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ABSTRACT: This article aims to evaluate and analyze the role of 

piezoelectric actuation in miniature robots in general and converging 

towards systems using traveling waves on beams and plates of thin 

structures. In other words, examining the later in the general context of 

the first. The useful values of interest concerned by this subject are 

diverse: applications needing high specific power particularly suitable for 

miniaturized robots, vibrations supervision, damage and fatigue 

revealing, medical and other micro pumps applications, different 

controls in difficult access areas, harvesting of energy, etc. The 

characteristics and behaviors of actuation, which is accomplished by 

resonant and non-resonant piezoelectric systems, are first reviewed and 

examined. The amplification of the actuation is then highlighted. Next, 

non-resonant piezoelectric actuators for stepping functions are discussed. 

Then, the main principles of piezoelectric resonant ultrasonic motors are 

summarized allowing the illustration of the operation of traveling wave 

piezoelectric resonant beam robots. Next, traveling waves on thin 

structures are examined, reviewed and conferred. This involves, driving 

of piezoelectric patches in miniature robots, applications of thin structure 

embracing piezoelectric materials, and finally thin structure piezoelectric 

miniature beams and plate robots. Following the last sections, a 

discussion of the operations of locomotion and positioning of the 

piezoelectric actuators is presented. 

KEYWORDS: piezoelectric actuation; ultrasonic motors; traveling waves; 

thin structures; miniature robots; beams and plate structures; locomotion 

and positioning 

1. Introduction 

Locomotion and positioning are often employed in advanced energy devices, e.g., optimal 

appliances, robot junctions, spatial arrangements, precision machineries, etc. This can be achieved by 

using actuators reflecting high displacement resolution and positioning precision as well as swift 

response, high rigidity and actuation strength, uncomplicated configuration and little volume. 

Piezoelectric actuators are perfect candidates for such attributes[1–8]. They can be integrated for 

locomotion or positioning in energy devices or constituting autonomous miniature robots. These 

actuators perform following the inverse piezoelectric effect. Indeed, a piezoelectric material engenders 

electric potential under the effect of applied compression, which is the direct effect, while an applied 

electric potential on the material produces mechanical deformation that is the in-verse effect. The direct 

effect is operated in pressure sensors and energy transducers while the inverse one is behaved in 
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actuators. Piezoelectric actuators can be used straight or as amplified actuators. The amplified case 

reflects two energy conversions electric-mechanic and mechanic-mechanic typifying the movement 

produced by actuator. The first conversion exhibits the inverse effect of  piezoelectric phenomenon that 

produces a small displacement while the second concerns a particular locomotion, which magnifies 

such a movement. The concerned locomotion sources are generally inspired after natural locomotion 

and could be classified by their movement across a fluid or at a solid surface[9]. 

Referring to piezoelectric actuators vibration condition, they can be categorized as resonant[10–12] 

and non-resonant[13–17]. In the resonant case, also named ultrasonic motors of  rotating or linear structure, 

high frequency resonant vibrations of  a fixed part (stator) will derive a moving part (mobile)[18–21]. They 

reflect high speed and lengthy whiplash but limited positioning precision. Furthermore, structures that 

are more recent have been developed in this resonant category, based on travelling waves on finite 

beams and plates robots[22–26]. The non-resonant case comprises four types of  actuators: stack, 

inchworm stepper, seal and inertial steppers. The stack (multilayer) actuators[27,28] have linear axial 

movements created by inverse effect of DC voltage, reflecting high displacement resolution but poor 

strokes. The inchworm ones[29,30] use several stacks to increase their strokes, a part of  stacks insure 

adhesive contact of  the fixed driving part and the mobile part, and the others accomplish the propelling 

stepping. The inertial and seal steppers[31–36] drive the mobile with slow extending and fast shortening 

displacements of stacks, reflecting small yield force and rearward motion inconvenient. 

Many works have been published on specific subjects involved in this topic. The proposed 

contribution aims to evaluate and amalgamate a synthesis of  the problems dealt with in the field, 

focusing on efficient actuation of miniature piezoelectric robots. 

