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Abstract

Long-term care (LTC) products cover the risk of permanent loss of autonomy. While the
global definition of the loss of autonomy is the impossibility or difficulty of performing activities
of daily living (ADL) alone, in the LTC insurance market, the exact definition of the health state
leading to a claim varies across different markets and even within the same market. A difference
in the disability definition implies a difference in the mortality rates of the autonomous and
disabled policyholders. Insurers or reinsurers often have experience data coming from several
long-term care products with differing definitions of risk. One solution is to separate the data to
estimate mortality rates for each definition independently.

In this paper, we propose two methods to aggregate the experience data of two portfolios
with different disability definitions to improve the estimations of the mortality. The mortality
laws of the two products are modeled in a Poisson Generalized Linear Model framework. The first
method uses a constrained optimization model and is solved by sequential quadratic programming.
The second method uses the Penalized Composite Link Model (PCLM). These methods allow
better and simultaneous estimation of mortality for both products by combining all available data.

Keywords: Long-Term Care Insurance; Multiple definitions; Penalized Composite Link Model;
Constrained optimization
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1 INTRODUCTION

1 Introduction

Long-term care (LTC) costs are among the major risks faced by individuals in retirement. For
example, Chapman (2012) reports that approximately two-thirds of people aged 65+ need LTC. By
using the U.S. Health and Retirement Study data, Johnson (2019) estimates a large gap between
the risk of needing vs. receiving LTC. As reported in Johnson (2019), 70% of individuals past age
65 need LTC, whereas less than 50% receive some form of LTC services. Similar levels of risk of
needing LTC have been reported in many other studies (Shao et al., 2017; Kemper et al., 2005;
Hurd et al., 2017).

LTC costs have been steadily increasing over the past decades in many countries, and this trend is
projected to continue (Colombo et al., 2011; Shi and Zhang, 2013; H et al., 2023). A recent report
by OECD (OECD, 2020) shows that on average, LTC costs were approximately USD 760 per capita
in OECD countries in 2018, accounting for 1.5% of GDP. In some countries, such as Denmark,
Norway and Sweden, LTC spending was as high as 3.5% of their GDP. In France, LTC spending
was 2.5% of its GDP.

The fundamental source of funding for LTC costs in most countries is public programs. For example,
in the U.S. LTC expenses are mainly funded by its public health program Medicaid (Colombo et al.,
2008; Kaye et al., 2010); in France, LTC expenses are mainly funded by its national allowance
program called Allocation Personalisée d’Autonomie (APA) with a cap (Or and Penneau, 2021).
Coupled with aging populations, the increasing trend of LTC costs may place a large burden on
public health programs in many counties. It has become very important in many countries to
develop or to enhance the private insurance market to help fund LTC costs (Shao et al., 2019;
Colombo et al., 2011; Productivity Commission of Australia, 2013).

A typical private LTC insurance policy entitles the policyholder to regular payments, such as cash
benefits or on a reimbursement basis, when the policyholder loses autonomy according a certain
definition (Haberman and Pitacco, 1999; Shao et al., 2017). The definitions of “losing autonomy” or
“becoming disabled” vary across different markets, and these definitions are not uniform even within
the same market.

In the US market, the disability definition in a typical LTC insurance policy is the loss of independence
in performing two or more activities of daily living (ADLs) and/or having cognitive impairment
(Pritchard, 2006). In the French market, the disability definition is mostly based on the GIR
(Groupe Iso-Ressources) assessment rules. Within the French LTC insurance market, different
disability definitions can be used in different insurance policies. For example, some LTC insurance
policies include a deferred period (such as 3 months, 6 months, or 9 months), and some start making
payments at the date of the loss of autonomy.

Differing disability definitions may result in very different transition rates between health states
(including disability rate and mortality rate) in the pricing model and can therefore have substantially
different financial impacts. An insurer or reinsurer may have experience data for many different

2



1 INTRODUCTION

portfolios of LTC insurance policies with differing disability definitions, where they typically analyze
experience for each portfolio of LTC insurance policies. This separate modeling approach can result
in information loss from a parameter estimation perspective. For example, two portfolios with
different definitions, from the same insurer with similar claims management team and system, should
have shared experience that can provide better estimations. This combined modeling approach can
also help experience analysis for portfolios with limited experience or areas with limited experience
data.

Let us consider an insured population such that the health state of each policyholder is observed
with only one of the two definitions. Instead of separating the policyholders in two portfolios
depending on the definition with which they are observed, we jointly estimate the mortality rates of
each product to prevent information loss.

In this paper, we develop two methods that make the best use of data available by combining
experience data of the two portfolios with different disability definitions. These two methods are
the constrained optimization method and the Penalized Composite Link Model (PCLM) method. A
common approach to estimate the parameters of a model is the maximum likelihood estimation.
The first method proposed in this paper estimates parameters by maximizing the likelihood subject
to some constraints linking biometric laws of the two portfolios. The second approach proposed in
this paper uses the Penalized Composite Link Model introduced by Eilers (2007) as an extension of
the Composite Link Model proposed by Thompson and Baker (1981). The Penalized Composite
Link Model has already been used in the context of mortality modeling in Remund et al. (2018)
for cause-of-death decomposition and in Camarda et al. (2016) by considering that the mortality
curve is a sum of 3 smooth components. In this last paper, the first component represents infant
mortality, the second component captures mortality due to aging, and the third component models
the accident hump for early adult ages. The constrained optimization model and the Penalized
Composite Link Model (PCLM) developed in this paper are embedded in the GLM framework.
Finally, the two models are also compared with the separate modeling approach to show the benefits
gained by combining experience data.

The two models developed in this paper use the P-splines smoothing method to avoid overfitting.
This smoothing method introduced by Eilers and Marx (1996) is based on the idea of penalizing
models with large variability between coefficients of adjacent splines.

The remainder of this paper is arranged as follows. Section 2 introduces the research question and
modeling framework. In Section 3, we provide technical details on estimation methods, including
P-splines smoothing, constrained optimization model, and the Penalized Composite Link Model
(PCLM). These models are applied to a real-life problem in Section 4; in particular, the application
is for the estimation results of two portfolios with and without the deferred period. Section 5
concludes.

3



2 MODELING OF THE MULTIDEFINITION PROBLEM

2 Modeling of the multidefinition problem

In this paper, long-term care products are modeled by using the semi-Markov framework, where
mortality in disability states depends on both attained age and time already spent in the disability
state.

Let us consider two disability definitions T1 and T2. Let Xpkq
x denote the health status of a

policyholder observed with definition Tk. The three possible health statuses in a long-term care
insurance product are healthy, disabled and dead.

Let Ωk denote the set of possible health statuses of a policyholder observed with disability definition
Tk.

Ωk “ tHk, Tk, Deathu

Fα and Fβ denote two levels of disability such that Fα X Fβ “ H.

The two disability definitions are defined as follows:

• T1 “ Fα Y Fβ, and

• T2 “ Fβ

such that definition 2 is included in definition 1. Being disabled with definition 2 implies disability
with definition 1.

Let H1 denote the autonomous state of the first definition. By construction, the autonomous state
of the second definition is H2 “ H1 Y Fα.

Assumption 1. No return to a better health state is envisaged, i.e., recovery is assumed to be
impossible.

A policyholder being disabled with definition T1 is either in health state Fα or Fβ. In this paper,
we study the case where this health status is observable for each disabled policyholder observed
with disability definition T1.

We then have transition diagrams for each of the two types of LTC insurance.
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Figure 1: Modeling of the long-term care product with two disability definitions

where ikpxq, µHk pxq with k P t1, 2u and µFg px, tq with g P tα, βu are the transition intensities. Let
Xx represent the health state of a policyholder at age x

• ikpxq “ lim
hÑ0

PpX
pkq

x`h “ Tk|X
pkq
x “ Hkq

h
,

• ω2pxq “ lim
hÑ0

PpX
p2q

x`h “ Fα|X
p2q
x “ H1q

h
,

• µHk pxq “ lim
hÑ0

PpX
pkq

x`h “ Death|X
pkq
x “ Hkq

h
,

• µFg px, tq “ lim
hÑ0

PpX
p1q

x`h “ Death|X
p1q
x “ Fg, X

p1q

px´tq
“ Fg, X

p1q

px´tq´ ‰ Fgq

h
, and
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• µTk px, tq “ lim
hÑ0

PpX
pkq

x`h “ Death|X
pkq
x “ Tk, X

pkq

x´t “ Tk, X
pkq

px´tq´ “ Hkq

h
.

The dashed arrow represents a transition that we cannot observe with disability definition 2.
Transitions from Fα to Fβ are assumed to be observed.

Therefore, µFg px, tq denotes the mortality of the disabled observed at age x with t years of duration
in the corresponding disabled state Fg, and µTk px, tq denotes the mortality of the disabled observed
at age x with t years with definition Tk.

Each disability definition can be associated with a different long-term care product. In the remainder
of the paper, the terms "product" and "disability definition" are equivalent.

Assumption 2. The policyholders are homogeneous and independent under the two types of
insurance.

Assumption 3. The interval of ages can be divided into subintervals such that mortality and
incidence rates from healthy states are constant in each interval. The split points are denoted
txH

1 , xH
2 , ..., xH

MH `1u, where MH denotes the number of intervals of ages for healthy states.

Assumption 4. The interval of ages and durations can be divided into subintervals such that
mortality rates in states Fg, g P tα, βu are constant in each interval. The split points of the age and
duration dimensions are denoted txF

1 , xF
2 , ..., xF

MF
x `1u and ttg

1 “ 0, tg
2, ..., tg

Mg
t `1u, respectively.

