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Chapter 45: The Bayesian approach to poverty measurement1 
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and Aix-Marseille University, 
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This chapter reviews the recent Bayesian literature on poverty measurement together 

with some new results. Using Bayesian model criticism, we revise the international 

poverty line. Using mixtures of lognormals to model income, we derive the posterior 

distribution for the FGT, Watts and Sen poverty indices, for TIP curves (with an 

illustration on child poverty in Germany) and for Growth Incidence Curves. The 

relation of restricted stochastic dominance with TIP and GIC dominance is detailed 

with an example based on UK data. Using panel data, we decompose poverty into 

total, chronic and transient poverty, comparing child and adult poverty in East 

Germany when redistribution is introduced. When panel data are not available, a 

Gibbs sampler can be used to build a pseudo panel. We illustrate poverty dynamics by 

examining the consequences of the Wall on poverty entry and poverty persistence in 

occupied West Bank. 

Keywords: Bayesian inference, mixture model, poverty indices, stochastic dominance, 

poverty dynamics 

JEL codes: C11, C46, I32, I38 

                                                 
1 This work was supported by the French National Research Agency Grant ANR-17-EURE-0020, and 

by the Excellence Initiative of Aix-Marseille University-A*MIDEX. The support of the National Natural 

Science Foundation of China, Grant number 71764008 is also acknowledged. We are grateful to 

Duangkamon Chotikapanich for useful discussion and references. Usual disclaimers apply. 

2 School of Economics, Jiangxi University of Finance and Economics, China and Aix-Marseille Univ, 

CNRS, AMSE, Marseille, France.  

3 School of Economics, Nanjing University of Finance and Economics, China. Corresponding author.  



1 INTRODUCTION  

For long, standard errors were not reported for poverty or inequality indices and this 

on two grounds. Data sets based on surveys included more than five thousand 

observations, so it was thought that the standard deviations would have been very 

small. A second objection was the difficulty of computation (see for instance 

Davidson 2009 for the Gini index). These arguments are no longer tenable as we 

might be interested in sub-groups, leading to reduced sample sizes. And the Bayesian 

approach brings in feasible answers for small sample sizes and its simulation 

techniques make simple the computation of standard errors. More precisely, a 

Bayesian approach to poverty measurement relies most of the time on a parametric 

modelling of the income distribution. Poverty indices, the TIP curve of Jenkins and 

Lambert (1997), the growth incidence curve of Ravallion and Chen (2003) are 

transformations of the parameters of this parametric income distribution. The purpose 

of Bayesian inference is to provide draws from the posterior density of these 

quantities. The same approach is used to explore restricted stochastic dominance and 

poverty dynamics. The interested reader can find an introduction to Bayesian 

inference in Lindley (1971), and to the required simulation methods in Bauwens et al. 

(1999).  

2 REVISING THE IPL USING BAYESIAN INFERENCE  

The international poverty line (IPL) of the World Bank serves to count the number of 

poor in the world and to locate poverty in order to design anti-poverty policies.  

2.1 The econometric model of the World Bank  

Inference for the IPL relies on a constrained regression model and a data base 

covering 74 developing countries. Ravallion et al. (2009) note that below a certain 

level of consumption, national poverty lines 𝑧𝑖 seem to be constant while they evolve 

as a function of consumption after that level: 

𝑧𝑖 = 𝑠𝑖(𝛼1 + 𝛾1𝐶𝑖) + (1 − 𝑠𝑖)(𝛼2 + 𝛾2𝐶𝑖) + 𝜖𝑖,       (45.1) 



where 𝑠𝑖 is equal to an indicator function 𝕀(𝐶𝑖 <  𝜃) which is one for countries 

below a mean consumption of θ and zero otherwise. For 𝐶𝑖 <  𝜃, the constraint 

𝛾1 =  0  is imposed, corresponding to the concept of an absolute poverty line. 

Ravallion et al. (2009) do not estimate θ, but fix it to $60 per month. With these 

restrictions, the IPL corresponds to the estimated value of α1 and is found to be $1.25 

per day when using 2005 PPP.  

