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Multilevel Parameterized Model Order Reduction for Variability
Analysis of Circuits

Abstract — A multilevel parameterized model order reduction
technique is proposed for variability analysis of large circuits.
The original large-scale equations are kept into the multilevel
scheme, which allows a full error control about the estimation
of stochastic moments. A high computational efficiency is also
provided by a set of parameterized reduced order models
properly combined with the original large-scale model. Pertinent
numerical results are presented to validate the proposed
technique.

Keywords — Parameterized model order reduction,
Multifidelity modeling, Circuits, Variability analysis.

I. INTRODUCTION

Parameterized model order reduction (PMOR) techniques
have been successfully used to obtain efficient models able
to accurately describe the behavior of complex systems as a
function of frequency/time and design parameters (e.g., layout
and material parameters). Over the years, different PMOR
techniques have been proposed [1], [2], [3]. PMOR models
can be used to significantly speed-up design tasks such as
optimization and variability analysis. However, one aspect
that deserves high attention is the estimation of the accuracy
of PMOR models. This is in general a difficult task and
error estimation techniques [4], [5] might not provide accurate
information about the actual error.

The lack of accurate information about the error of PMOR
models is an evident limitation in design tasks such as
variability analysis. An interesting solution to this problem
can come from multifidelity modeling methods. The main idea
behind multifidelity modeling is to combine models with a
different level of accuracy and computational complexity [6],
[7]. The original large-scale model and a set of PMOR models
can be therefore properly combined.

In this work, a multilevel PMOR technique is proposed
for the variability analysis of large circuits. The multifidelity
scheme proposed in [7] is used to combine the original
large-scale model and a set of PMOR models. This scheme
can ensure an error control on the estimation of stochastic
moments since the original model is kept into the analysis,
while exploiting the efficiency of PMOR models. The number
of samples for each model included into the multilevel scheme
is chosen in order to maximize efficiency and guarantee a
desired accuracy about the stochastic moments estimation.
Pertinent numerical results validate the proposed technique.

II. OUTLINE OF THE PROPOSED METHOD

A. Formulation of the Circuit Equations

The notion of uncertainty in the circuit response due
to uncertainty in circuit design parameters is captured by
adapting the modified nodal analysis (MNA) formulation [8]
as follows

(G(ξ) + sC(ξ)) X(s, ξ) = B (1)
Y(s, ξ) = LX(s, ξ) (2)

where G, C ∈ RN×N are parameter-dependent conductance
and susceptance matrices, respectively; X(s, ξ) ∈ RN is the
vector of MNA variables, B ∈ RN is the vector of input
signals, Y(s, ξ) ∈ RNout is the parameter-dependent output
response, L ∈ RNout×N is the output selection matrices and
ξ = [ξ1, . . . , ξd] is a d-dimensional vector collecting all the
random circuit parameters.

B. Multi-moment Matching Based PMOR

PMOR techniques aim to find a reduced system
whose output matches the few leading moments of the
original system output Y(s, ξ) in (2). In order to find
the reduced-order model, the block moments of X(s, ξ)
with respect to frequency (denoted by M s) and the
moments with respect to the random parameters ξ1, . . . , ξd
(denoted by Mξ1 , . . . ,Mξd ), as well as, the cross-derivative
block moments (denoted by Ms,ξ1,...,ξd ) are computed. The
moments can be computed using an implicit-moment matching
recursive modified Gram-Schmidt-like process [2], [3] to
construct a projection matrix Q whose columns spans the
same subspace of the moments as:

colsp{Q} = colsp{Ms,Mξ1 , . . . ,Mξd ,Ms,ξ1,...,ξd} (3)

A parameterized reduced order model can be computed
using congruent transformation as follows. Define

X̃(s, ξ) = QTX(s, ξ) (4)

where Q ∈ RN×q and q � N denotes the reduced order.
The reduced system can be written as

(G̃(ξ) + sC̃(ξ))X̃(s, ξ) = B̃ (5)

Ỹ(s, ξ) = L̃X̃(s, ξ) (6)
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where X̃(s, ξ) = QTX(s, ξ), G̃ = QTGQ, C̃ = QTCQ,
B̃ = QTB and L̃ = LQ. Clearly, this reduced model can be
used for both frequency- and time-domain analysis.