µFg px, tq “ µFg pxF
p , tg

qq, @t|tg
q ď t ă tg

q`1, @x|xF
p ď x ă xF

p`1.

MF
x and Mg

t denote the number of subdivisions of the intervals of ages and durations for the disabled
state Fg, respectively.
The subdivision of ages can be different for healthy and disabled states. However, it is assumed in
the following that the set of ages txF

1 , xF
2 , ..., xF

MF
x `1u is included in txH

1 , xH
2 , ..., xH

MH `1u. Therefore,
the subdivision of ages in the healthy state is a more refined subdivision of the interval of ages.

Let us note that the subdivision of the interval of ages is the same for the disabled states Fα and
Fβ, whereas the subdivision of the duration interval can differ.

The total likelihood for all individuals from products 1 and 2 is given by
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Ltot “

MH
ź

p“1
exp

`

´
`

i1
p ` µH1

p

˘

eH1ppq
˘ `

i1
p

˘N1ppq `

µH1
p

˘DH1 ppq

MF
x

ź

p“1

Mα
t

ź

q“1
exp

`

´µFα
p,qeαpp, qq

˘ `

µFα
p,q

˘Dαpp,qq
ˆ

MH
ź

p“1
exp

`

´
`

i2
p ` µH2

p

˘

eH2ppq
˘ `

i1
p

˘N2ppq `

µH2
p

˘DH2 ppq

MF
x

ź

p“1

Mβ
t

ź

q“1
exp

´

´µ
Fβ
p,qeβpp, qq

¯´

µ
Fβ
p,q

¯Dβpp,qq

, (1)

where:

• eHk ppq is the sum of the central exposures in state Hk of all policyholders from product k

between integer ages xH
p and xH

p`1,

• eβpp, qq is the sum of the central exposures of all disabled policyholders from both products
between integer ages xT

p and xT
p`1 and durations tg

q and tg
q`1,

• DH1ppq denotes the number of deaths from the healthy state between xH
p and xH

p`1 in the first
type of insurance,

• DH2ppq denotes the number of deaths from the healthy state between xH
p and xH

p`1 in the
second type of insurance,

• Dαpp, qq denotes the number of deaths from the Fα disabled state with age at death between
xT

p and xT
p`1 and duration between tα

q and tα
q`1,

• Dβ,kpp, qq denotes the number of deaths from the Fβ disabled state for product k,

• Dβpp, qq is the total number of deaths of disabled policyholders with age at death between xT
p

and xT
p`1 and duration between tβ

q and tβ
q`1 from both products.

• N1ppq denotes the number of transitions to the disabled state T1 between xH
p and xH

p`1,

• N2ppq denotes the number of transitions to the disabled state between xH
p and xH

p`1 according
to the T2 definition.

.

As intensities µHk pq and ikpq, k P t1, 2u and µFg p, q, g P tα, βu are piecewise constants (Assumption
3 and Assumption 4), we denote

• µHk
p “ µHk pxH

p q, @p P t1, . . . , MHu,

• ik
p “ ikpxH

p q, @p P t1, . . . , MHu,
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2 MODELING OF THE MULTIDEFINITION PROBLEM

• µFg
p,q “ µFg pxF

p , tg
qq, @p P t1, . . . , MF

x u, q P t1, . . . , Mg
t u.

The detailed proof of Equation 1 is given in Appendix A.

The last term of Equation 1 represents the likelihood of all observations from products 1 and 2 in
state Fβ.

The log likelihood function of the combined observations from products 1 and 2 is given by

ltot “

MH
ÿ

p“1

`

´
`

i1
p ` µH1

p

˘

eH1ppq
˘

` N1ppq log
`

i1
p

˘

` DH1ppq log
`

µH1
p

˘

`

MF
x

ÿ

p“1

Mα
t

ÿ

q“1

`

´µFα
p,qeαpp, qq

˘

` Dαpp, qq log
`

µFα
p,q

˘

`

MH
ÿ

p“1

`

´
`

i2
p ` µH2

p

˘

eH2ppq
˘

` N2ppq log
`

i1
p

˘

` DH2ppq log
`

µH2
p

˘

`

MF
x

ÿ

p“1

Mβ
t

ÿ

q“1

´

´µ
Fβ
p,qeβpp, qq

¯

` Dβpp, qq log
´

µ
Fβ
p,q

¯

. (2)

Equation 2 is equivalent to a sum of log-likelihoods of the Poisson distribution, where:

• N1ppq „ Poisson
`

i1
peH1ppq

˘

,

• N2ppq „ Poisson
`

i2
peH2ppq

˘

,

• DH1ppq „ Poisson
`

µH1
p eH1ppq

˘

,

• DH2ppq „ Poisson
`

µH2
p eH2ppq

˘

,

• Dαpp, qq „ Poisson
`

µFα
p,qeαpp, qq

˘

, and

• Dβpp, qq „ Poisson
´

µ
Fβ
p,qeβpp, qq

¯

.

Therefore, we assume in the following that the counts of deaths and the counts of losses of autonomy
have a Poisson distribution.

Moreover, Equation 2 shows that each transition rate can be estimated separately and independently.
As we focus this research on mortality rates, incidence rates are considered constants in Equation 2.
The problem is therefore simplified to

max
µH1. ,µH2. ,µFα

.,. ,µ
Fβ
.,.

ltot,

where
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ltot “

MH
ÿ

p“1

`

´µH1
p eH1ppq

˘

` DH1ppq log
`

µH1
p

˘

loooooooooooooooooooooooomoooooooooooooooooooooooon

lH1

`

MF
x

ÿ

p“1

Mα
t

ÿ

q“1

`

´µFα
p,qeαpp, qq

˘

` Dαpp, qq log
`

µFα
p,q

˘

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

lFα

`

MH
ÿ

p“1

`

´µH2
p eH2ppq

˘

` DH2ppq log
`

µH2
p

˘

loooooooooooooooooooooooomoooooooooooooooooooooooon

l
Fβ

`

MF
x

ÿ

p“1

Mβ
t

ÿ

q“1

´

´µ
Fβ
p,qeβpp, qq

¯

` Dβpp, qq log
´

µ
Fβ
p,q

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

lH2

. (3)

3 Methods

In this section, we introduce the two proposed methods to make better use of all the available
information from observations with different disability definitions. In the first part of this section, we
focus on the P-splines smoothing framework that is used in the two methods to prevent overfitting
and to produce smooth estimated mortality laws. For the second part, we present the first method
that uses the constrained optimization algorithm. The third and final part of this section is devoted
to the presentation of the Penalized Composite Link Model, corresponding to the second method
proposed in this paper. While the first method assumes that the mortality intensities in each state
H1, H2, Fα and Fβ can be expressed as the exponential of a combination of basis-splines, the second
method uses the same assumption only on the three following states H1, Fα and Fβ . No assumption
on the shape of the mortality in H2 is made in the second model, leading to fewer coefficients to
estimate.

3.1 P-splines smoothing framework

Common parametric smoothing methods are introduced by Gompertz and Gompertz-Makeham,
assuming that mortality increases exponentially with age, or as in Perks (1932), Beard (1959)
allowing a deceleration of the mortality increase at old ages. Unlike these models, the P-splines
smoothing method is a nonparametric smoothing technique. One of the strengths of these techniques
is that they do not assume any particular shape of the mortality function.

A spline is a piecewise polynomial function that is continuous and has continuous derivatives up to
a certain order. This type of function is commonly used for smoothing problems. The P-splines
smoothing method, introduced in Eilers and Marx (1996), uses a B-spline basis with penalties to
prevent overfitting. This smoothing method, also described in Marx and Eilers (1998), is applied
to mortality estimation by using the Poisson-GLM framework in Currie and Durban (2002) and
Macdonald et al. (2018).

First, let us consider the case of a one-dimensional mortality law, as the mortality in H1 depends
only on age. JH splines are uniformly positioned over the entire interval of ages. Splines are
therefore equidistant. An important property of the spline basis is that the sum of the B-splines
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3 METHODS

equals 1 at any point on the support. Let BH1 P MMH ,JH1 denote the matrix of the spline basis for
estimation of mortality in H1, where each column corresponds to a spline, and each row corresponds
to an observation age (xH

p , p P t1, . . . , MHu in the case of mortality in healthy states). In the context
of mortality estimation, the P-splines smoothing method requires the following assumption:

Assumption 5. Mortality rates can be expressed as the exponential of a combination of basis-splines.

Therefore,
µH1 “ exp

`

BH1θH1
˘

, where θH1 P RJH1
. (4)

A term 1
2ρ}DH1θH1}2

2 is then added to the log-likelihood to penalize complex models with large
variability between coefficients of adjacent splines. For simplicity, the penalty term can be written
as

1
2
`

θH1
˘T

P H1θH1 , (5)

where P H1 “ ρ
`

DH1
˘T

DH1 .

The problem is therefore
max
θH1

lH1
`

θH1
˘

´
1
2
`

θH1
˘T

P H1θH1 . (6)

The output of this smoothing method depends on multiple hyperparameters listed below:

1. The number of splines distributed in the interval,

2. The degree of the splines,

3. The order of the penalty, denoted d,

4. The smoothing parameter ρ is the weight of the penalty in the penalized log-likelihood .

As the extrapolation of the fitted mortality is mostly driven by the form of the penalty matrix, the
choice of the order d and the smoothing weight ρ have a significant impact. In contrast, the number
of splines and their degree are less critical, and have a rather limited impact on the fitted mortality
laws. Ruppert (2002) and Eilers (2007) suggest that the following choice is often sufficient for these
two parameters:

• Use cubic splines (degree 3),

• Fix a knot every 4 or 5 observations.