2.2 Bayesian model criticism: Poverty and social inclusion  

Model criticism would imply estimating a complete switching regression model 

where at least θ is unknown. However, classical inference is not well suited in this 

case as shown in Hansen (2000). The Bayesian approach provides a more intuitive 

alternative which is by nature more robust for small sample sizes and provides a 

direct inference process for the posterior distribution of θ.  

Xun and Lubrano (2018) enlarge model (45.1) by introducing the notion of social 

inclusion developed in Atkinson and Bourguignon (2001). At any level of income, 

poverty corresponds to the deprivation of enough resources to participate in social life. 

Social inclusion in Atkinson and Bourguignon (2001) means that poverty is not only a 

matter of minimum caloric consumption (absolute poverty line), but also depends on 

social life participation. As a measure of social inclusion, Xun and Lubrano (2018) 

consider the unemployment rate 𝑢𝑟, leading to the richer econometric model:  

𝑧𝑖 = 𝑠𝑖(𝛼1 + 𝛾1log 𝐶𝑖 + 𝛽1𝑢𝑟𝑖) + (1 − 𝑠𝑖)(𝛼2 + 𝛾2log 𝐶𝑖) + 𝜖𝑖
𝑠𝑖 = 𝕀(𝐶𝑖 < 𝜃)

Var (𝜖𝑖) = 𝑠𝑖𝜎12 + (1 − 𝑠𝑖)𝜎22
    (45.2) 

This is a switching regression model with heteroskedasticity where θ is an unknown 

parameter. Bayesian inference provides posterior draws for the parameters, leading to 

a much larger definition for the group of developing countries since E(θ|z)  =

 169.2 (14.03). We have now 39 countries in that group instead of 15 in Ravallion et 

al. (2009). Posterior draws for the poverty line are obtained as: 

𝑧(𝑗) = 1
𝑛𝑗
∑  𝑖 �𝛾1

(𝑗)log (𝐶𝑖) + 𝛽1
(𝑗)𝑢𝑟𝑖�𝕀�𝐶𝑖 < 𝜃(𝑗)�,       (45.3) 



Where 𝑛𝑗 is the number of observations in the first regime given the 𝑗𝑡ℎ draw (𝛼1 was 

not significantly different from 0). The posterior expectation of the IPL is found to be 

$1.48 (0.036), a greater value than the $1.25 IPL of the World Bank which does not 

belong to the highest posterior density credible region of 90% [1.30, 1.65], leading 

thus to a substantial and significant revision. 

3 POVERTY INDICES AND POVERTY CURVES  

Poverty indices are a way to summarize the left tail of an income distribution 𝑓(𝑥), 

obeying various axioms (see e.g. Zheng 1997). Poverty indices are thus particular 

transformations of the income distribution. In a Bayesian framework, the usual route 

is to consider a parametric model 𝑓(𝑥|𝜃) for the income distribution. Once we have 

obtained draws from the posterior distribution of θ, we can transform these draws into 

draws of various poverty indices. Because there is no universal rule for selecting a 

particular poverty index, Jenkins and Lambert (1997) introduced TIP curves which 

document at the same time the three dimensions of poverty for each quantile of 

𝑓(𝑥|𝜃). Later Ravallion and Chen (2003) considered that growth is favourable to the 

poor if the lower quantiles of 𝑓(𝑥|𝜃) increase more than its higher quantiles.  

3.1 Modelling the income distribution  

A mixture of distributions accounts for the fact that the population is made of 

different groups with specific characteristics while the belonging to a particular group 

is not observed. The general formulation of a finite mixture with 𝐾 members is:  

𝑓(𝑥 ∣ 𝜃) = ∑  𝐾
𝑘=1 𝜂𝑘𝑓𝑘(𝑥 ∣ 𝜃𝑘),           (45.4) 

Where 𝜂𝑘 are the weights summing to 1 and 𝜃𝑘 the parameters of each member. 