The objective of this contribution is the evaluation of  piezoelectric systems using traveling waves 

on beams and plates of thin structures in the context of actuation performance of miniature 

piezoelectric robots in general. This involves the analysis and discussion of  the various features and 

characteristics of  actuation methods. In addition, the information given will be supported in the article 

and can be supplemented from the important but not exhaustive literature provided in the list of 

references. 

In the present assessment, after the introduction of characteristics and behaviors of  piezoelectric 

actuation in general, different related features will be exposed, reviewed and discussed. First, the 

amplification of  actuation will be highlighted. Then the non-resonant piezoelectric actuators regarding 

stepping performs will be conferred. The main principals of piezoelectric resonant ultrasonic motors 

will be then summarized. Relating to these principals the traveling wave piezoelectric resonant beam 

robots will be approached involving the excitation modes in finite beam structures through examples of  

traveling wave piezoelectric resonant, ultrasonic motor and beam robots. Next, the traveling waves on 

thin structures will be examined, reviewed and discussed. This involves actuation and driving of 

piezoelectric patches in miniature robots, applications of  thin structures containing piezoelectric 

materials and thin structures piezoelectric miniature beam as well as plate robots. Subsequent to the last 

sections, a summarized review of  locomotion and positioning operations of  piezoelectric actuations is 

given. The last section discusses different details relative to the questions treated in earlier sections. 

Conclusions are then summarizing the contributions of  the paper and the questions of interest raised by 

this subject. 
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2. Amplified actuation 

Thanks to the inverse piezoelectric effect, these materials allow actuation. However, the distortion 

of  one layer of  piezoelectric is little to be operated straight in the majority of applications[37,38]. Greater 

deformations can be attained by stacking up several layers of ceramic piezoelectric with synchronized 

orientations of  deformation and electrodes parallel associated[39,40], thus we have a piezo-stack actuator 

that permit a more important combined movement. Note that the importance of  the displacement 

depends of the number of  layers of the piezo-stack, which leads to outsized actuator for attaining a 

reasonable movement. However, even with this multiplied displacement, superior movement scale is 

habitually necessary in particular for robotic usages. Subsequently, attaining higher output motions with 

acceptable size actuators can be obtained by mechanical piloting tools associated with piezo-stacks 

named amplified actuators. Typically, an ordinary single cut fabricated elastic material forming a 

piloting tool, a flexure hinge, which produces movements by self-deformation under force application. 

Such structures have the advantages to be small with soft repetitive displacements, little inertia and no 

friction. Accordingly, they are often employed under different structures for conducting movements 

generated by piezo-stack actuators[41–46], thus offering movement guiding and motion amplification 

needed for robotic applications. 

3. Non-resonant piezoelectric steppers 

The amplifying appliance considerably augments the operational extent of  piezoelectric materials. 

However, the resulted displacements are yet not enough for far-reaching procedure requests. Therefore, 

employment of  stepper actuators seems more normal. Steppers whose locomotion is based on friction 

are categorized into inchworm, seal and inertial actuators. 

3.1. Inchworm actuator 

The inchworm actuator mimics the swarming attribute of  the insect named likewise. Mimicking 

the insect, this actuator commonly encloses a feeding component and two fastening components all 

contain piezoelectric material, which resemble respectively to the bendable body, front and rear feet of 

the insect[29,30]. Note that the functioning of  the two fastening components of the actuator are both 

sporadic. 

3.2. Seal actuator 

The seal actuator is also a sea seal imitating. If  one of  the two sporadic fastening components used 

in the last section is substituted by an incessant fastening one (corresponding to rear feet), the inchworm 

actuator is converted into a seal one[34–36]. 

3.3. Inertial actuator 

If  the sporadic fastening component used in the last section is substituted by an inertial piece, the 

seal actuator converts to an inertial one, which is composed of  a feeding component, an incessant 

fastening one and an inertial piece[31–33]. 