As recommended in Currie and Durban (2002), parameters ρ and d are often chosen to minimize
the Bayesian Information Criterion (BIC), as defined in Schwarz (1978).

BIC “ Dev ` logpMHq ˆ df,
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where df is the degree of freedom and Dev is the deviance of the model.

The one-dimensional P-splines smoothing method can be generalized to two-dimensional smoothing
problems to consider the duration in the context of estimating mortality in disabled states. To this
aim, two matrices of basis splines are needed. Let g P tα, βu. For each state Fg, let Bg

x P MMF
x ,Jg

x

and Bg
t P MMg

t ,Jg
t

denote the matrices of splines for the age and duration dimensions, respectively.

Notation: Let A be a matrix of dimensions r ˆ c, Avec “ vecpAq “ pAT
.1, . . . , AT

.cqT , where A.k P Rr

is the kth column of matrix A.

Then,

µFg
vec “ exp pBgθgq , (7)

where Bg “ Bg
t b Bg

x P MMF
x ˆMg

t ,Jg
x ˆJg

t
.

The penalty matrix for two-dimensional P-splines smoothing is the sum of a penalty term on the
age dimension and a penalty term on the duration dimension. The overall penalty matrix is given
by the following Equation

P g “ pIJg
t

b P g
x q ` pP g

t b IJg
x

q P MJg
x ˆJg

t ,Jg
x ˆJg

t
, (8)

where P g
x and P g

t are the penalty matrix as described for the one-dimensional case and IJg
t

and IJg
t

are the identity matrices of dimensions Jg
x and Jg

t , respectively.

3.2 Optimization with constraint

H2H1 Fα Death
µH2pxq

i1pxq

µH1pxq

µFαpx, tq

Figure 2: Zoom on transitions from state H2 to Death

Figure 2 shows that H2 “ H1 Y Fα. Therefore, at each age x, the mortality in state H2 is a weighted
average of the mortality in H1 and the mortality in Fα. The 3 mortality laws µH2 , µH1 and µFα ,
are linked by the following Equation (9)
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µH2
p “ lim

hÑ0

PpX
p2q

xH
p `h

“ Death|X
p2q

xH
p

“ H2q

h

“
PpX

p1q
x “ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

µH1
p `

Mα
t

ÿ

q“1

PpX
p1q
x “ Fα, X

p1q

px´tα
q q

“ Fα, X
p1q

px´tα
q`1q

“ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

µFα
p,q. (9)

A detailed proof of Equation (9) is given in Appendix B.

By using the P-splines smoothing framework for each of the four mortality laws, the optimal
coefficients θH1 , θH2 , θα and θβ are obtained by solving the following constrained optimization
problem

max
θH1 ,θH2 ,θα,θβ

lH1pθH1q ´
1
2
`

θH1
˘T

P H1θH1 ` lH2pθH2q ´
1
2
`

θH2
˘T

P H2θH2`

lαpθαq ´
1
2 pθαq

T P αθα ` lβpθβq ´
1
2

´

θβ
¯T

P βθβ, (10)

subject to

µH2
p

`

θH2
˘

“
PpX

p1q
x “ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

µH1
p

`

θH1
˘

`

Mα
t

ÿ

q“1

PpX
p1q
x “ Fα, X

p1q

px´tα
q q

“ Fα, X
p1q

px´tα
q`1q

“ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

µFα
p,q pθαq .

(11)

The optimization problem is solved by using Sequential Quadratic Programming (SQP) as described
in Kraft (1988) and Boggs and Tolle (1995), and it is implemented on the statistical programming
software R in the slsqp() function from the nloptr package. The sequential quadratic programming
method replaces the original problem of optimization with a sequence of quadratic problems where
the objectives are second-order approximations of the Lagrangian and the constraints are first-order
approximations of the original constraints. One of the major advantages of the SQP methods is
that the initial point does not need to satisfy all the constraints of the original problem. The
documentation of the package can be found in Jelmer Ypma (2022).

3.3 Penalized Composite Link Model

The Penalized Composite Link Model was first proposed by Eilers (2007). This method is an
extension of the Composite Link Model introduced by Thompson and Baker (1981), that uses the
Generalized Linear Model framework (GLM) (Nelder and Wedderburn, 1972; McCullagh, 2019).

By assuming that the policyholders are homogeneous and independent under the two types of
insurance, policyholders in state Fβ from both products 1 and 2 can be aggregated.
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As in Section 2, DHk P NMH denotes the vector of counts of deaths in the healthy state Hk, k P t1, 2u.
Dg P MMF

x ,Mg
t

pNq is the matrix of counts of deaths in state Fg. Since policyholders cannot be
observed in state Fα with product 2, Dα is only composed of deaths of policyholders from product
1. However, since state Fβ is observed for both products, Dβ P M

MF
x ,Mβ

t
pNq is the sum of the

matrices of counts of deaths in Fβ of the two products. Dβ
ij denotes the number of deaths in

Fβ at age xF
i ă x ă, xF

i`1 and duration tβ
j ă t ă tβ

j`1. Let D be the vector of counts of deaths
such that D “ pDH1 , Dα

vec, Dβ
vec, DH2qT P N2.MH `MF

x .pMα
t `Mβ

t q. Similar to the vector of counts
of deaths, e “ peH1 , eα

vec, eβ
vec, eH2qT P N2.MH `MF

x .pMα
t `Mβ

t q is the concatenation of the vectors of
central exposures in each state H1, Fα, Fβ, and H2.

Let us assume that the mortality rates in states H1 and Fg, g P tα, βu can be expressed as the
exponential of a combination of basis splines as in Assumption 5. Let

• µH1 “
`

µH1pxH
1 q, . . . , µH1pxH

MH q
˘T

P RMH , and

• µFg
vec “ vecpµFg q P RMF

x .Mg
t , where µFg P MMF

x ,Mg
t

pRq is the matrix of the mortality intensities
in state Fg such that

µFg
p,q “ µFg

`

xF
p , tg

q

˘

@p P t1, . . . , MF
x u, q P t1, . . . , Mg

t u.

Then:

µH1 “ exppBH1θH1q, (12)

µFg
vec “ exppBgθgq, g P tα, βu, (13)

where BH1 P MMH ,JH1 pRq and Bg P MMF
x .Mg

t ,Jg pRq are the splines basis for states H1 and Fg,
respectively. JH1 and Jg, g P tα, βu denote the number of coefficients of splines needed to estimate
the mortality laws in the healthy state and disabled states g, respectively. Therefore, θH1 P RJH1

and θg P RJg

The difference from Section 3.2 is that no assumption on the mortality in state H2 is made.

Based on Equation 2, it is assumed that the counts of deaths have a Poisson distribution of the
parameter e ˆ µ, where e and µ denote the vectors of central exposures and transition intensities,
respectively. This assumption is commonly used with Penalized Composite Link Models, as in Eilers
(2007), Remund et al. (2017) or Rizzi et al. (2015).

ˆDHk “ ErDHk s “ eHk ˆ µHk , k P t1, 2u, (14)

D̂g “ ErDgs “ eg ˆ µFg , g P tα, βu. (15)

With observations from product 1, we can create a fictitious state H2 composed of policyholders in
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H1 and Fα from product 1. We denote Hprod1
2 this fictitious state. Given assumption 2, mortality

in Hprod1
2 is the same as in H2. Therefore,

D̂Hprod1
2 “ eHprod1

2 ˆ µH2 , (16)

where DHprod1
2 and eHprod1

2 denote the vectors of counts of deaths and central exposures in the state
Hprod1

2 “ H1 Y Fα, respectively. The subdivision of the age interval of this state is the same as for
states H1 and H2.
Let p P t1, ¨ ¨ ¨ , MHu. From Assumption 4, we know that the subdivision of the interval of ages in
healthy states is either the same or more refined than is the subdivision of ages for the disabled
states. Moreover,

@p P t1, ¨ ¨ ¨ , MHu, Dp̃ P t1, ¨ ¨ ¨ , MF
x u, xF

p̃ ď xH
p ă xH

p`1 ď xF
p̃`1.

Therefore, if not directly calculable from the database, the central exposure in state Fα between
ages xH

p and xH
p`1 (subdivision of the interval of ages used in states Hk) for duration between tα

q

and tα
q`1 can be estimated by

eα
subH

pp, qq “ eαpp̃, qq
xH

p`1 ´ xH
p

xF
p̃`1 ´ xF

p̃

.

x

xF
p̃ xF

p̃`1

xH
p xH

p`1

eαpp̃, qq

eα
subH

pp, qq

Figure 3: Subdivision of the age interval

A death in state Hprod1
2 is either a death in H1 or Fα. With product 1, we are able to decompose

this count of deaths as a sum of deaths in H1 and Fα. Therefore,

D̂Hprod1
2 ppq “ eH1ppq ˆ µH1

p `

Mα
t

ÿ

q“1
eα

subH
pp, qq ˆ µFαpxH

p , tα
q q. (17)

Since xF
p̃ ď xH

p ă xF
p̃`1, µFαpxH

p , tα
q q “ µFαpxF

p̃ , tα
q q “ µFα

p̃,q.

Therefore, Equation 17 becomes

D̂Hprod1
2 ppq “ eH1ppq ˆ µH1

p `

Mα
t

ÿ

q“1
eα

subH
pp, qq ˆ µFα

p̃,q. (18)
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Moreover, Equation 14 and Equation 16 lead to

ˆDH2ppq “ eH2ppq ˆ
D̂Hprod1

2 ppq

eHprod1
2 ppq

. (19)

Then,

ˆDH2ppq “ eH2ppq
eH1ppq

eHprod1
2 ppq

ˆ µH1
p `

Mα
t

ÿ

q“1
eH2ppq

eα
subH

pp, qq

eHprod1
2 ppq

ˆ µFα
p̃,q. (20)

Therefore, all the expected values of the Poisson variables DHk ppq, k P t1, 2u) and Dgpp, qq, g P tα, βu

are linear combinations of the components of the vector Λ “ pµH1 , µα
vec, µβ

vecq.