Mixtures have very nice properties due to their linearity. In particular, the mean and 

the cumulative distribution (CDF) have direct expressions with:  

E(𝑥 ∣ 𝜃) = ∑  𝐾
𝑘=1 𝜂𝑘 ∫  ∞

0 𝑥𝑓𝑘(𝑥 ∣ 𝜃𝑘)𝑑𝑥 ,         (45.5) 

and 

E(𝑥 ∣ 𝜃) = ∑  𝐾
𝑘=1 𝜂𝑘 ∫  ∞

0 𝑥𝑓𝑘(𝑥 ∣ 𝜃𝑘)𝑑𝑥 .         (45.6) 



So the mean is weighted average of the mean of the components and the CDF is the 

weighted average of the components’ CDF. Various choices have been made in the 

Bayesian literature. Gunawan et al. (2020) used a mixture of three gamma densities 

for Australia to evaluate the posterior distribution of a head count index. They study 

the impact of using or not sampling weights and show that it leads to different 

evaluations of poverty. Ndoye and Lubrano (2014) use a mixture of two Pareto 

distributions to analyze top wage inequality in the US. Lubrano and Ndoye (2016) 

opting for a mixture of lognormals derive the posterior density of a Gini inequality 

index and detail the decomposition of the Generalized Entropy index. In this chapter, 

we model 𝑓(𝑥|𝜃) as a mixture of lognormal densities.  

The lognormal density is noted: 

𝑓Λ(𝑥 ∣ 𝜃) = 1
𝑥𝜎√2𝜋

exp − (log 𝑥−𝜇)2

2𝜎2
,          (45.7) 

with CDF:  

𝐹Λ(𝑥 ∣ 𝜃) = Φ �log 𝑥−𝜇
𝜎

�,             (45.8) 

where Φ is the Gaussian CDF. The mean and variance are:  

E(𝑥 ∣ 𝜃) = 𝑒𝜇+𝜎2/2, Var (𝑥 ∣ 𝜃) = �𝑒𝜎2 − 1�𝑒2𝜇+𝜎2.      (45.9) 

The first partial moments are (see e.g. Jawitz 2004):  

∫  𝑧0 𝑥𝑓Λ( 𝑥 ∣ 𝜃 ) = 𝑒𝜇+𝜎2/2Φ �log (𝑧)−𝜇−𝜎2

𝜎
� ,

∫  𝑧0 𝑥2𝑓Λ( 𝑥 ∣ 𝜃 ) = 𝑒2𝜇+2𝜎2Φ �log (𝑧)−𝜇−2𝜎2

𝜎
� .

        (45.10) 

Mixtures of distributions are usually estimated using a Gibbs sampler, considering a 

mixture as an incomplete data problem. An auxiliary integer variable 𝜁 allocates each 

observation 𝑥𝑖 to a member of the mixture, identified by its label so that conditionally 

on a given sample allocation [𝜁𝑖 =  𝑘], each component of the mixture can be 

analysed separately using a natural conjugate prior. An algorithm is detailed in 



Lubrano and Ndoye (2016) while Fourrier-Nicolaї and Lubrano (2020) consider the 

case of sampling weights and zero incomes (see also Gunawan et al. 2020). The 

posterior distribution of various poverty indices can be obtained as transformations of 

the 𝑚 draws collected in the Gibbs output, indexed by 𝑗. From these 𝑚 draws, we 

can compute a mean, a standard deviation, a posterior confidence interval and plot the 

posterior density.  

3.2 Posterior draws for poverty indices  

The general class of poverty indices of Foster et al. (1984) is written as:  

𝐹𝐺𝑇(𝑧,𝛼) = ∫  𝑧0 (1 − 𝑥/𝑧)𝛼𝑓(𝑥)𝑑𝑥.          (45.11) 

The poverty head-count ratio or poverty rate 𝐻 corresponds to 𝛼 =  0. It leads to a 

simple solution:  

𝐻�𝑧 ∣ 𝜃(𝑗)� = ∑  𝐾
𝑘=1 𝜂𝑘

(𝑗)Φ�log 𝑧−𝜇𝑘
(𝑗)

𝜎𝑘
(𝑗) �.          (45.12) 

For 𝛼 =  1, the poverty gap index can be decomposed into:  

∫  𝑧0 (1 − 𝑥/𝑧)𝑓(𝑥)𝑑𝑥 = 𝐹(𝑧) − 1
𝑧 ∫  𝑧0 𝑥𝑓(𝑥)𝑑𝑥.        (45.13) 

Using (45.8) and (45.10), we have:  

𝐹𝐺𝑇�𝑧 ∣ 𝜃(𝑗), 1� = ∑  𝐾
𝑘=1 𝜂𝑘

(𝑗) �Φ�log 𝑧−𝜇𝑘
(𝑗)

𝜎𝑘
(𝑗) ��

�− 1
𝑧
𝑒𝜇𝑘

(𝑗)+𝜎𝑘
2(𝑗)/2Φ�log 𝑧−𝜇𝑘

(𝑗)−𝜎𝑘
2(𝑗)

𝜎𝑘
(𝑗) �� .

