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Abstract. Multiple Sequence Alignments set the basis for many biolog-
ical sequence analysis methods. However, they are susceptible to irregu-
larities that result either from the predicted sequences or from natural
biological events. In this paper, we propose MERLIN (Msa ERror Local-
ization and IdentificatioN), an object detector that consists in identifying
such irregularities using visual representations of MSAs. Our model is de-
veloped using a state-of-the-art deep learning object detector, YOLOvA4,
and trained on a set of MSA images from an in-house built dataset with
automatically annotated errors. Our object detector exhibits a mean Av-
erage Precision of 71.18% in predicting different types of errors within
MSAs. We conducted a thorough examination of the obtained results
which showed that our method correctly identifies certain inconsisten-
cies that were missed by the automatic annotation algorithm.

Keywords: Multiple Sequence Alignment - Error detection - Deep Neu-
ral Networks - Object Detection.

1 Introduction

Multiple Sequence Alignment (MSA) is a fundamental task in bioinformatics
that consists in arranging a set of biological sequences (DNA, RNA or proteins)
in order to identify regions of similarity that reflect their biological relation-
ships. However, MSAs are prone to errors which can originate either from nat-
ural biological variants or from MSA-generating algorithms. Algorithms used
to predict protein-coding genes in DNA sequences, for instance, are not always
accurate, and often lead to sequence prediction errors. Consequently, today’s
protein databases are riddled with inconsistencies [15].

Identifying inaccuracies in multiple sequence alignments is not a trivial task,
but accurate MSAs are instrumental in developing solutions to address problems
spanning different biology related areas of study [3], such as evolutionary studies,
protein structure, analysis of effects of genetic mutations, etc. Numerous align-
ment methods have been developed to tackle the MSA dilemma, including, but
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not limited to, dynamic programming, progressive multiple alignment, iterative
alignment, Hidden Markov Models, and Genetic Algorithms [22]. Several other
techniques have been proposed in order to evaluate and identify inconsistencies
within MSAs [6,12,24]. However, one unprecedented approach to solving this
issue consists in using a deep learning object detector. Object Detection aims
to identify and locate one or several objects in an image or video. This chal-
lenging task has been the center of increasing attention in the field of computer
vision with applications across a wide and diverse spectrum of fields including
traffic monitoring [13], medical image analysis [8], and biology [10]. MSAs can
be visually represented in the form of a colored alignment of sequences; we thus
hypothesize that the structural information encoded in MSAs can be exploited
by deep learning object detection algorithms, which are praised for their ability
to capture increasing scale of information and extract contextual information
from data.

In this paper, we propose an approach to identify inconsistencies within
MSAs of protein sequences. Our method, MERLIN (Msa ERror Localization
and IdentificatioN), consists in applying a state-of-the-art deep learning object
detector, YOLOvV4 [2], to detect and localize different types of errors (deletions,
insertions/extension, and mismatches) using visual representations of multiple
sequence alignments.

This paper is organized as follows: Section 2 introduces related works. Our
dataset is presented in Section 3. Section 4 describes the experimental protocol
used for the proposed approach. Section 5 presents and discusses the experiment
results. Finally, Section 6 summarizes the conducted work and concludes this

paper.

2 Related Works

Constructing an optimal multiple alignment of a set of sequences is a computa-
tionally expensive task, which led to the development of heuristic algorithms that
sometimes introduce errors into the alignments. These errors can result either
from inaccurate alignment algorithms or badly predicted sequences, and consist
in the presence of unusual deletions, insertions/extensions, or mismatches that
are inconsistent with their local context. A deletion error refers to the absence
of one or more amino acids from a sequence. An insertion is the inclusion of
an additional sequence segment between two amino acids, while an extension
refers to an additional sequence segment which is added on either end (N- or C-
terminal) of a sequence. Finally, a mismatch is represented by non-homologous
amino acids in one or more columns of the alignment.