4. Piezoelectric resonant ultrasonic motors 

The piezoelectric resonant ultrasonic motor (PRUM) is composed of two parts, a stator and a 

mobile (slider). The stator is excited by a wave producing an elliptical movement, which is transformed 

into movement of the mobile by friction with the stator. The nature of the stator excitation wave 

(driving part) can be traveling wave (TW) or standing wave (SW) or hybrid. The difference between 
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these waves is related to their ability of  energy transfer. TW can convey energy through a distance of  

matter, while in SW the energy stays linked to a given position. The movement of the mobile relative to 

the drive stator may be rotary or linear[6]. In the following sections of  this contribution, we will focus on 

structures whose functioning is based on TW PRUM. However, other types of  PRUM like SW and 

L1B2, exhibit very interesting performances[19–21]. 

5. Traveling wave piezoelectric resonant beam robots 

The linear TW PRUM motor mentioned in the last section originates the idea of TW piezoelectric 

resonant beam robots (PRBR). In this case, the completely robotic system progress itself instead of 

progressing the slider in the case of PRUM. Motion can be generated using single or dual mode 

excitation. Indeed, pure traveling waves can exist on lengthy configurations. On the other hand, in 

finite structures such as beams, the vibration wave is partway returned when it hits the borders. The 

mentioned excitation modes permit avoiding such wave reflection. 

5.1. Excitation modes in finite beam structures 

TW excitation in finite structures in general can be achieved as mentioned before in one or two-

mode. In the one-mode excitation, a piezoelectric transducer driven at resonance frequency is placed at 

one end of a beam, creating beam vibration (actuator action-electric source) generating a TW, while 

another transducer placed at the other end of the beam to avoid the wave reflection (sensor action-

electric load). This permits the conversion of vibrations into heat and can be done using a passive RL 

electric circuit or an active control technique permitting the regulation of the vibration of the TW down 

the beam. In the two-mode excitation, two piezoelectric transducers placed one at each end of the beam 

working as actuators creating beam vibration resulting in a TW. This is done using active control 

techniques permitting beam vibration resulting of applying at once by the two transducers, two close 

beam natural mode shapes at the same frequency (between two resonance frequencies) but 90° phased. 

Figure 1 illustrates these two excitation types. 

 
(a) One mode excitation. 

Figure 1. (Continued). 
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(b) Two modes excitation. 

Figure 1. Schematics of one and two mode excitations in the case of PRBR[4]. 

Note that the inverse TW direction and hence motion direction can be obtained by the inversion of 

the two transducers roles in the one-mode excitation and changing phase difference between the signals 

of the two transducers from 90° to −90° in the two-mode case. In addition, the transducers positions, 

the source frequency as well as circuit and control parameters permit to supervise the character of the 

TW and therefore the motion[4,22]. 

Comparisons of the performances of one and two-mode excitations will be considered in section 8 

through realized examples. 

5.2. Examples of TW PRBR 

Various applications concerning TW PRBR as well as PRUM can be found in literature, we will 

give some examples of them. In the case of linear PRUM, see for one-mode excitation[47] and for two-

mode excitation[48]. In the case of TW on finite beam structures in general[49]. Specific applications for 

TW on finite beams, see, e.g., the cases of a TW PRBR[4,22] and of a linear liquid micro pump working 

in one-mode excitation (two transducers: vibrator-absorber) or two-mode excitation (transducers: 

vibrator-vibrator)[3,50,51]. Figures 2 and 3 show the principles of such beam robot and micro pump. 

 
Figure 2. Schematic representation of the principle of a TW PRBR with two-mode excitation[4]. 
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Figure 3. Schematic representation of the principle of a micro pump of π-like structure of a linear actuator[3]. 

6. TW on thin structures 

A mechanical wave can be generated in a material by an oscillating source in interrelation with 

this material. This wave will propagate through matter carrying energy from one position to another. 

The ability to create and control wave motion through finite matter can be achieved by actuation 

mechanisms. The choice of thin structures as a support for the propagation of mechanical waves makes 

it possible to obtain one-dimensional progressive waves in beams actuated at their ends. Similarly, two-

dimensional traveling waves can be initiated in plates with actuators placed at different points of the 

plate chosen according to the desired propagation. These actuators generate controlled oscillations 

corresponding to their specific excitations, which determine the different characteristics of the resulting 

traveling waves. The organization of the actuators may or may not be symmetrical depending 

respectively on whether or not they are collocated on the thin structure. In the symmetric case, the 

actuators are positioned face to face on both sides of the structure (collocated) while in the 

asymmetrical situation, the actuators are only on one side (non-collocated); Figure 4 illustrates such 

non-collocated actuators for beam and plate cases. The use of thin beams or plates permits easy 

actuation by patches fixed on the structure. Miniaturization in such configuration becomes attainable. 