        (45.14) 

For 𝛼 =  2, we have to evaluate 

∫  𝑧0 𝑓(𝑥)𝑑𝑥 − 2
𝑧 ∫  𝑧0 𝑥𝑓(𝑥)𝑑𝑥 + 1

𝑧2 ∫  𝑧0 𝑥2𝑓(𝑥)𝑑𝑥.        (45.15) 

Using (45.8) and (45.10), we get:  



Φ �log 𝑧−𝜇
𝜎

� − 2
𝑧
𝑒𝜇+𝜎2/2Φ �log (𝑧)−𝜇−𝜎2

𝜎
�+ 1

𝑧2
𝑒2𝜇+2𝜎2Φ �log (𝑧)−𝜇−2𝜎2

𝜎
�,  (45.16) 

so that for a mixture of lognormals we have:  

𝐹𝐺𝑇�𝑧 ∣ 𝜃(𝑗), 2� = ∑  𝐾
𝑘=1 𝜂𝑘

(𝑗) �Φ�log 𝑥−𝜇𝑘
(𝑗)

𝜎𝑘
(𝑗) � − 2

𝑧
𝑒𝜇+𝜎𝑘

2(𝑗)/2Φ�log 𝑧−𝜇𝑘
(𝑗)−𝜎𝑘

2(𝑗)

𝜎𝑘
(𝑗) ��

�+ 1
𝑧2
𝑒2𝜇𝑘

(𝑗)+2𝜎𝑘
2(𝑗)

Φ�log (𝑧)−𝜇𝑘
(𝑗)−2𝜎𝑘

2(𝑗)

𝜎𝑘
(𝑗) �� .

(45.17) 

The Watts (1968) poverty index writes: 

𝑊(𝑧) = −∫  𝑧0 log (𝑥/𝑧)𝑓(𝑥)𝑑𝑥.           (45.18) 

Muller (2001) gave its expression when 𝑓(𝑥) is a lognormal:  

𝑊(𝑧) = (log 𝑧 − 𝜇)Φ �log 𝑧−𝜇
𝜎

�+ 𝜎𝜙 �log 𝑧−𝜇
𝜎

�,       (45.19) 

where 𝜙 is the Gaussian probability density. The generalization to mixtures provides:  

𝑊�𝑧 ∣ 𝜃(𝑗)� = ∑  𝐾
𝑘=1 𝜂𝑘

(𝑗) ��log 𝑧 − 𝜇𝑘
(𝑗)�Φ�log 𝑧−𝜇𝑘

(𝑗)

𝜎𝑘
(𝑗) � + 𝜎𝜙 �log 𝑧−𝜇𝑘

(𝑗)

𝜎𝑘
(𝑗) ��. (45.20) 

The revision of Sen index by Shorrocks (1995) leads to:  

𝑆𝑆𝑇(𝑧) = 2
𝑧 ∫  𝑧0 (𝑧 − 𝑥)(1 − 𝐹(𝑥))𝑓(𝑥)𝑑𝑥,         (45.21) 

as expressed in Davidson (2009). We can decompose it into:  

𝑆𝑆𝑇(𝑧)/2 = 𝐹𝐺𝑇(𝑧, 1) − ∫  𝑧0 (𝑧 − 𝑥)𝐹(𝑥)𝑓(𝑥)𝑑𝑥.       (45.22) 

The last integral is related to the Gini index and has no analytical solution. In a similar 

situation, Lubrano and Ndoye (2016) proposed to evaluate numerically the integral 

for each draw of the parameters, using a Simpson rule. 