As an attempt to investigate the errors introduced into MSAs, the authors
in [4] developed EvalMSA, a software tool that allows the detection of divergent
sequences and “outliers” in MSAs. The basic idea behind this technique is to
evaluate the contribution of each sequence to cause gaps in the alignment us-
ing a gappiness value (gpp); the sequence with the highest gpp value is deemed
strongly divergent and is more likely to introduce gaps in the remaining se-
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quences. EvalMSA was benchmarked with six different alignments derived from
the Pfam database [7]. Artificial outliers were added and the sequences were
realigned using different alignment algorithms (MUSCLE and ClustalW [21], as
well as Expresso algorithm [1]). EvalMSA was able to correctly identify out-
liers regardless of the algorithm used to generate the MSAs. The method was
compared to a similar outlier detection tool, called OD-Seq, introduced in [11].
This approach utilizes a gap metric to measure the similarity of gap placement
between pairs of sequences and identify sequences with missing parts compared
to the rest of the alignment. In another line of research, Khenoussi et al. [12]
set out to identify inaccuracies in protein sequences using MSAs. The authors
developed a Bayesien model called SIBIS, which takes an MSA as input and
outputs an XML file where all identified inconsistencies are highlighted. The
proposed algorithm was compared to MisPred [16] and a profile-based method
[23] on a set of MSAs. The obtained results showed a higher sensitivity for SIBIS
(81%) compared to 27% for MisPred and 62% for the profile-based approach. In
terms of specificity, SIBIS suffered a slight loss (92%) compared to the profile-
based method (96%). However, the loss in specificity was considered statistically
insignificant.

In this paper we attempt to examine the possibility of using a deep-learning
object detector to identify inconsistencies in MSAs. Object detection algorithms
are primarily divided into two categories: two-stage and one-stage detectors. As
the name suggests, a two-stage detector is carried out in two stages; in the first
stage, the algorithm selects Regions Of Interests (ROIs) (i.e. regions with a high
probability of containing an object). In the second stage, the region proposals
are processed for object classification and bounding box regression. One-stage
detectors, on the other hand, require only a single pass through the network to
localize and classify objects. Although two-stage detectors exhibit a good detec-
tion accuracy, they come with a large cost in terms of time and computational
power. As an attempt to overcome this limitation, Redmon et al. [19] proposed
YOLO (You Only Look Once), a novel deep learning detection paradigm. YOLO
owes its name to its ability to process and detect objects in an image/frame in a
single pass of the network. Therefore, YOLO is a one-stage detector that waives
the need for a region proposal technique, thereby increasing detection speed.

Here, we are interested in YOLOv4 [2], which is an advanced version of
YOLO. YOLOvV4 is a one-stage detector that improves upon earlier versions
by introducing new techniques that enhance the training process and detection
accuracy.

3 Dataset

In order to train and evaluate our object detector, we used multiple sequence
alignments from an in-house built dataset [15]. These MSAs are extracted from
the Uniprot reference proteomes [5] and RefSeq [17] databases, and were auto-
matically annotated using SIBIS algorithm [12]. As described in Section 2, three
types of errors can be found in an MSA: deletions, insertions/extensions, and
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mismatches. It is important to note that, since the original MSAs were not man-
ually annotated, some alignments may contain certain errors that the annotation
program failed to detect . The original MSAs were converted into images using
ADOMA (Alternative Display Of Multiple Alignment) [28] which is a graphical
interface that offers a colored alignment output where amino acids with sim-
ilar physico-chemical properties share the same color. Figure 1 shows protein
sequences in the color format as produced by ADOMA. We then removed the
characters from the colored alignments and modified their color code to make
the sequences more contrasted. The obtained HTML files were then converted
into images using an open source command line tool [27].

rocoze  Heprofii- GUlle MlofESE - - - NESOEEVNCHRARE- i - WWVER - NS -9l -1
clouss Herroliiesiille HEORESE - - - NENoEEURCHIRARE- R - (UVERy - RE -9l -5

Fig. 1: Example of protein sequences shown in the ADOMA [28] colored format.

Once we obtained the MSA images, we designed a simple program to auto-
matically generate the corresponding annotations. To this end, we used a parser
that takes an MSA in XML format (output by SIBIS [12]) as input and outputs
all existing errors and their corresponding positions. The information provided
by the parser is then used to produce annotations in YOLO format.

4 Experimental Setup

The architecture in YOLOv4 consists of a backbone, neck, and head. The back-
bone is based on CSPDarknet53 [25]; the neck includes a Spatial Pyramid Pool-
ing (SPP) block [9] in order to increase the receptive field and separate out the
most significant context features from the backbone; the feature aggregation in
the neck is carried out using PANet [14]. The head is in charge of the final de-
tection and implements YOLOv3 [20]. The implementation of YOLOv4 uses the
Darknet framework [18]. For our experiment, we split the data (12229 images)
into 80% for training, 10% for validation, and 10% for testing. Since our MSA
images are of a large rectangular shape, we set the network size? to 1024x512.
For training, we used a batch size of 64; an initial learning rate of 0.001; mo-
mentum and weight decay are set to 0.9 and 0.0005, respectively. The training
was processed for 14000 iterations 3. The distribution of classes in the training
data is as follows: Internal deletions (32.7%), N-terminal deletions (31.4%), C-
terminal deletions (9.57%), Internal insertions (9.07%), N-terminal extensions

! Since SIBIS sensitivity is “only” 81% (v.s. 92% specificity) it means that it is more
prone to False Negatives.