We then write D „ PoissonpCΛq, where:

• C P M
pMH `MH `pMα

t `Mβ
t q.MF

x q,pMH `pMα
t `Mβ

t q.MF
x q

pRq, and

• ΛpΘq “

»

—

–

µH1pθH1q

µFα
vecpθαq

µ
Fβ
vecpθβq

fi

ffi

fl

P RpMH `pMα
t `Mβ

t q.MF
x q, with Θ “ pθH1 , θα, θβqT P RJH1 `Jα`Jβ .

Details for the structure of matrix C are given in Appendix C.

Therefore,

D̂ “ CΛpΘq, (21)

ΛpΘq “ exppBΘq. (22)

where

B “

»

—

–

BH1 0 0
0 Bα 0
0 0 Bβ

fi

ffi

fl

P M
pMH `pMα

t `Mβ
t q.MF

x q,pJH1 `Jα`Jβq
pRq. (23)

To have smooth mortality rates, a penalty inspired from the P-splines smoothing method is added
to the log-likelihood such that

lpenpΘq “ lpΘq ´
1
2ΘT PΘ, (24)

where:

15



3 METHODS

• lpΘq is the log-likelihood associated with the random vector D “ pDH1 , Dα
vec, Dβ

vec, DH2qT ,

•

P “

»

—

–

P H1 0 0
0 P α 0
0 0 P β

fi

ffi

fl

`

»

—

–

0 0 0
0
0

P α{β

fi

ffi

fl

P MJH1 `Jα`Jβ pRq, (25)

with P G “ ρGpDGqT DG, G P tH1, α, β, α{βu , and

• ρG represents the weight given to the penalty, as in Section 3.1.

Penalty matrices P H1 P MJH1 pRq, P α P MJαpRq, and P β P MJβ pRq are the typical penalty
matrices used in the P-splines smoothing method. Each state H1, Fα, and Fβ has its own matrix,
penalizing coefficients of adjacent splines to ensure that the fitted mortality laws are smooth.

One might want to add a penalty between coefficients of the states Fα and Fβ. This is the aim of
the penalty matrix P α{β P MJα`Jβ pRq. If not, P α{β “ 0.

• µH1
p “ Λp, p P t1, . . . , MHu,

• µFα
p,q “ pµα

vecqpq´1q.MF
x `p “ ΛMH `pq´1q.MF

x `p, p P t1, . . . , MF
x u, q P t1, . . . , Mα

t u,

• µ
Fβ
p,q “ pµβ

vecqpq´1q.MF
x `p “ ΛMH `MF

x .Mα
t `pq´1q.MF

x `p, p P t1, . . . , MF
x u, q P t1, . . . , Mβ

t u, and

• µH2
p “ Λ

MH `MF
x .pMα

t `Mβ
t q`p

, p P t1, . . . , MHu.

Therefore,

lpΘq “

MH
ÿ

p“1
´ pΛpΘq ˆ eqp ` Dppq log ppΛpΘq ˆ eqpq `

MF
x

ÿ

p“1

Mα
t

ÿ

q“1
´pΛpΘq ˆ eqMH `pq´1q.MF

x `p ` DMH `pq´1q.MF
x `p log

´

pΛpΘq ˆ eqMH `pq´1q.MF
x `p

¯

`

MF
x

ÿ

p“1

Mβ
t

ÿ

q“1
´pΛpΘq ˆ eqMH `MF

x .Mα
t `pq´1q.MF

x `p`

DMH `MF
x .Mα

t `pq´1q.MF
x `p log

´

pΛpΘq ˆ eqMH `MF
x .Mα

t `pq´1q.MF
x `p

¯

`

MH
ÿ

p“1
´ pΛpΘq ˆ eq

MH `MF
x .pMα

t `Mβ
t q`p

` D
MH `MF

x .pMα
t `Mβ

t q`p
log

´

pΛpΘq ˆ eq
MH `MF

x .pMα
t `Mβ

t q`p

¯

.

(26)

The optimal coefficient Θ̂ is obtained by maximizing the penalized log-likelihood given by Equation
24,

Θ̂ “ arg max
Θ

lpenpΘq. (27)
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4 APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

We are then able to write the model as a Composite Link Model. This allows us to simultaneously
estimate three smooth mortality laws while having a constraint allowing us to include observations
from a portfolio with a different disability definition. Then, from Eilers (2007) and Remund et al.
(2017), the coefficient Θ̂ is estimated by repeatedly solving the system

pX̆T W̃ X̆ ` P qΘ̃ “ X̆T pD ´ D̃q ` X̆T W̃ X̆Θ̃, (28)

where X̆ “ W̃ ´1CΓ̃B; W̃ “ diagpD̃q; Γ̃ “ diagpΛq; D̃ “ CΛpΘ̃q.

A tilde indicates the current approximation at each iteration.

Starting values of the parameter Θ̃ are needed. A convenient way is to start with the coefficient
obtained by separately estimating the mortality rates in both healthy and disabled states (H1, Fα,
and Fβ) by using the P-splines smoothing method with observations from product 1 only.

4 Application to the problem of the deferred period

4.1 Introduction to the deferred period and the problem with the data

The deferred period is the minimum period that the loss of autonomy must last before the benefit
begins. The length of the deferred period has a significant impact on the probability of the insurer
paying the benefit to the policyholder. The premium is therefore lower as the length of the deferred
period increases. The usual length in French long-term care contracts is 3 months. One of the
advantages of the deferred period is that it reduces the number of short claims and, therefore, the
management costs linked to the payment of the annuities.

Some long-term care products have a deferred period, while some do not. For contracts with
a deferred period, as no annuity is paid to policyholders during the deferred period, the loss of
autonomy is not reported in the database if the policyholder dies during this period, i.e., before
the first annuity, as shown in Figure 4. This death is considered a death in autonomy. Only
policyholders surviving until the end of the deferred period, at least until the payment of the first
annuity, have a date of loss of autonomy reported in the database. Therefore, policyholders are
considered healthy as long as they have not received any annuity. Therefore, the healthy group is
composed of autonomous and newly disabled individuals, as shown in Figure 4.

Let us assume that the real date of loss of autonomy is available for all disabled policyholders
who survived the deferred period. If not, the date of loss of autonomy can easily be estimated by
subtracting fr months from the date of the first annuity payment.

As the mortality during the first few months of disability is very high and the deaths occurring
during the deferred period are reported as deaths in the healthy state, estimating mortality laws on
such a database without considering this information can have multiple consequences:
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4 APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

Figure 4

• The mortality in the healthy state is overestimated.

• The mortality of the disabled policyholders during the deferred period is underestimated (only
disabled individuals surviving the deferred period are considered exposed, but no deaths are
reported during this period).

• The incidence is underestimated since the loss of autonomy is reported only if the newly
disabled policyholder survives until the first annuity.

Let us assume that we have a database with some policyholders having a deferred period and some
policyholders covered from the first day of the loss of autonomy (without any deferred period).
This situation can also occur in the case of having several databases from different insurers. In this
situation, one cannot simply aggregate the data basis without accounting for the deferred period of
one product.

This situation corresponds to a problem of multidefinition as described in Section 2, with one
definition included in the other one.

4.2 Modeling of the product

In this case, product 1 corresponds to the product without a deferred period, and product 2
corresponds to the product with a deferred period. Being disabled for product 2 implies being
disabled for more than fr months. Therefore, a disabled policyholder for definition T2 (product 2)
is disabled for T1 (product 1). Thus, T2 Ă T1.

These products can be represented as in Figure 1, where:

• H1 denotes the state of healthy policyholders,
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4 APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

• Fα denotes the state of newly disabled policyholders. The loss of autonomy occurred less than
fr months ago,

• Fβ denotes the state of disabled policyholders who have lost their autonomy more than fr

months ago, and

• H2 denotes the state of healthy and newly disabled policyholders who have not yet received
any annuity.

In this case,

ω1px, tq “

$

&

%

0, if t ‰ fr{12

`8, if t “ fr{12.
(29)

The transition from Fα to Fβ, if observed, systematically occurs at the end of the deferred period.
It is natural to think that there is no jump in the mortality function before and after the deferred
period. Dαpp, qq, p P t1, . . . , MF

x u, q P t1, . . . , Mα
t u denotes the number of deaths occurring during

the deferred period (only observed with product 1). As the maximum duration in Fα is t “ fr{12,
then tα

Mα
t `1 “ fr{12.

Dβpp, qq, p P t1, . . . , MF
x u, q P t1, . . . , Mα

t u denotes the sum of counts of deaths occurring after
the deferred period for products 1 and 2. As disabled policyholders enter state Fβ at the end of
the deferred period, the mortality before the end of the deferred period µFα

p,Mα
t

should be close
to the mortality µ

Fβ

p,1 during the first subinterval of duration in Fβ. It is therefore interesting to
consider the mortality in Fα and Fβ as only one smooth mortality law µF px, tq “ µT1px, tq, such
that F “ tFα Y Fβu.