 



3.3 TIP curves  

The TIP curve of Jenkins and Lambert (1997) documents the three dimensions of 

poverty for each quantile of the income distribution up to the quantile corresponding 

to the poverty line 𝑧:  

𝑇𝐼𝑃(𝑝, 𝑧) = ∫  𝐹−1(𝑝)
0 (1 − 𝑥/𝑧)𝕀(𝑥 ≤ 𝑧)𝑓(𝑥)𝑑𝑥.       (45.23) 

Letting 𝑞 =  𝐹−1(𝑝), we can decompose this equation into:  

𝑇𝐼𝑃(𝑝, 𝑧) = ∫  𝑞0 𝑓(𝑥)𝑑𝑥 − 1
𝑧 ∫  𝑞0 𝑦𝑓(𝑥)𝑑𝑥 = 𝑝 − 1

𝑧
𝐺𝐿(𝑝), for 𝑝 ≤ 𝐹(𝑧),   (45.24) 

where 𝐺𝐿(𝑝)  is the generalized Lorenz curve. The whole expression has an 

analytical form for the lognormal distribution. But this is of little use as it is not 

possible to find the closed expression of 𝐺𝐿(𝑝) when 𝑓(𝑥) is a mixture. So it is 

better to consider directly:  

𝑇𝐼𝑃(𝑝, 𝑧) = ∑  𝐾
𝑘=1 𝜂𝑘 ∫  𝑞0 𝑓Λ(𝑥 ∣ 𝜇𝑘,𝜎𝑘2) − 1

𝑧
∑  𝐾
𝑘=1 𝜂𝑘 ∫  𝑞0 𝑥𝑓Λ(𝑥 ∣ 𝜇𝑘,𝜎𝑘2)𝑑𝑥, (45.25) 

where the quantile 𝑞 has to be calculated separately. This presentation relies on the 

two-equation definition of the Lorenz curve, in use before Gastwirth (1971). Both 

integrals have an analytical solution leading to:  

TIP �𝑝, 𝑧 ∣ 𝜃(𝑗)� = ∑  𝐾
𝑘=1 𝜂𝑘

(𝑗) �Φ�ln 𝑞(𝑗)−𝜇𝑘
(𝑗)

𝜎𝑘
(𝑗) ��

�− 1
𝔷
𝑒𝜇𝑘

(𝑗)+𝜎𝑘
2(𝑗)/2Φ�ln 𝑞(𝑗)−𝜇𝑘

(𝑗)−𝜎𝑘
2(𝑗)

𝜎𝑘
(𝑗) �� .

        (45.26) 

The difficulty is that the left-hand side is a function of 𝑝 while the right-hand side is 

a function of 𝑞. For each draw of 𝜃, we have to solve numerically the equation:  

𝐹�𝑞(𝑗) ∣ 𝜃(𝑗)� = 𝑝,              (45.27) 

for each point of a predefined grid on 𝑝. This is a feasible problem because it is of 

dimension one on a finite interval defined by the range of 𝑥. Brent (1971) algorithm 



is very efficient in this case. Note that Lander et al. (2020) advocate a different use of 

the simulation output. 

The feasibility of the method is illustrated in Fourrier-Nicolaї and Lubrano (2020). 

They analyse the evolution of child poverty in Germany between 2002 and in 2011. 

The period has experienced a dramatic change in family social allowances. Child 

poverty has significantly changed over the period. It increased a lot between 2002 and 

2006 to finally decrease between 2007 and 2011. The change in family social policy 

has managed to cut the regular increase in child poverty that was documented in 

Corak et al. (2008).  

3.4 Pro-poor growth  

The Growth Incidence Curve (GIC) of Ravallion and Chen (2003) can be 

approximated by the difference between the logs of two quantile functions:  

𝑔𝑡(𝑝) = log Q𝑡(p|θ𝑡) − log Q𝑡−1(p|θ𝑡−1).         (45.28) 

Because the quantile function corresponds to the first derivative of the generalized 

Lorenz curve, Fourrier-Nicolaї and Lubrano (2021) proposed two alternative ways for 

finding a parametric formulation for the GIC curve. The first method relies on finding 

the quantile function associated to a mixture of lognormal distributions. This requires 

solving (45.27) as seen above. The second method uses a direct modelling of the 

Lorenz curve. Several parametric forms were proposed in the literature, using one 