2 Images are resized to the network size during training and detection.

3 Also known as max batches. It is defined as the number of classes * 2000 by
Bochkovskiy et al. in [2]
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(7.10%), Mismatches (6.76%), C-terminal extensions (3.40%). This distribution
corresponds to the actual proportions of these error types across MSAs in the pri-
mate proteomes databank [15]: Internal deletions (36.9%), N-terminal deletions
(29.34%), C-terminal deletions (8.87%), Internal insertions (8.82%), N-terminal
extensions (6.43%), Mismatches (6.63%), C-terminal extensions (3.01%).

5 Results and Discussion

The performance of our object detector was evaluated using a set of different
metrics as shown in Table 1. The mAP refers to the mean Average Precision,
and it is a commonly used evaluation metric for object detection which measures
model performance in terms of both classification and localization ability. In
order to understand the mAP, we first need to define the Intersection over Union
(IoU) and Average Precision (AP). The IoU is an evaluation metric that measures
the overlap between a predicted bounding box and the ground truth box in an
image; the larger the area of overlap the higher the IoU score. Given an IoU
threshold o = 0.5, the model determines whether a detection is a True Positive
(IoU > «), or a False Positive (IoU < «); a False Negative is when the model fails
to detect an object in the image. Based on these elements, the model computes
the precision and recall. Precision quantifies the number of true positives over all
positive predictions, while recall measures the number of true positives among
all correct predictions. The Average Precision (AP) is then computed by finding
the area under the the precision-recall curve. While AP is calculated for each
class, the mAP is defined as the mean of APs across all classes.

Table 1: Evaluation results on the test set (containing a total of 1223 MSAs).
MERLIN achieved an accuracy of 71.18% on the test data.

Metric Value Average precision (per class)
mAP 71.18% Internal deletion, AP = 75.85%
Recall 78% N-terminal deletion, AP = 93.91%
Precision 2% C-terminal deletion, AP = 85.83%
Fl-score 5% Internal insertion, AP = 76.57%
Average ToU 67.73% N-terminal extension, AP = 88.02%
True Positives 2667 C-terminal extension, AP = 66.80%
False Positives 1014 Internal mismatch, AP = 11.32%
False Negatives 748

Every 1000 iterations, the mAP is calculated on the validation set and the
corresponding weights are saved in order to find the best weights with maximum
accuracy. The optimal model weights yielded a validation mAP of 72.89%. We
evaluated the performance of our object detector on the test set and reported
the results in Table 1. With a default IoU threshold of 50%, our model reached
a test accuracy of 71.18% with an average IoU of 67.73%. The results also show
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that the model correctly identified 78% of all actual positives with a precision
of 72%. In Table 1, the average precision (AP) evaluates the performance of
the model for each class. To better interpret the obtained results, we compared
the number of all annotated errors (i.e. errors identified by the Bayesian model
SIBIS [12]) in the test set to the number of detected errors by our object detector
for each error type. The results are reported in Table 2. Internal deletions are
the most present in the test set with a total of 1132 (representing 33.15% of
the test set). The model detected 84.45% of correct internal deletions with an
average precision of 75.85%. C-terminal extension errors are the least present in
the test set with 92 occurrences (representing only 2.7% of the test set): 66% of
these errors were correctly predicted with an AP of 66.80%. N-terminal deletions
are the most accurately predicted errors with an AP of 93.91%, while internal
mismatches were found to be the most difficult to detect with a low AP of 11.32%.
This could be intuitively explained by the following: while deletions, insertions,
and extensions alter the structural shape of an MSA, by introducing gaps or
additional sequence segments, mismatches are represented by a succession of
odd residues (colors) introduced into one or more columns, which makes this
particular sequence inconsistency relatively more subtle and difficult to discern.
This could also be due to the scarcity of training samples for this class which
makes it difficult for the model to learn underlying characteristics of mismatch
errors.

Table 2: Comparison results. We compared the number of all annotated errors
by SIBIS [12] in the test set to the number of errors detected by our proposed
object detector.