 
(a) Beam case. 

 
(b) Plate case. 

Figure 4. Non-collocated piezoelectric patches bonded on a beam or a plate. 

6.1. Actuation and driving of piezoelectric patches in miniature robots 

Piezoelectric materials are used in various forms, in miniature robots for actuation due to their 

aptitudes to engender large forces under conforming driving voltages[52–62]. These materials are 

distinguished by a high specific power particularly suitable for miniaturized robots[63]. Moreover, the 

characteristic drawback linked to the control of piezoelectric materials by a high voltage, via an on-

board source in the case of miniature robots, is no longer challenging. Indeed, many works have been 
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carried out to surmount this difficulty[64–69]. Therefore, it is likely to incorporate compact on-board 

electronics to drive miniature piezoelectric robots, thereby increasing their packaging energy density[70]. 

6.2. Applications of thin structures including piezoelectric materials 

Thin structures enclosing piezoelectric matters are broadly exploited for vibrations supervision[71–75], 

for structure damage and fatigue (e.g., health indicator for gear degradation monitoring) revealing[76–83], 

for designing and building actuations regarding inchworm motion, micro pumps, motors, etc.[84–88], for 

sensors design and for harvesting of energy[89–95]. Miniature robots using piezoelectric patches bonded 

on thin structures (PPBTS) are used in many applications involving beam and plate structures as will be 

discussed in following sections. 

6.3. Thin structures piezoelectric beam robot 

Thin structure piezoelectric robots are mainly miniature robots using PPBTS. An important 

category of these concerns beam robots, which permits linear motion due to actions of two piezoelectric 

patches bonded generally on the two beam extremities. As described in section 5.1, such actions can be 

of actuator-sensor mode type or actuator-actuator one. 

As mentioned before, the piezoelectric matters fixed on the beam extremities, as, e.g., PPBTS, can 

be collocated or not (see Figure 4). The behaviors of such systems can be analyzed by analytical or 

numerical modeling[96]. In the case of collocated matters (symmetric on both beam sides)[72,97–102], while 

for the case of non-collocated matters (asymmetric on one side)[71,98,103–105]. Note that the analysis could 

be done using 2D discretized surface elements (using, e.g., finite elements method—FEM). A 

considerable reduction in the complexity and the computation time can be achieved by using 1D linear 

elements while considering the second dimension in the solved equation. This is possible through the 

consideration of a neutral axis. Such axis is confused with the symmetry axis corresponding to the mid 

plane of the system in the case of collocated patches. Such neutral-symmetry confusion in collocated 

patches structure case does not exist in the case of non-collocated patches case; see section 8 for details. 

Thus, in the last case, the neutral axis should be determined[96]. 

6.4. Miniature piezoelectric plate robot 

These miniature plate robots use PPBTS and permit motions in different orientation depending on 

actions and positions of different piezoelectric patches bonded on specific locations of the plate. As in 

the case of beams the piezoelectric matters can be collocated or not (see Figure 4). The conducts of 

such structures can be analyzed by numerical modeling. Similarly, to the treatment considered in the 

last section for beams, the modeling of plates could be achieved using 3D discretized volume elements 

(FEM). A great diminution in the computation time can be attained by using 2D surface elements 

whereas counting the third dimension in the modeled equation. As for beams case, this is feasible using 

a neutral plane. Such plane is confounded with the symmetry mid plane of the system in the case of 

collocated patches[72,97,98,106–108]. Such neutral-symmetry confusion in collocated patches plate structures 

is inexistent in the case of non-collocated patches case and the neutral plane, as the case of neutral axis, 

should be determined[96], see section 8. Note that, in some particular geometrically simple structures, 

analytical solutions can be used. However, in complex plate structures, we have to exercise discretized 

FEM solution. Figure 5 shows the meshed domains corresponding to some examples of complex plate 

structures. The small colored rectangles represent different patches bonded on circular or rectangular 

thin structures with or without holes. 
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Figure 5. FEM meshing in different complex structures of non-collocated piezoelectric patches bonded on thin structures[4]. 