(Chotikapanich 1993), two (Kakwani and Podder 1973) or three parameters with 

Villasenor and Arnold (1989) or Kakwani (1980). The latter is built around the Beta 

density with:  

𝐿(𝑝 ∣ 𝛼) = 𝑝 − 𝛼0𝑝𝛼1(1 − 𝑝)𝛼2,           (45.29) 

leading to the quantile function:  

𝑄(𝑝 ∣ 𝛼) = 𝑦� × (1 − 𝛼0𝛼1𝑝𝛼1−1(1 − 𝑝)𝛼2 + 𝛼0𝛼2𝑝𝛼1(1 − 𝑝)𝛼2−1).   (45.30) 

Bayesian inference on the parameters of (45.30) is obtained by considering the linear 

regression: 



log �𝑝𝑖 − 𝐿�𝑖� = log (𝛼0) + 𝛼1log (𝑝𝑖) + 𝛼2log (1 − 𝑝𝑖) + 𝜖𝑖,     (45.31) 

with 𝜖𝑖 ∼ 𝑁(0,𝜎2)  and where 𝐿�𝑖 = 𝐿(𝑝𝑖 = 𝑖/𝑛) = ∑  𝑖
𝑗=1 𝑦[𝑗]/𝑦� , 𝑦[𝑗]  being the 

order statistics. Obtaining random draws from this quantile function requires some 

care as: 

𝑄�𝑝 ∣ 𝛼(𝑗),𝑦� = 𝑦�exp �𝑢(𝑗)� × �1 − exp �𝛼0
(𝑗)�𝛼1

(𝑗)𝑝𝛼1
(𝑗)−1(1 − 𝑝)𝛼2

(𝑗) �

�+exp �𝛼0
(𝑗)�𝛼2

(𝑗)𝑝𝛼1
(𝑗)

(1 − 𝑝)𝛼2
(𝑗)−1� ,𝑢(𝑗) ∼ 𝑁�0,𝜎2(𝑗)�.

  (45.32) 

4 RESTRICTED STOCHASTIC DOMINANCE  

With restricted stochastic dominance, we can compare two poverty situations, 

whatever the social welfare function. By restricted stochastic dominance, we mean 

that two income distributions are compared up to a common poverty line (Davidson 

and Duclos 2000, 2013). Lander et al. (2020) use mixtures of gamma densities to 

model the income distribution in Indonesia. They develop Bayesian tests of stochastic 

dominance and restricted stochastic dominance. They compute posterior probabilities 

for stochastic dominance for the poorest 10% of the population, to assess whether 

their situation has improved over time. Comparing TIP curves is another way for 

testing restricted stochastic dominance at the second order while comparing two GICs 

relates to first order stochastic dominance.  

4.1 TIP dominance  

TIP dominance compares two TIP curves defined for populations A and B.  

Definition 1 Distribution A TIP dominates distribution B for a given poverty line 𝑧 

if TIPA(p, z)  ≤  TIPB(p, z),∀p ∈  [0, F(z)] , with strict inequality holding for at least 

one point p. 

As underlined in Davidson and Duclos (2000), TIP dominance is related to restricted 

second order stochastic dominance. Testing for TIP dominance in a Bayesian 

frameworks leads first to compute for each draw of 𝜃 a vector 𝛿(𝑝|𝜃) of dimension 

𝑆 corresponding to the grid over 𝑝:  



𝛿(𝑝 ∣ 𝜃) = TIP𝐴 (𝑝, 𝑧 ∣ 𝜃𝐴) − 𝑇𝐼𝑃𝐵(𝑝, 𝑧 ∣ 𝜃𝐵).        (45.33) 

The condition δ(x, p|θ)  ≤  0 defines a logical vector of zeros and ones. It is then 

sufficient to check for instance:  

𝑚𝑎𝑥
𝑖
 𝕀[𝛿(𝑝𝑖 ∣ 𝜃) < 0] = 1,             (45.34) 

leading to:  

Pr �max
𝑝
 𝛿(𝑝 ∣∣ 𝑦 ) < 0� = ∫  𝜃 𝕀 �max

p
 𝛿(𝑝 ∣∣ 𝜃 ) < 0� 𝜑( 𝜃 ∣∣ 𝑦 )𝑑𝜃

= 1
𝑚
∑  𝑚
𝑗=1 𝕀 �max

𝑝
 𝛿�𝑝 ∣ 𝜃(𝑗)� < 0�

    (45.35) 

The range of 𝑝 has to be slightly restricted because all TIP curves are zero at 𝑝 = 0. 