Number of identified errors|Number of identified errors

by SIBIS [12] by YOLOv4 [2]
Internal deletion 1132 1305 (TP = 956, FP = 349)
N-terminal deletion 1033 1139 (TP = 953, FP = 186)
C-terminal deletion 320 342 (TP = 260, FP = 82)
Internal insertion 282 325 (TP = 211, FP = 114 )
N-terminal extension 203 253 (TP = 178, FP = 75)
C-terminal extension 92 96 (TP = 61, FP = 35)
Internal mismatch segment|224 221 (TP = 48, FP = 173)
Total 3415 3681

5.1 Detecting inconsistencies in MSAs: Qualitative Analysis

We examined the extent to which our model, MERLIN, is able to make good
predictions on randomly selected MSAs from the test set: these MSAs contain
different types and number of errors. MERLIN was also tested on MSAs that
were annotated as error-free by SIBIS. Table 3 shows error detection results
of our detector on randomly selected MSAs. The MSA identified as QIUEE5
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contains three different errors: N-terminal deletion, N-terminal extension, and
internal deletion. All three errors were correctly detected by the model with high
confidence scores*: 99%, 98%, and 93%, respectively. The second example, MSA
QI9UHLA4, contains an internal insertion error and a mismatch. While the model
correctly identified both errors, the mismatch error has a low confidence score
(40%) compared to the internal insertion (92%).

Table 3: Examples of prediction results on the test set. Sample MSAs with
different inconsistencies correctly predicted by MERLIN.

MSA identifier Prediction: confidence score %

N-terminal deletion: 99%

QIUEES N-terminal extension: 98%

Internal deletion: 93%

Internal insertion: 92%;

Internal mismatch: 40%

QOUHL4

As stated in Section 3, the Bayesian model, SIBIS, used for data annotation
is not 100% accurate; in terms of error detection, SIBIS exhibited a higher speci-
ficity of 92% with a sensitivity of 81%. Taking this statement into account, it is
possible that certain MSAs contain at least one error that SIBIS has failed to
detect. Moreover, it is important to note that MSAs may contain certain gaps as
well as sequence segments that are structurally similar to deletions, extensions
or insertion errors; however, these segments are simple shape variations in the
MSA and do not constitute inconsistencies. In order to assess the ability of our
object detector to distinguish between these variations and erroneous segments
we used our model to identify errors on randomly selected examples amongst
MSAs containing such characteristics. Detection results are shown in Figure 2:
QINZI2 is an MSA with two N-terminal deletions correctly identified by the
model. While the first deletion is a true positive with a high confidence score
(98%), the second is a false positive with a lower confidence of 46%; however, a
thorough manual examination of the MSA confirmed the presence of the second
deletion, which was overlooked by SIBIS. We also observe that the MSA con-
tains inserted sequence segments that were not misidentified by the model as
inconsistencies. In Figure 2b, we present an MSA with a deletion error and two
extended sequence segments. While our object detector successfully predicts the
error with a confidence of 67%, it does not misidentify the extensions as erro-
neous. This particular MSA was manually found to contain a mismatch error
that was overlooked by both SIBIS and our object detector.

More detection results on randomly selected MSAs are shown in Table 4.
MSA Q9UBP4 has one extension error and three deletions. All detected errors
are true positives identified by the object detector with high confidence scores

4 Class-specific scores which encode the probability of a class appearing in the pre-
dicted box and how well the box fits the object.



8 H. Khodji et al.
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Fig. 2: Detection results on the test set. Ability of our object detector to distin-
guish between sequence inconsistencies and non-erroneous sequence segments.
(the annotation “SEQ ERRORN2” refers to an N-terminal deletion).

(98% — 100%). It should be noted that the MSA contains two insertions that
were not annotated as errors by SIBIS nor detected by our method. To deter-
mine whether these sequence segments constitute sequence inconsistencies, more
information about the corresponding genomic sequences and the exon/intron
structure is required. Three N-terminal deletions were found in the second ex-
ample (MSA Q9UK12). While the first deletion is the only true positive pre-
diction with a high confidence of 86%, a close inspection of the MSA revealed
that the remaining deletions are true errors that the annotation tool has failed
to identify. We also note that the alignment includes two deletions that were
left undetected. The model made two correct predictions on MSA Q9UBKT: an
extension error with a confidence score of 94%, and an internal insertion error
with an equally high detection score of 95%. The third prediction corresponds to
an internal deletion with a confidence of 39% that was not annotated by SIBIS,
however a manual examination of the MSA suggested that this may be a correct
positive prediction. The same observation can be made for MSA Q9Y664, where
the model correctly identified three different inconsistencies: a deletion with a
score of 48%, an extension with a score of 93%, and an insertion with a score
of 34%. However, while the deletion and extension errors are true positives, the
internal insertion is a manually confirmed error that was missed by SIBIS. In
the last alignment, QINYB5, two mismatches were incorrectly detected by our
model with low confidence scores.