A set of reduced order models with different order q
can be combined with the original large-scale equations by a
multifidelity scheme. Let us consider L+1 levels and therefore
L + 1 models that provide {Yl(s, ξ)}Ll=0 as corresponding
output. We assume the L-th model is the most accurate and
computationally expensive, while the 0-th model is the least
accurate and least computationally expensive in the set of L+1
levels. We assume the L-th model gives what we consider the
exact system behaviour YL = Y. For our technique, the L-th
model is the original MNA model without any order reduction,
all the other models used in the multifidelity scheme are
obtained by the PMOR approach described previously using
different reduced orders.

C. Multilevel PMOR for variability analysis

Our contribution targets variability analysis of large
circuits. In the variability analysis area, the Monte Carlo
(MC) technique has been traditionally used during the design
process. MC has a straightforward implementation and provide
error measures for the estimation of stochastic quantities, such
as mean and variance. However, a large number of simulations
might be required, which translates into a high computational
cost if the equations to simulate are large-scale. The following
equations focus on a scalar function only for ease of notation
and they can be used for both frequency- and time-domain
quantities of interest. The mean value can be expressed as

E[Y (s, ξ)] =

∫
Γ
Y (s, ξ)W (ξ)dξ (7)

where E[·] represents the expectation operator, the Y (s, ξ)
quantity can denote the port voltages Vp(s, ξ) or port currents
Ip(s, ξ). W (ξ) is a joint probability density function.

An estimation of the mean value can be obtained by
the MC approach, where a set of random samples based on
the joint probability density function of ξ is used. After the
function Y (s, ξ) is sampled in the ξ space, the collected data
can be used to estimate the mean value by sample-based
formulas. In this perspective, E[Y (s, ξ)] can be estimated
using R independent and identically distributed (i.i.d.) samples
YR := (Y (s, ξr))r=1,...,R as

E[Y (s, ξ)] ≈ m1(YR(s, ξ)) =

R∑
r=1

Y (s, ξr)

R
(8)

Eq. (8) represents an unbiased estimator of the mean value
[9]. The described estimator is based on random sampling. Its
mean squared error (MSE) can be defined in general as a bias
term squared and a variance term (we omit (s, ξ) into Y (s, ξ)
and YR(s, ξ) for ease of notation in what follows). In the case
of an unbiased estimator such as m1 only the variance term
will appear in the MSE

MSE(m1(YR)) = E[(m1(YR)− E(Y ))2] = Var(m1(YR))
(9)

Var(m1(YR)) =
Var(Y )

R
(10)

Estimating the needed samples R to achieve a certain target
MSE is straightforward, since R = Var(Y )

MSE(m1(YR)) . Var(Y )
represents the variance of the Y response and can also be
estimated by sample-based formulas, for example using the
h-statistics [9]. We note that the MC analysis relies on the
most accurate level (model) YL = Y .

The Multilevel Monte Carlo (MLMC) technique
generalises the MC technique [7]. The estimation of the mean
value of Y (s, ξ) can be obtained as described in [7]

E[Y (s, ξ)] ≈ m1,MLMC({Yl,Rl
}Ll=0) =

m1(Y0,R0
) +

L∑
l=1

m1(Yl,Rl
− Yl−1,Rl

) (11)

Considering the assumption YL = Y , the estimator m1,MLMC

is unbiased. Concerning its MSE, we assume to use i.i.d.
samples to sample and evaluate Y0(s, ξ) and each pair
[Yl(s, ξ), Yl−1(s, ξ)]. The following variance formula for the
m1,MLMC estimator can be obtained [7]