Davidson and Duclos (2013) adopted 𝑝 ∈  [0.01,𝐹(𝑧)]. 

Because TIP dominance corresponds to restricted second order stochastic dominance, 

TIP dominance does not imply less poverty incidence. Using (45.12), we have to 

check the additional condition 𝐻�𝑧 ∣ 𝜃𝐴
(𝑗)� < 𝐻�𝑧 ∣ 𝜃𝐵

(𝑗)�  and evaluate the 

proportion of draws when it is verified. 

Finally, when can we say that the situation in 𝐴 is not statistically different from the 

situation in 𝐵? Equality is rejected if, for at least one value of 𝑝𝑠, 𝛿(𝑝𝑠|𝜃) is 

statistically different from zero. This means that we have to compute a credible 

interval for 𝛿(𝑝𝑠|𝜃) and see if zero is included in this interval. If we find a single 𝑝𝑠  

for which zero does not belong to a say 90% credible interval for 𝛿(𝑝𝑠|𝜃), we can 

reject at the 90% level that the two TIP curves are equal. 

4.2 GIC dominance  

Because a GIC represents the difference between two quantiles functions, it 

corresponds to the p-approach to dominance of Davidson and Duclos (2000). We 

have first-order stochastic if 𝑔𝑡(𝑝)  >  0  for all 𝑝 . Growth has been welfare- 

improving in terms of first-order stochastic dominance if 𝑔𝑡(𝑝)  >  0 for all 𝑝. We 



have restricted stochastic dominance if the range of 𝑝. is limited to 𝑝 ∈  [0,𝐹 (𝑧)]. 

For each point 𝑝. of a grid, Fourrier-Nicolaї and Lubrano (2021) evaluate:  

Pr (𝑔𝑡(𝑝) > 0) ≃ 1
𝑚
∑  𝑚
𝑗=1 𝕀�𝑔𝑡�𝑝 ∣ 𝜃(𝑗)� > 0�,        (45.36) 

which allows us to see for which part of the income distribution the situation has been 

improved. The probability of dominance is defined as: 

Pr (𝑔𝑡(𝑝) > 0) ≃ 1
𝑚
∑  𝑚
𝑗=1 𝕀 �𝑚𝑖𝑛𝑝  �𝑔𝑡�𝑝 ∣ 𝜃(𝑗)�� > 0�.      (45.37) 

A further requirement is that growth has been favourable to the poor, leading to the 

vector corresponding to 𝑝 ∈  [0,𝐹 (𝑧)]:  

Pr (𝑔𝑡(𝑝) > 𝛾) ≃ 1
𝑚
∑
𝑚
 𝕀�𝑔𝑡

(𝑗)(𝑝) > 𝛾(𝑗)�,         (45.38) 

where 

𝛾(𝑗) = log ∑  𝑘 𝜂𝑘,2
(𝑗)𝑒𝜇𝑘,2

(𝑗)+𝜎𝑘,2
2(𝑗)

− log ∑  𝑘 𝜂𝑘,1
(𝑗)𝑒𝜇𝑘,1

(𝑗)+𝜎𝑘,1
2(𝑗)

      (45.39) 

is the 𝑗𝑡ℎ draw of the average growth rate between 𝑡 − 1 and 𝑡  when the two 

income distributions are modelled as a mixture of lognormals. 

Fourrier-Nicolaї and Lubrano (2021) analysed the impact of economic growth in the 

UK over the period 1979-1996 under the government of Margaret Thatcher. Using the 

Family Expenditure Survey, they found that growth has been profitable to the very 

top quantiles between 1979-1988. The next period 1992-1996 experienced strong 

fiscal and redistributive corrections leading to a situation which was more favourable 

to the lower quantiles. 