As introduced in Section 2,

µF px, tq “ lim
hÑ0

PpXx`h “ Death|Xx P F, Xx´t P F, Xpx´tq´ “ H1q

h
. (30)

A policyholder who entered state F less than fr months ago is necessarily in state Fα. In contrast,
a disabled policyholder who lost autonomy t years ago, with t ą fr{12, is necessarily in state Fβ for
t ´ fr{12 years. Therefore,

µF px, tq “

$

’

&

’

%

µFα px, tq , if t ă fr{12

µFβ

ˆ

x, t ´
fr

12

˙

, if t ě fr{12
. (31)

A more detailed proof of this equation (Equation 31) is available in Appendix D.

Note: The second parameter of µFβ p, q denotes the time since entry into state Fβ . This corresponds
to the time since the end of the deferred period. In contrast, the second parameter of µF px, tq

denotes the time since the loss of autonomy, corresponding to the time since entry in Fα.
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4 APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

Let DF “ rDα : Dβs P M
MF

x ,Mα
t `Mβ

t
be the augmented matrix of the counts of deaths. DF

.,Mα
t

denotes the vector of counts of deaths in LTC during the last period before time fr{12. DF
.,Mα

t `1 “

Dβ
.,1 denotes the vector of counts of deaths in LTC occurring during the first period after the deferred

period.

Therefore,
DF

vec “ pDα
vec, Dβ

vecqT . (32)

As the subdivision of the interval of ages is the same for Fα and Fβ , the subdivision of the interval
of ages of F is txF

1 , . . . , xF
MF

x
u. By using the subdivision of the duration interval from Fα and Fβ,

the subdivision of the interval for the overall LTC state F is
!

tF
1 , . . . , tF

MF
t `1

)

“

"

tα
1 , . . . , tα

Mα
t `1 “ tβ

1 `
fr

12 , . . . , tβ

Mβ
t `1

`
fr

12

*

, (33)

where MF
t “ Mα

t ` Mβ
t .

A common basis of B-splines is used for the age dimension for the 2 states. The matrix of splines for
ages in disabled states is denoted BF

x , P MMF
x ,JF

x
. Splines are positioned over the entire interval of

duration
„

tF
1 ; tF

MF
t `1 “ tβ

Mβ
t `1

`
fr

12

ȷ

. Some splines are common to Fα and Fβ, as shown in Figure

5, which represents the splines basis on the overall duration interval, JF
t ď Jα

t ` Jβ
t . In the example

of Figure 5, 4 splines are common to Fα and Fβ. Therefore, JF
t “ Jα

t ` Jβ
t ´ 4.

The matrix of splines for the duration dimension is denoted BF
t , P M

Mα
t `Mβ

t ,JF
t

.

To ensure the same coefficients associated with the splines shared by Fα and Fβ , BF “ BF
t b BF

x is

of a slightly different structure than
«

Bα 0
0 Bβ

ff

.

More details about the structure of the matrices BF
t and BF are given in Appendix E.

4.2.1 Constrained optimization method applied to the deferred period

The method explained in Section 3.2 is applied to the problem of the deferred period. Having one
single spline basis for state F “ Fα Y Fβ has only a slight impact on the form of the objective
function, which becomes

max
θH1 ,θH2 ,θF

lH1pθH1q ´
1
2
`

θH1
˘T

P H1θH1 ` lH2pθH2q ´
1
2
`

θH2
˘T

P H2θH2`

lαpθF q ` lβpθF q ´
1
2
`

θF
˘T

P F θF , (34)
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Figure 5: Basis of splines for the duration for states Fα and Fβ

subject to

µH2
p

`

θH2
˘

“
PpXx “ H1q

PpXx “ H1 Y Xx “ Fαq
µH1

p

`

θH1
˘

`

Mα
t

ÿ

q“1

PpXx “ Fα, Xpx´tα
q q “ Fα, Xpx´tα

q`1q “ H1q

PpXx “ H1 Y Xx “ Fαq
µFα

p,q

`

θF
˘

.

(35)

4.2.2 PCLM method applied to the deferred period

The submatrix
«

Bα 0
0 Bβ

ff

from matrix B in Equation 23 is replaced by a single matrix BF . This

slight modification does not affect the remaining formulas or the method for the estimation of the
optimal coefficients.

With the same reasoning, the submatrix
«

P α 0
0 P β

ff

from matrix P in Equation 25 is replaced by a

single matrix P F . This allows us to add constraints between splines before and after the deferred
period to ensure smoothness of the mortality law on the axis of the duration.

Therefore, B “

»

—

–

BH1 0 0
0
0

BF

fi

ffi

fl

, and P “

»

—

–

P H1 0 0
0
0

P F

fi

ffi

fl

.
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4.3 Data: Application to a single portfolio by recreating a fictitious deferred
period

4.3.1 Presentation of the data set

We rely on data from a large French LTC portfolio. This portfolio does not have any deferred
period. As the incidence and mortality laws greatly differ for males and females, biometric functions
have to be estimated separately for each gender. We focus the application only on females. In
this application, we consider mild and severe LTC, with the GIR1234 definition from the AGGIR
grid used by the French government for the attribution of public aid and described in Dupourqué
(2012). In this portfolio, 1 388 deaths are observed in the autonomous state (H1), versus 832 in LTC
(T1 “ Fα Y Fβ).

To ensure that Assumption 2 of homogeneity and independence is met, this portfolio is divided into
two data sets. The first one, denoted DB1, corresponds to the definition T1, without a deferred
period. This portfolio is only a subset of the initial portfolio. Policyholders not represented in DB1

are selected in the second portfolio DB2. This second database is then modified to fictitiously create
a deferred period by postponing the eventual date of loss of autonomy by fr “ 3 months.

Mortality rates are piecewise constant for the duration. However, since the mortality is very high at
the date of occurrence of the loss of autonomy and decreases substantially during the first year,
it is common in long-term care modeling to fix smaller steps on the subdivision of the interval of
duration during the first year. In the following application, we assume a constant mortality rate by
month during the first year of loss of autonomy. Starting from the second year, mortality rates are
assumed to be yearly constants.

For the age dimension, mortality rates are assumed to be constant between two integer ages.

After cleaning the original data at the individual granularity, observations are aggregated to obtain
exposures and counts of deaths for each subdivision of ages and durations on which mortality rates
are assumed to be constants.

Observations from DB1 are:

• the vector of central exposures in H1: eH1 ,

• the vector of counts of deaths in H1: DH1 ,

• the matrix of central exposures in Fα: eα,

• the matrix of counts of deaths in Fα: Dα,

• the matrix of central exposures in Fβ (only individuals in DB1): eβ,1, and

• the matrix of counts of deaths in Fβ (only individuals in DB1): Dβ,1.

Observations from DB2 are:
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• the vector of central exposures in H2: eH2 ,

• the vector of counts of deaths in H2: DH2 ,

• the matrix of central exposures in Fβ (only individuals in DB2): eβ,2, and

• the matrix of counts of deaths in Fβ (only individuals in DB2): Dβ,2.

4.3.2 Results

In the case of the deferred period, insurers are mostly interested in mortality in H1 and F “ Fα YFβ .
Observations from H2 are used only to improve the estimations of the two other mortality laws.
The mortality for H2 has a rather limited interest for insurers.

In this section, we compare the results of estimations of the 2 mortality laws µH1 and µF with 3
different methods:

1. Independent estimations of each mortality law with the P-splines smoothing method (Without
constr. ),

2. Constrained optimization (Constr.) from Section 3.2,

3. Penalized Composite Link Model (PCLM) from Section 3.3.

The smoothing parameter ρ in each of these methods is selected to minimize the AIC.

Estimated mortality intensities in the healthy state and their associated confidence intervals are
plotted in Figure 6. While estimated intensities are similar at young ages where data contain
many observations, the mortality curve estimated with the PCLM method diverges from the two
others after 85 years old. The estimated mortality function at old ages is higher with the PCLM
method compared to that of the mortality obtained by only using information from the portfolio
without a deferred period and the mortality estimated with the constrained optimization model. In
fact, the optimal smoothing parameter ρ associated with mortality in H1 minimizing the AIC is
smaller with the PCLM method. Therefore, the linear smoothing penalty is weaker, and the fitted
mortality function is more flexible than that with the two other methods. It gives more weight to
the observations and less to the linear constraint, enabling the capture of more variance at old ages.
The size of the confidence interval is smaller than that with the constrained optimization method
than with the two other methods.

Mortality in LTC depends on 2 inputs, the attained age and the duration since the loss of autonomy.
Therefore, the log-mortality is represented as a surface instead of a curve for mortality in the healthy
state. The surfaces of the log-mortality rates estimated with the three methods are plotted in
Figure 7. The resulting mortality rates obtained either with the independent estimation or with the
constrained optimization methods are similar. Adding the constraints to the maximization of the
likelihood does not significantly change the optimum. However, the PCLM method is more different
in the formulation of the problem since no coefficients are associated with mortality in state H2.
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Figure 6: Mortality in healthy state

As a consequence, the maximum likelihood estimators of this method result in different mortality
rates in LTC compared to those produced by the other two methods. As shown in Figure 7,
the mortality function estimated with the PCLM method does not seem to depend greatly on
the duration. Moreover, the pattern of this estimated mortality law shows that the mortality of
disabled policyholders has a smile shape on the age dimension. For a fixed duration, the mortality
is high at young and old ages and seems to reach the minimum at approximately 80 years old.
This phenomenon can be explained by the prevalence of the pathologies affecting the disabled
policyholders. This prevalence depends greatly on the attained age. Pathologies affecting young
disabled policyholders are mostly diseases affecting mortality, such as cancer. In contrast, the
most represented pathologies at approximately 80 years old are Alzheimer’s disease and dementia.
These pathologies are known to have a limited impact on mortality. Therefore, as explained in
Biessy (2016), cancer has a high contribution to mortality in LTC at young ages, especially for low
durations.