MSE(m1,MLMC({Yl,Rl
}Ll=0)) =

Var(m1,MLMC({Yl,Rl
}Ll=0)) = Var(m1(Y0,R0))+

+

L∑
l=1

Var(m1(Yl,Rl
− Yl−1,Rl

)) =
V0
R0

+

L∑
l=1

Vl
Rl

(12)

For a chosen MSE value related to the computation of the
mean value of Y (s, ξ), the number of samples {Rl}Ll=0 needed
to achieve this error level and minimize the total computational
cost of the variability analysis can be found by an analytical
formula obtained after a constrained minimisation problem
[7]. Considering C0 as the computational cost to evaluate
one sample of Y0,R0 and Cl as the computational cost to
evaluate one sample of (Yl,Rl

−Yl−1,Rl
), the optimal number

of samples Rl, l = 0, ..., L is equal to [7]

Rl = (MSE(m1,MLMC({Yl,Rl
}Ll=0)))−2

(
L∑
l=0

√
VlCl

)√
Vl
Cl

(13)
Therefore, as in (10), the needed number of samples can be
easily computed [7].

The proposed multilevel PMOR approach and MC start
from an initial number of samples, then the number of samples
needed to satisfy the target MSE value is evaluated, new
simulations are run and this is iterated till the target MSE
value is satisfied.

In this contribution, we focus as theory on the estimation
of the mean value. Due to lack of space, the theory extension
towards higher order stochastic moments, such as the variance,
will be presented in an extended future work. However, we
show numerical results for both mean and variance estimation
in what follows.



III. NUMERICAL EXAMPLE

Four coupled microstrip lines, shown in Fig. 1, are used
as an example to validate the proposed technique. The MNA
description of this circuit has 1204 state variables in (2).
The circuit is excited by a trapezoidal voltage source that
is connected to the input of the first line with 0.5 ns of
rising/falling edge, 3 ns duration, and 1 V amplitude. The
uncertainty parameters that were considered for this example
are the height h of the substrate, the width of the lines w,
distance between lines d, the conductivity σ, and the relative
permittivity εr. Their nominal values are 0.5 mm, 2 mm,
2 mm, 5.6 · 107 S/m, and 4.5, respectively. Each of these
parameter is considered to be a uniform random variables
varying ±40% around the nominal value. For each line, there
is one resistor of 50 Ω at the input and a capacitor of 1 pF at
the output.

The target MSE for the proposed technique is equal to
10−5. Three levels were selected: the original model and two
PMOR models with reduced order equal to 36 and 12. The
standard MC analysis used the original model only. Although
a MC-based accuracy validation is not necessary since the
proposed technique has a well-defined error control feature,
we show in Figs. 2-3 comparison results for the proposed
method and MC considering the same target MSE. A very
good agreement can be observed. The number of samples
needed by the proposed technique is equal to 175, 1156, 21914
for the original model and the PMOR models of order 36
and 12, respectively. The standard MC analysis needed 12199
samples using the original model. These number of samples
are computed using the corresponding formulas described in
Section II-C. The proposed method achieved a speed-up equal
to 19 with respect to the MC analysis.

Fig. 1. Circuit example.

IV. CONCLUSION

A method has been presented to efficiently and accurately
perform the variability analysis of circuits. This is based on
a multilevel PMOR technique where the original large-scale
model and a set of PMOR model are properly combined.
This scheme ensures an error control on the estimation of
stochastic moments since the original model is kept into the
analysis, while exploiting the efficiency of PMOR models. The
advantages of the proposed method were demonstrated using
a practical interconnect circuit.

0 2 4 6 8 10

Time [ns]

-1

-0.5

0

0.5

1

1.5

2

V
o
u
t,
1

Proposed method

MC

Fig. 2. Mean value and mean value±3
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variance results of the output voltage
of the first line.
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variance results of the output voltage
of the third line.
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