Figure 4. Distribution of the MRI RF magnetic field in the situation of insertion of a piezoelectric
coated by electrodes (a) structure configuration, (b) distribution with electrodes perpendicular to the
field, and (c) distribution with electrodes parallel to the field [71,72].

8. Discussion

In the present work, the investigation and analysis of the strategy of verification and
control of compliance with the standards and rules relating to disturbances by EMF have
displayed that such a strategy is valuable. This involved exposed body living tissues and
the interaction with medical devices acting on the body. At this step, different arguments
are valuable commenting on the following:

• As discussed in the paper, such strategy of verification and control can be centered
on numerical tools based on mathematical models including EMF and bio-thermal
governing equations. Such strategy is summarized in Figure 5, which illustrates
schematics of the strategy. Inputs are source characters, object geometry and parame-
ters, exposure interval and tissue physical parameters. Outputs are distributed fields
of E, B, J, SAR and ∆T, which permit us to verify standards thresholds in tissues and
to control devices integrity via EMC analysis.

• Concerning power dissipation densities, as conferred in the paper, we have noticed
that such dissipation in conductor or dielectric matter depends on not only the phys-
ical proprieties of conductivity and permittivity of the matter but also on the EMF
involved frequency. The two dissipation types are related to the relative values of the
conductivity and the permittivity multiplied by the angular frequency (σ and ω.ε).
They are functions, respectively of σ andω·ε′′, where ε′′ is the imaginary part of the
permittivity ε that is frequency-dependent. It denotes the capacity of a dielectric to
transform EMF energy into heat.

• Wide practice of wireless communication tools in one usage requires estimation ex-
hibiting all these tools, taking into account the likely exposure effects of each. This
combined devices situation requests a global SAR evaluation in the various tissues.
This complex problem looks significant mainly if the frequencies of the sources are dif-
ferent. This problem could be grave in numerous real environments linked mainly to
indoor instances such as therapeutic centers, shopping malls, etc. A future exploratory
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challenge could be the establishment of a mathematical EM model relating ‘n’ diverse
frequencies exclusive of doing ‘n’ successive solutions. This would be, in addition to
disproportionate computations, incorrect due to ignoring the interactions of sources.
Sole particular numeric extensions would solve this problematic issue.

• This contribution may be of interest to the various players involved in this subject, in
particular the digital communication wireless energy systems industry, standardiza-
tion authorities, medical staff, patients, the medical instruments and devices industry
and researchers in various fields.
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9. Conclusions

The objectives of this paper were to analyze compliance with the standards relating to
health domain troubles due to exposure to EMF. The following recapitulate the conclusion
of the article:

• The compliance with the standards of the exposed living tissues of the body and rules
relating to disturbances of medical devices acting on the body have been analyzed,
illustrated and evaluated.

• Exposure biological effects including both thermal and non-thermal effects as well as
interaction of EMF with medical devices have been illustrated and discussed.

• Verification and control of EMF effects have been demonstrated via mathematical
modeling of EMF effects through their governing equations and illustrated in the
two studied categories by two examples of cases of verifications: human tissues-
induced EMF and EMC control in a MRI.

• A future investigative challenge would be the exposure mathematical model of com-
bined sources with different frequencies.
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