7. Locomotion and positioning 

7.1. Locomotion 

We have seen in section 2 that amplified actuation is indispensable for robotic purposes through 

locomotion obtained by such amplification. Most of encountered locomotion types are relative to 

motion on solid substrates and in fluids. 

In the case of locomotion on solid ground, different forces are involved. These are relative to 

gravity, normal reaction, friction and active motion generation. Such locomotion is of different styles. 

The most popular are wheeling[109,110], walking[111–114], inchworm[84,115,116], inertial[117–120] and resonant[97–108]. 

In the case locomotion in fluids, we will consider liquid and air mediums[9,121]. In this type of 

locomotion, the movement is fully inspired from biological locomotion. In the liquid instance, 

movement can be inside or at the surface of the liquid. Different works have been published for 

movement on water surface, underwater and air[23,24,122–127]. 

7.2. Positioning 

The requirement for accuracy positioning requests has immensely motivated the exploration and 

advancement towards the development of actuators owning high precision. Several mentioned 

actuations in the last sections, match such specification[5,14,16,17,35–37,42]. As well, different works are 

available for positioning needs[128–131]. 

8. Discussion 

In this work, the practiced investigation and review of the role of miniature robots, using resonant 
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and non-resonant piezoelectric actuations, in locomotion and positioning have shown that such a topic 

is fully valuable. At this point, different questions are worth commenting on: 

• Functioning of PRUM following to section 4: In PRUM, the driving force comes from the 

inverse piezoelectric effect. In such a case, this effect transforms a harmonic electrical signal into a 

cyclic deformation of matter. This force behaves linearly in conjunction with the specific length scale, 

actually allowing the production of useful amounts of work from small-scale motors. This is all the 

more factual since the motor is intended to operate close to the mechanical resonance of the stator. 

Moreover, PRUM has other advantages including high torques, straight drive, no coping mechanism, 

fast response, moderate voltage, not affected by electromagnetic noise, and simple in structure. 

• Performances of one and two-mode excitations: The one and two-mode excitations described in 

section 5 behave with different performances depending on application. An example of beam robot of 2 

PZT patches of 32 × 17 × 0.27 mm placed on an elastic substrate of 180 × 17 × 0.5 mm. Patches are 

positioned at X = 24 mm from each end. Measurements have been realized for the robot speed, with 

different applied voltages and embedded masses, on a smooth glace flat surface for the one-mode and 

two-mode excitations[4]. Figure 6a,b shows respectively, the speed function of the applied voltage and 

the mass. One remark that the curves of the two-mode excitation are always higher than the one-mode. 

This effect increases with the applied voltage increase and decease with mass increase. 

• Miniaturization through PPBTS and compact on-board driving electronics: As discussed in the 

above sections, the use of piezoelectric actuation permits high specific power. In addition, it is possible 

to incorporate compact on-board driving electronics using specific technologies. Due to these features, 

which are particularly suitable for miniaturized robots, the use of PPBTS embedding compact driving 

control seems an adequate solution offering high packaging energy density. The corresponding self-

running piezoelectric robot compared to the case of slider derived by a stator, seems simpler in structure 

and lesser in manufacture cost. In addition, such structure permits high load ratio and speed as well as 

easier abilities of evolution in different mediums. Moreover, besides the capacity of self-running robots 

to move solid loads[23,24], its structure permits to move liquids, e.g. in micro pumping devices[50,51]. The 

use of this last application permits high precision delivery time and quantity of liquid in medical 

applications. 

 
(a) 

Figure 6. (Continued). 
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(b) 

Figure 6. Robot speed versus (a) applied voltage; and (b) embedded mass, one mode and two modes excitation[4]. 

• Neutral locations notion in thin structures with bonded patches: In section 6, the notions of 

neutral, axes in beams and surfaces in plates, have been mentioned. These neutral axes or surfaces are 

confused with respectively median geometric axes or surfaces in case of beams and plates with 

symmetrical sections. Such symmetry in the case of bonded patches on thin structure beams and plates 

is present only in case of collocated patches (in correspondence on both sides). In the case of non-

collocated patches, the confusion of neutral with median references is lost. 