Figure 8 compares the estimated mortality laws of disabled policyholders at 85 years old as a
function of duration. For all methods, the order of the penalty is fixed to 2 on the age dimension
and 1 on the duration dimension to prevent unreasonable divergence of the mortality with increasing
duration. For a fixed attained age, the mortality with and without constraints has a smile shape,
with mortality decreasing at low durations and increasing after the first year. In contrast, the
mortality of disabled policyholders aged 85 years old is essentially the same for all durations. The
PCLM method gives more weight to the smoothing penalty ρ on the duration shape compared to
that of the 2 other methods. Since this penalty tries to minimize the variations in the duration
dimension, the mortality is more likely to be constant in this dimension. The confidence interval
obtained with the PCLM method is narrower than those estimated with the two other methods.
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Figure 7: Mortality in Long-Term Care
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Figure 8: Mortality in Long-Term Care at age 85
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4 APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

One might want to evaluate the evolution of mortality with duration for a given entry age. Figure
9 shows the mortality rates of disabled policyholders losing their autonomy at 70 years old. For
all methods, mortality decreased with time during the 3 first years. However, the decrease rate is
smaller with the PCLM method. While the PCLM method gives the lowest mortality rates during
the first three months, the estimated mortality for higher durations is higher than those with the
two other methods.
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Figure 9: Mortality of a policyholder losing autonomy at age 70

Figure 10 shows the mortality intensities during the first month following the loss of autonomy. As
anticipated with Figure 7, the mortality function has a smile shape on the age dimension. The
confidence interval obtained with the PCLM method is narrower than those associated with the two
other methods.

The deviance residuals in the healthy (H1) and disabled (F ) states are plotted in Figures 11 and
12, respectively. We use these graphics to analyze if the residuals are within the interval r´2; 2s

and if there exists a trend in the residuals (lower residuals at low ages and higher residuals at old
ages, for example). The existence of a trend may indicate that the model does not well capture
the effect of one of the dimensions (age and/or duration) on the mortality rates. In the healthy
state, all models seem to perform well. In the disabled state, models with and without constraints
seem to underestimate mortality during the first year compared to the PCLM model. In contrast,
this model overestimates mortality during the second year. The residuals during the first year seem
homogeneous and quite similar among the 3 models.

Figure 13 displays the first month of disability. The deviance residuals are within the specified
interval r´2; 2s and seem quite homogeneous among all ages.
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Figure 10: Mortality of disabled policyholders during the first month following the loss of autonomy
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Figure 12: Deviance residuals in the disabled state F
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Figure 13: Deviance residuals in the disabled state F during the first year following the loss of
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4 APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

4.3.3 Model Performance

The predictive performances of the three methods are evaluated with cross-validation. The following
metrics are analyzed:

• the root mean square error (RMSE)

1
MG

NG
ÿ

k“1
pDG

k ´ D̂G
k q2, G P tH1, F u,

where NH1 “ MH , NF “ MF
x pMα

t ` Mβ
t q, and D̂G

k denotes the kth term of the vector of
expected counts of deaths in group G,

• the root mean percentage error (RMPE)

1
MG

NG
ÿ

k“1

˜

DG
k ´ D̂G

k

D̂G
k

¸2

, G P tH1, F u,

• the χ2 statistic

1
MG

NG
ÿ

k“1

¨

˝

DG
k ´ D̂G

k
b

D̂G
k

˛

‚

2

, G P tH1, F u,

• the deviance
NG
ÿ

k“1
2
˜

DG
k log

˜

DG
k

D̂G
k

¸

´ pDG
k ´ D̂G

k q

¸

.

Model performance on the healthy state is evaluated on the age range r60, 90s, and model performance
on the disabled state is evaluated on the first year of disability for ages between 65 and 90 years old.
When the metrics of the two methods presented in this paper are better than those of the method
without constraints (independent estimation of each biometric law), then the metric is displayed in
bold. The best value for each metric is written in red. The results are shown in Table 1 and Table 2.

Table 1 shows that adding a constraint to the P-splines smoothing method improves the Root
Mean Square Error (RMSE), the Root Mean Percentage Error (RMPE), the deviance and the χ2

statistics of mortality in the healthy state. This method also improves the metrics for the mortality
of disabled policyholders, as shown in Table 2.

The PCLM method mostly improves the predictive performance of the mortality of disabled
policyholders as shown in Table 2. The root mean percentage error and χ2 are the lowest for this
method compared to those of the two others. This method also improves the Root Mean Percentage
E rror (RMPE) on the prediction of the mortality of autonomous policyholders (Table 1).
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Method RMSE RMPE χ2 Deviance
Constr. 2.19 0.60 173.32 204.82

Without Constr. 2.19 0.63 180.95 205.96
PCLM 2.21 0.57 176.70 215.38

Table 1: Cross validation: mortality in the healthy state

Method RMSE RMPE χ2 Deviance
Constr. 0.30 5.76 1 338,40 509.40

Without Constr. 0.30 5.80 1 344,35 509.52
PCLM 0.30 4.69 1 226,24 514.33

Table 2: Cross validation: mortality in disabled state

Additional plots of confidence intervals and analyses of Poisson residuals for each state H1, H2 and
F are available in Appendix F.

5 Discussion

In this paper, we present two methods to estimate transition rates by using combined experience
data of two long-term care portfolios with differing disability definitions. In this paper, we focus on
the case when one of the definitions is included in the other. In this situation, the healthy state
(denoted H2) of one of the products/definitions is a mixture of the healthy state (H1) and the
disabled state (T1) of the other product, as described in Section 2.

We focus on the estimation of mortality in healthy and disabled states by using combined experiences
from both portfolios. Mortality in the healthy state is considered a function of age only; whereas,
mortality in disabled states is assumed to be a function of age and duration since the loss of
autonomy. In fact, mortality in the disabled state often depends greatly on the duration, with a
higher mortality in the first months following entry into the disabled state.

Assuming that the population of both portfolios is homogeneous, the mortality of this healthy
state H2 is a mixture of the mortality in H1 and Fβ. The three mortality laws are then linked.
To avoid overfitting, the two methods introduced in this paper rely on the P-splines smoothing
method embedded in the Poisson Generalized Linear Model framework as presented in Section 3.1.
With the Poisson assumption justified in Section 2, counts of deaths are assumed to have a Poisson
distribution of parameters proportional to the central exposure and the mortality intensities.

The presented methods are based on the idea of maximizing the likelihood. The first approach
described in Section 3.2 consists of maximizing the Poisson likelihood subject to multiple constraints
linking the biometric functions of the two portfolios. In this method, the mortality laws (mortality in
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H1, H2, Fα and Fβ) are assumed to be expressed as exponential of the combination of basis-splines.
A set of spline coefficients must be estimated for each state. The second approach presented in
Section 3.3 uses the Penalized Composite Link Model introduced by Eilers (2007). This method
uses the fact that the expectancy of the counts of deaths in each state (H1, H2, Fα and Fβ) can
be expressed as a linear combination of the mortality in H1, Fα and Fβ. Therefore, no coefficients
are associated with mortality in H2. This method allows us to reduce the number of estimated
coefficients compared to that of the first method.

The presented methods are then applied to solve the problem when having two portfolios with
and without a deferred period. In this case, being disabled for the product with a deferred period
implies having the disabled status for the product without a deferred period. This situation is then
a special case of the problem solved in this paper, since one of the disability definitions is included
in the other. To meet the assumption of homogeneity between the two portfolios, a single French
long-term care portfolio is randomly divided into two. One of the data sets is then modified to
include a fictitious deferred period. The two methods are then evaluated on these portfolios and
compared with the separate modeling approach to show the benefits of combining information of
the two portfolios despite the difference in the disability definitions.

We show that combining information improves the confidence intervals and the predictive perfor-
mance. First, adding a constraint to the maximization of the P-splines likelihood helps to reduce the
size of the confidence interval of the mortality in the healthy state, without having a large impact
on the mortality estimated independently on one single portfolio. However, this first method has
almost no impact on the estimated mortality in the disabled state and its associated confidence
interval. The results of the cross-validation show that this method has better predictive performance
than that of the separate modeling approach. In addition, the PCLM method helps reduce the
confidence interval of the estimated mortality in the disabled state, but it has an impact on the
estimated mortality compared to that of the estimation without combining information of the
portfolios. The cross-validation shows that this method gives better predictive performance on the
RMPE (Root Mean Percentage Error) and χ2 metrics. However, this method slightly increases the
residual deviance of the model compared to that in the separate modeling approach.

The methods introduced in this paper can be extended to other cases where portfolios have different
disability definitions. For example, some long-term care products offer the possibility for the
policyholder to be covered for several levels of loss of autonomy, namely “Mild” and “Severe”
disability. Policyholders only covered for severe disability are considered “autonomous” if they
are only mildly disabled. The long-term care portfolio of the insurer is composed of policyholders
with different disability definitions. This portfolio can therefore be divided into two different
portfolios, one for each definition. The first covers both mild and severe disability, whereas the
second covers only severe disability. In this situation, being disabled with the second definition
implies being disabled for the first definition. It is therefore a special case of the problem of multiple
definitions studied in this paper. The two methods introduced in this paper can be used to estimate
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simultaneously the biometric laws of both definitions by combining information of all policyholders,
instead of separating policyholders covered for the mild disability from the other policyholders.