As mentioned above, SIBIS is an automatic algorithm that sometimes fails
to identify errors within MSAs. Therefore, it is reasonable to assume that some
MSAs, containing at least one error, were dismissed as error-free. In order to
validate this claim, we used MERLIN on three randomly selected alignments
from a set of MSAs initially dismissed as containing no known inconsistencies
by SIBIS. Prediction results are reported in Table 5. In the first example, MSA
Q8WTVI, the model identified a deletion error with a high confidence (84%),
while in the second MSA, an extension error was detected with a relatively low
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Table 4: Additional detection results on the test set.
MSA identifier Prediction: confidence score %

N-terminal extension: 99%
N-terminal deletion: 100%
N-terminal deletion: 98%
N-terminal deletion: 100%
N-terminal deletion: 86%
QIUK12 N-terminal deletion: 78%
N-terminal deletion: 78%
N-terminal extension: 94%
Q9UBKT Internal insertion: 95%
Internal deletion: 39%
C-terminal deletion: 48%
QIY664 C-terminal extension: 93%
Internal insertion: 34%
Internal mismatch: 27%
Internal mismatch: 33%

QIUBP4

QINYB5

confidence of 48%. In the third example, the model identified an insertion with
an even lower confidence of 26%. All the identified inaccuracies were manually
confirmed by human expertise.

Table 5: Prediction results on MSAs initially annotated as error-free. MERLIN
successfully identifies different types of errors that were overlooked by SIBIS
[12]. These predictions were manually confirmed by human expertise.

MSA identifier Prediction: confidence score %
Q8WTV1 N-terminal deletion: 84%

Q8TEVS C-terminal extension: 48%
QIGZW5 Internal insertion: 26%

It is important to note that, regardless of the detection confidence scores,
the false positive predictions obtained by the detector warranted a manual re-
evaluation of the MSAs which confirmed the accuracy of these predictions. These
inconsistencies were not identified by SIBIS [12] in the original alignments [15],
and therefore not annotated in our dataset. Thus, it is safe to assume that the
number of true positives identified by our object detector is probably higher than
78.10%. Considering all of the above, our trained object detector is a promising
tool for the quality assessment of multiple sequence alignments.

5.2 Performance Comparison

We evaluated the performance of our object detector against OD-Seq [11] and
EvalMSA [4] on the test set. As described in Section 2, these tools rely on a gap
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metric to identify outlier sequences in a given MSA; that is, divergent sequences
that could harm the accuracy of an alignment. Our proposed approach, on the
other hand, is designed to detect different inconsistencies within each individual
sequence in an MSA. We conducted our comparison based on the number of out-
lier sequences identified by OD-Seq and EvalMSA, and all erroneous sequences
found by MERLIN. Our detector yielded a precision of 83% compared to 77%
by OD-Seq and 64% by EvalMSA; in terms of recall, our approach achieved 89%
on the test set, outperforming both OD-Seq (29%) and EvalMSA (51%).

5.3 Interpretable predictions

Our proposed object detector proved effective in identifying inconsistencies within
MSAs to assess their accuracy. However, the obtained predictions by the model,
while valuable, are limited to the visual representation of the MSAs and cannot
be directly exploited by bioinformaticians. To this end, we designed a program
to parse all predicted errors for a given MSA into a more accessible format. The
program takes YOLO predictions as input and outputs a text file which contains
all identified inconsistencies with their corresponding position coordinates (i.e.
the affected sequence, and start and end columns of the detected error). This
information allows researchers to analyze an MSA with commonly used MSA
visualization tools such as Jalview [26].

6 Conclusion

In this paper, we investigated a new approach by using a state-of-the-art ob-
ject detector [2] to identify inconsistencies on visual representations of Multiple
Sequence Alignments. We proposed MERLIN (Msa ERror Localization and Iden-
tificatioN), an object detection model to detect and localize different types of
errors (deletions, insertions/extensions, mismatches) within MSAs. Our model
yielded an accuracy of 71.18% in error detection and achieved better precision
(83%) and recall (89%), compared to gap penalty-based techniques, in identify-
ing outlier sequences in MSAs. A qualitative analysis showed that MERLIN can
also differentiate between sequence segments structurally similar to alignment
errors and actual inconsistencies, and that it can identify and localize errors that
were dismissed by annotation tools.

These encouraging results suggest that such an approach is suitable to localize
and identify different types of errors in MSAs and, overall, evaluate their quality.
This could prompt further research in this field in an effort to provide automated
assistance to bioinformaticians working with Multiple Sequence Alignments.
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