Indeed, in mechanics, the neutral axis or surface is a fictitious reference within a structure of beam 

or plate. Once a bending force weighs on the structure that tends to bend, causing the inner surface 

(under the force) to be in compression while the outer surface is in tension. Figure 7 illustrates the well 

known representation of a thin elastic beam or plate under force action illustrating neutral axis (or 

plane), compression stress zone and tensile stress zone. The neutral axis or surface is the location 

within the structure between these regions, where the substance of the beam or plate is not stressed by 

compression or tension. When the section of the structure is constant with homogeneous matter, the 

neutral site is confused with the median site. In fact, this is the situation of the beam or plate shown in 

Figure 7. Otherwise, with inhomogeneous material in the section of the structure, the two neutral and 

median locations will be distinct depending on the matter properties of the section of the structure. The 

identification in this case of the neutral location will be necessary as indicated in the following point. 

 
Figure 7. Schematic representation of cross-section of a thin elastic beam or plate under force action illustrating neutral axis 
(or plane). 
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• Modeling of piezoelectric robots involving patches bonded on thin structures: As mentioned in 

section 6, an efficient determination of the behavior of thin structures with bonded piezoelectric patches 

can be attained through numerical modeling by techniques as finite element methods FEM. The 

precision of such models is related to their capacity to account for local conduct in material due to their 

discretized nature. The beam structure case corresponds to 2D analysis involving the axial wave 

propagation direction “x” and its perpendicular direction on the surface and in-depth “z” of the beam 

(see Figure 7), in this case, the discretized elements are surface ones. Such a model can be reduced to 

1D by incorporating the second dimension “z” in the solved equation and the used elements will be 

linear segment ones. Similarly, in the case of plate structures, the natural 3D (surface x, y and in depth z) 

can be reduced to 2D by considering the “z” component in the equation. These reductions, to 1D in 
beams and to 2D in plates simplifies considerably computations. However, these reductions implies the 

identification of neutral references: axis for beams and plane for plates, which is trivial in the case of 

collocated patches because these references are confounded with median geometrical ones. Conversely, 

in case of non-collocated patches, these references deviate from the median ones and their locations 

should be mathematically calculated[96]. 

The two reductions to 1D for beams and 2D for plates have been validated in case of the beam 

described before and corresponding to Figure 6, and to a plate[4]. The dimensions of this plate in mm 

are given by: 2 PZT patches of 32 × 17 × 0.27 placed in x-axis direction on an elastic substrate of 100 × 

60 × 0.5. The patches positions correspond to x = 10 for each patch from the two plate X-axis ends and 

y = 21.5 for patches from each of y-axis ends. Figure 8 shows z-displacement along Figure 8a the 

length and Figure 8b the width of the plate at the first resonance frequency obtained from 

measurements and with 2D FEM. 

 
(a) 

Figure 8. (Continued). 
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(b) 

Figure 8. Experimental and FEM 2D results of the z-displacement along the length (a) and the width (b) of the plate at the 
first resonance frequency[4]. 

The results obtained in Figure 8 indicate that the reduction of computation dimension through the 

notion of neutral location is efficient and give accurate results. 

9. Conclusion 

In this contribution, the evaluation of piezoelectric actuators concerning the performance of 

miniature robots in general, and focusing on systems using traveling waves on beams and plates of thin 

structures has been carried out. Examination of the various questions addressed in this review has 

shown that there is a continuous evolution in this field. The questions of interest raised by this subject 

are diverse, the most important of which are: 

Applications requiring high specific power particularly suitable for miniaturized robots, different 

miniaturization characteristics, traveling wave characteristics on thin structures, positioning of 

piezoelectric patches bonded on beams and plates, precise discretized numerical methods with the 

lowest calculation time, performance of miniature beam and plate robots and their wide application in 

various fields. 

These questions relate to different industries, health sectors, security communities, etc., and of 

course researchers in different fields. Recommendations for future work could be applications of 

miniature beam and plate piezoelectric robots in damage and fatigue control in hard-to-reach areas. 
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