The methods introduced in this paper assume that the counts of deaths have a Poisson distribution.
One of the properties of the Poisson distribution is that its mean equals variance. However,
overdispersion is often observed in the context of mortality modeling. Accordingly, the Poisson
assumption may be too restrictive. In future studies, a dispersion parameter can be introduced to
improve the model. The models assume homogeneity of policyholders in the two portfolios. This
assumption can be difficult to satisfy because of antiselection. In the example of the deferred period,
the population of policyholders choosing a long-term care contract without a deferred period is
likely different from the population of policyholders underwriting a contract with a deferred period.
Finally, in future research the methods developed in this paper may be generalized to parametric
forms of mortality.
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A APPENDIX A: PROOF OF THE TOTAL LIKELIHOOD OF THE COMBINED
OBSERVATIONS

A Appendix A: Proof of the total likelihood of the combined
observations

Let j denote an individual. Each individual is observed with only one product (1 or 2). We
introduce:

• xSpjq, the minimum age at which we observe individual j (age at underwriting, or age at the
beginning of the observation period),

• xHpjq, the age of end of observation in healthy state (equal to the age of death, age of loss of
autonomy, or age at censoring),

• xT pjq, the age of end of observation in disabled state Tk where k denotes the definition with
which we observe individual j (age of death, or age at censoring if individual j is in state Tk

at the end of observation period),

• xFg pjq, the age of end of observation in disabled state Fg where g P tα, βu (age of death, age
of transition from Fα to Fβ or age at censoring if individual j is in state Fg at the end of
observation period),

• cHpjq, the cause of exit of healthy state for individual j such that:

– cHpjq “ 0 if individual j is still in the healthy state at the end of the observation (right
censoring),

– cHpjq “ 1 if individual j dies in healthy state,

– cHpjq “ 2 if the cause of exit of the healthy state is the loss of autonomy (entry in state
Tk if the health status of individual j is observed with definition k),

• cT pjq, the cause of exit of disabled state (Tk, k P t1, 2u) for individual j such that:

– cT pjq “ 0 if individual j is in state Tk at the end of the observation (right censoring),

– cT pjq “ 1 if individual j dies in the disabled state (T1 or T2 depending on the definition
with which we observe individual j)

• cFg pjq, the cause of exit of disabled state (Fg, g P tα, βu) for individual j such that:

– cFg pjq “ 1 if individual j dies in disabled state Fg,

– cFg pjq “ 0 otherwise.

If individual j does not lose autonomy during the observation period, then xT pjq “ xHpjq. If
individual j is observed with definition 2, then xFαpjq “ xHpjq. If individual j dies in state Fα then
xFβ pjq “ xFαpjq “ xT pjq.

The likelihood associated with one individual observed with definition k is given by
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Lj “ exp
˜

´

ż xH pjq

xSpjq

´

ikpxq ` µHk pxq

¯

dx

¸

´

ik
´

xHpjq

¯¯1
tcH pjq“2u

´

µHk

´

xHpjq

¯¯1
tcH pjq“1u

exp
˜

´

ż xFα pjq´xH pjq

0
µFα

´

xHpjq ` t, t
¯

dt

¸

´

µFα

´

xFαpjq, xFαpjq ´ xHpjq

¯¯1
tcFα pjq“1u

exp

¨

˝´

ż x
Fβ pjq´xFα pjq

0
µFβ

´

xFαpjq ` t, t
¯

dt

˛

‚

´

µFβ

´

xFβ pjq, xFβ pjq ´ xFαpjq

¯¯1
tc

Fβ pjq“1u .

(36)

Therefore, the total likelihood for all individuals from products 1 and 2 is given by

Ltot “

n1
ź

j“1
exp

˜

´

ż xH pjq

xSpjq

`

i1pxq ` µH1pxq
˘

dx

¸

´

i1
´

xHpjq

¯¯1
tcH pjq“2u

´

µH1
´

xHpjq

¯¯1
tcH pjq“1u

exp
˜

´

ż xFα pjq´xH pjq

0
µFα

´

xHpjq ` t, t
¯

dt

¸

´

µFα

´

xFαpjq, xFαpjq ´ xHpjq

¯¯1
tcFα pjq“1u

exp

¨

˝´

ż x
Fβ pjq´xFα pjq

0
µFβ

´

xFαpjq ` t, t
¯

dt

˛

‚

´

µFβ

´

xFβ pjq, xFβ pjq ´ xFαpjq

¯¯1
tc

Fβ pjq“1u ˆ

n2
ź

j“1
exp

˜

´

ż xH pjq

xSpjq

`

i2pxq ` µH2pxq
˘

dx

¸

´

i2
´

xHpjq

¯¯1
tcH pjq“2u

´

µH2
´

xHpjq

¯¯1
tcH pjq“1u

exp

¨

˝´

ż x
Fβ pjq´xH pjq

0
µFβ

´

xHpjq ` t, t
¯

dt

˛

‚

´

µFβ

´

xFβ pjq, xFβ pjq ´ xHpjq

¯¯1
tc

Fβ pjq“1u , (37)

where nk, k P t1, 2u denotes the number of observed policyholders from product k.

Let eHk
j ppq denote the central exposure to risk of individual j in state Hk between integer ages

xH
p and xH

p`1. Let eg
j pp, qq denote the exposure to risk of individual j in state Fg between integer

ages xT
p and xT

p`1 and durations tg
q and tg

q`1. Let eHk ppq “

nk
ÿ

j“1
eHk

j ppq be the sum of the central

exposures in state Hk of all policyholders from product k. Let eαpp, qq “

n1
ÿ

j“1
eα

j pp, qq. Fβ is the

only state observed in both products. Therefore, let eβ,kpp, qq “

nk
ÿ

j“1
eβ

j pp, qq denote the sum of the

central exposures in state Fβ for product k. We denote eβpp, qq “ eβ,1pp, qq ` eβ,2pp, qq as the sum
of the central exposures of both products.
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Let N1ppq denote the number of transitions to the disabled state T1 between xH
p and xH

p`1. Let
N2ppq denote the number of transitions to the disabled state between xH

p and xH
p`1 according to the

T2 definition.

Let DH1ppq denote the number of deaths from the healthy state between xH
p and xH

p`1 in the first
type of insurance. Let DH2ppq denote the number of deaths from the healthy state between xH

p

and xH
p`1 in the second type of insurance. Let Dαpp, qq denote the number of deaths from the Fα

disabled state with age at death between xT
p and xT

p`1 and duration between tα
q and tα

q`1. For
the central exposure, let Dβ,kpp, qq denote the number of deaths from the Fβ disabled state with
age at death between xT

p and xT
p`1 and duration between tβ

q and tβ
q`1 for product k. We denote

Dβpp, qq “ Dβ,1pp, qq ` Dβ,2pp, qq.

As intensities µHk pq and ikpq, k P t1, 2u and µFg p, q, g P tα, βu are piecewise constants (Assumption
3 and Assumption 4), we denote

• µHk
p “ µHk pxH

p q, @p P t1, . . . , MHu,

• ik
p “ ikpxH

p q, @p P t1, . . . , MHu, and

• µFg
p,q “ µFg pxF

p , tg
qq, @p P t1, . . . , MF

x u, q P t1, . . . , Mg
t u,

and Equation 37 becomes

Ltot “

MH
ź

p“1
exp

`

´
`

i1
p ` µH1

p

˘

eH1ppq
˘ `

i1
p

˘N1ppq `

µH1
p

˘DH1 ppq

MF
x

ź

p“1

Mα
t

ź

q“1
exp

`

´µFα
p,qeαpp, qq

˘ `

µFα
p,q

˘Dαpp,qq
ˆ

MH
ź

p“1
exp

`

´
`

i2
p ` µH2

p

˘

eH2ppq
˘ `

i1
p

˘N2ppq `

µH2
p

˘DH2 ppq

MF
x

ź

p“1

Mβ
t

ź

q“1
exp

´

´µ
Fβ
p,qeβpp, qq

¯´

µ
Fβ
p,q

¯Dβpp,qq

. (38)

The last term of Equation 38 represents the likelihood of all observations from products 1 and 2 in
state Fβ.

The log likelihood function of the combined observations from products 1 and 2 is given by
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ltot “
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ÿ

p“1
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t

ÿ

q“1

´
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¯
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´

µ
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¯

. (39)
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B Appendix B: Proof of the constraint

Let us prove the constraint given by Equation (9) in Section 3.2.

µH2
p “ µH2pxH

p q “ lim
hÑ0

PpX
p2q

xH
p `h

“ Death|X
p2q

xH
p

“ H2q

h
. (40)

PpX
p2q

x`h “ Death|Xp2q
x “ H2q “PpX

p1q
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x “ H1 Y Xp1q

x “ Fαq

“
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p1q
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x “ H1 Y X

p1q
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p1q
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Therefore, Equation (40) becomes

µH2
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PpX
p2q

xH
p `h

“ Death|X
p2q

xH
p

“ H2q

h

“
PpX

p1q
x “ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

lim
hÑ0

PpX
p1q

xH
p `h

“ Death|X
p1q

xH
p

“ H1q

h
`

Mα
t

ÿ

q“1

PpX
p1q
x “ Fα, X

p1q

px´tα
q q

“ Fα, X
p1q

px´tα
q`1q

“ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

ˆ

lim
hÑ0

PpX
p1q

x`h “ Death|tX
p1q
x “ Fα, X

p1q

px´tα
q q

“ Fα, X
p1q

px´tα
q q´ “ H1uq

h

“
PpX

p1q
x “ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

µH1
p `

Mα
t

ÿ

q“1

PpX
p1q
x “ Fα, X

p1q

px´tα
q q

“ Fα, X
p1q

px´tα
q`1q

“ H1q

PpX
p1q
x “ H1 Y X

p1q
x “ Fαq

µFα
p,q. (41)
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C Appendix C: Structure of matrix C

Let EH1 and EH2 P MMH pRq be the diagonal matrices of the central exposures in states H1 and
H2, respectively. Let Eα P MMF

x ,Mα
t

pRq and Eβ P M
MF

x ,Mβ
t

pRq be the matrix of the sum of the
central exposures in Fα and Fβ , respectively. We denote vEg

.k “ diagpEg
.,kq P MMF

x
pRq, g P tα, βu as

the diagonal matrix of the central exposures in state Fg for the kth duration.

• C “

«

C0

C1

ff

P M
pMH `MH `pMα

t `Mβ
t q.MF

x q,pMH `pMα
t `Mβ

t q.MF
x q

pRq,

• C0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

EH1 0 . . . . . . . . . . . . . . . . . . 0
0 vEα

.1 0 . . . . . . . . . . . . . . . 0

0 0 . . . 0 . . . . . . . . . . . . 0

0 . . . 0 . . . 0 . . . . . . . . . 0
0 . . . . . . 0 vEα

.Mα
t

0 . . . . . . 0
0 . . . . . . . . . 0 vEβ

.1 0 . . . 0

0 . . . . . . . . . . . . 0 . . . 0 0

0 . . . . . . . . . . . . . . . . . .
. . . 0

0 . . . . . . . . . . . . . . . . . . 0 vEβ

.Mβ
t

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P M
pMH `pMα

t `Mβ
t q.MF

x q
pRq,

• C1 “

«

EH2 .EH1

EH1 `
řMα

t
q“1

vEα
.,q

EH2 .vEα
.,1

EH1 `
řMα

t
q“1

vEα
.,q

. . .
EH2 .vEα

.,Mα
t

EH1 `
řMα

t
q“1

vEα
.,q

0 . . . 0
ff

C1 “ pEH1`

Mα
t

ÿ

q“1

vEα
.,qq´1.EH2 .

”

EH1 vEα
.,1 . . . vEα

.,Mα
t

0 . . . 0
ı

P M
MH ,pMH `pMα

t `Mβ
t q.MF

x q
pRq.

The matrix C1 is composed of "concatenation" of Mβ
t ` 1 diagonal matrices of dimension MH , and

the matrix is completed with columns of 0.
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D APPENDIX D: PROOF OF THE MORTALITY RATES IN STATE F IN THE
APPLICATION TO THE PROBLEM OF THE DEFERRED PERIOD

D Appendix D: Proof of the mortality rates in state F in the
application to the problem of the deferred period

Let X
p1q

t P tH1, Fα, Fβ, Deathu denote the health state at time t observed with LTC product 1, as
modeled with the diagram in Figure 1a. Let F “ tFα Y Fβu

Let X
p2q

t P tH2, Fβ, Deathu denote the health state at time t observed with LTC product 1, as
modeled with the diagram in Figure 1a.

Let τk “ mintu ą τk´1|Xu ‰ Xτk´1u denote the sequence of jump times, with τ0 “ 0. Let Zk “ Xτk

be the sequence of visiting states.

µF px, tq “ lim
hÑ0

1
h

P
´

X
p1q

x`h “ Death|Xp1q
x P F, X

p1q

x´t P F, X
p1q

px´tq´ “ H1

¯

“ lim
hÑ0

P
´

X
p1q

x`h “ Death|Xp1q
x P F, Xp1q

τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

“ lim
hÑ0

P
´

X
p1q

x`h “ Death, X
p1q
x P F |X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

P
´

X
p1q
x P F |X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

“ lim
hÑ0

P
´

X
p1q

x`h “ Death, X
p1q
x P F |X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

P
´

X
p1q
x P F |X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

“ lim
hÑ0

P
´

X
p1q

x`h “ Death, X
p1q
x “ Fα|X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

P
´

X
p1q
x “ Fα|X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

` P
´

X
p1q
x “ Fβ|X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯`

lim
hÑ0

P
´

X
p1q

x`h “ Death, X
p1q
x “ Fβ|X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

P
´

X
p1q
x “ Fα|X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯

` P
´

X
p1q
x “ Fβ|X

p1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1

¯ .

(42)

In the case of the deferred period, the transition rate from H1 to Fβ is equal to 0. Therefore,

tXp1q
τ1 P F, τ1 “ px ´ tq, X0 “ H1u “ tXp1q

τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1u.

Additionally, as no return to a better health state is possible,

P
´

Xp1q
x “ Fα|Xp1q

τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“ P
´

τ2 ą x|Xp1q
τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

.

Moreover, from Equation 29

ω1px, tq “

$

&

%

0, if t ‰ fr{12

`8, if t “ fr{12.
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Therefore,

P
´

τ2 ą x|Xp1q
τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“ exp
ˆ

´

ż x

x´t

`

µFα pu, u ´ px ´ tqq ` ω1 pu, u ´ px ´ tqq
˘

du

˙

“ exp
ˆ

´

ż t

0

`

µFα px ´ t ` y, yq ` ω1 px ´ t ` y, yq
˘

dy

˙

“

$

’

&

’

%

0 if t ě fr{12

exp
ˆ

´

ż t

0
µFα px ´ t ` y, yq du

˙

if t ă fr{12.

(43)

Another consequence of the no return to a better health state is that

P
´

Xp1q
x “ Fβ |Xp1q

τ1
“ Fα, τ1 “ px ´ tq, X0 “ H1

¯

ď P
´

τ2 ď x, Xp1q
τ2

“ Fβ |Xp1q
τ1

“ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“

ż t

0
P
´

τ2 ě x ´ t ` y|Xp1q
τ1

“ Fα, τ1 “ px ´ tq, X0 “ H1

¯

δfr{12pyqdy,

where δfr{12pyq “

$

&

%

`8 if t “ fr{12

0 otherwise.

Therefore,
P
´

Xp1q
x “ Fβ |Xp1q

τ1
“ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“ 0, @t ă fr{12. (44)

Then:

• if t ă fr{12, from Equation 42 and Equation 44

µF px, tq “ lim
hÑ0

1
h

P
´

X
p1q

x`h “ Death, X
p1q
x “ Fα|X

p1q
τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

P
´

X
p1q
x “ Fα|X

p1q
τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“ lim
hÑ0

1
h

P
´

X
p1q

x`h “ Death|Xp1q
x “ Fα, Xp1q

τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“ µFαpx, tq

,

• if t ě fr{12, from Equation 42 and Equation 43

µF px, tq “ lim
hÑ0

1
h

P
´

X
p1q

x`h “ Death, X
p1q
x “ Fβ|X

p1q
τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

P
´

X
p1q
x “ Fβ|X

p1q
τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“ lim
hÑ0

1
h

P
´

X
p1q

x`h “ Death|Xp1q
x “ Fβ, Xp1q

τ1 “ Fα, τ1 “ px ´ tq, X0 “ H1

¯

.
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As the transition from Fα to Fβ can occur only fr months after entry into Fα, and no return
to a better health state is possible, then

P
´

X
p1q

x`h “ Death|Xp1q
x “ Fβ , Xp1q

τ1
“ Fα, τ1 “ px ´ tq, X0 “ H1

¯

“

P
´

X
p1q

x`h “ Death|Xp1q
x “ Fβ , Xp1q

τ2
“ Fβ , τ2 “ px ´ t ` fr{12q, Xp1q

τ1
“ Fα, τ1 “ px ´ tq, X0 “ H1

¯

.

Therefore,

µF px, tq “ lim
hÑ0

1
h

P
´

X
p1q

x`h “ Death|Xp1q
x “ Fβ, Xp1q

τ2 “ Fβ, τ2 “ px ´ t ` fr{12q

¯

“ µFβ px, t ´ fr{12q.
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E Appendix E: Details on the structure of the matrix BF for the
application to the deferred period

Let Bα
t P MMα

t ,Jα
t

be the matrix of the values of the splines at each subdivision point before the
deferred period (

␣

tα
1 , . . . , tMα

t `1
(

). Jα
t denotes the number of splines from BF

t having a nonnull
value on the interval

”

tα
1 ; tα

Mα
t

ı

.

Let Bβ
t P M

Mβ
t ,Jβ

t
be the matrix of the values of the splines at each subdivision point after the

deferred period (
"

tβ
1 `

fr

12 , . . . , t
Mβ

t `1 `
fr

12

*

). Jβ
t denotes the number of splines from BF

t having a

nonnull value on the interval
„

tβ
1 `

fr

12 ; t
Mβ

t `1 `
fr

12

ȷ

.

Let s denote the number of splines shared by states Fα and Fβ (s “ 4 in Figure 5). The first s

columns of Bβ
t are the continuous extension of the last s columns of Bα

t . Let Bg
t psq, g P tα, βu

denote the submatrix of Bg
t composed of only splines shared by Fα and Fβ . Let Bg

t p´sq, g P tα, βu

denote the submatrix of Bg
t composed of only splines not shared by Fα and Fβ.

Then, BF
t “

«

Bα
t p´sq Bα

t psq 0
0 Bβ

t psq Bβ
t p´sq

ff

.

Therefore, from Section 3.1, the matrix BF for the estimation of the mortality in two dimensions in
LTC is given by

BF “ BF
t b BF

x (45)
«

Bα
t p´sq b BF

x Bα
t psq b BF

x 0
0 Bβ

t psq b BF
x Bβ

t p´sq b BF
x

ff

. (46)
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F Appendix F: Additional plots
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Figure 14: Mortality of disabled policyholders during the second month following the loss of
autonomy
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Figure 15: Mortality of disabled policyholders during the third month following the loss of autonomy
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