5 POVERTY DYNAMICS  

Hasegawa and Ueda (2007) propose to model individual incomes as a stationary 

process and derive the distribution of Ravallion (1988) decomposition of poverty into 



total, chronic and transitory poverty, using panel data. However, panel data sets are 

seldom available in developing countries where the analysis of poverty should be of 

prime importance. Sadeq and Lubrano (2018) develop a pseudo panel approach to 

analyse the impact of the Wall on poverty entry and poverty persistence in the West 

Bank.  

5.1 Poverty decomposition  

TIP curves are a convenient graphical device to represent the three dimensions of 

poverty, thanks to the decomposability of FGT indices. When a panel data is available, 

a further decomposition is possible with total, transient and chronic poverty, 

following Ravallion (1988). Let 𝑦𝑖𝑡 be income for individual 𝑖 at time 𝑡. Hasegawa 

and Ueda (2007) assume that:  

𝑦𝑖𝑡 = 𝜇𝑖 + 𝑢𝑖𝑡,      𝑖 = 1, … ,𝑛, 𝑡 = 1, … ,𝑇         (45.40) 

where 𝜇𝑖  represents the steady-state or long term income while 𝑢𝑖𝑡 denotes its 

transient component. For FGT poverty indices expressed in a discrete form:  

𝜋(𝑦𝑖𝑡, 𝑧) = ∑  𝑛
𝑖=1 (1 − 𝑦𝑖𝑡/𝑧)𝛼𝕀(𝑦𝑖𝑡 < 𝑧)         (45.41) 

total, chronic and transient poverty are measured by: 

Total poverty  𝜋𝐹(𝑧) = 1
𝑇
∑  𝑡 𝜋(𝑦𝑖𝑡, 𝑧),

 Chronic poverty  𝜋𝐶(𝑧) = 1
𝑛
∑  𝑖 (1 − 𝜇𝑖/𝑧)𝛼𝕀(𝑦𝑖𝑡 < 𝑧)

 Transient poverty 𝜋𝑇(𝑧) = 𝜋𝐹(𝑧) − 𝜋𝐶(𝑧).

,      (45.42) 

To go from a descriptive point of view to an inferential point of view, Hasegawa and 

Ueda (2007) model income by a mixture of 𝑘 lognormal distributions for each 

individual  𝑖 , assuming 𝜇𝑖  constant over time, but adding an error in-variable 

mechanism. They derive the posterior predictive distribution of 𝑦𝑖𝑡, 𝑝(𝑦� ∣ 𝑦) and 

use simulations of 𝑦� to estimate poverty indices with �̂�𝑖 = ∑  𝑡 𝑦�𝑖𝑡/𝑇.  

An alternative possibility would be to consider a panel data model with random 

individual effects. Let us define the vector of observations for an individual 



𝑦𝑖 =  [𝑦𝑖1, . . . ,𝑦𝑖𝑇 ], the basic panel data model with random effects of Chib (1996) is 

written as:  

𝑦𝑖 = 𝜄 𝜇𝑖 + 𝑋𝑖𝛽 + 𝑢𝑖 ,     𝑢𝑖 ∣ 𝜎2 ∼ 𝑁(0,𝜎2𝐼𝑇),
𝜇𝑖 ∼ 𝑁(0,𝜔2),

        (45.43) 

where 𝜄 is a vector of 𝑇 ones. With a common random effect 𝜇𝑖, the 𝑇 incomes of 

individual 𝑖 become correlated with:  

Var(𝑦𝑖 ∣ 𝛽,𝜎2,𝜔2) = 𝜎2𝐼𝑇 + 𝜄 𝜄′𝜔2 = 𝑉,.         (45.44) 

so that: 

𝑦𝑖 ∼ 𝑁(𝑋𝑖𝛽,𝑉)               (45.45) 

Bayesian inference on 𝛽,𝜎2 and 𝜔2 is obtained with a Gibbs sampler corresponding 

to algorithm 2 of Chib and Carlin (1999) with an informative prior on σ2 and ω2 to 

ease convergence. Using the simulation output of 𝛽(𝑗),  𝜎2(𝑗) and 𝜔(𝑗), we can 

simulate 𝑚 random draws for 𝑦𝑖 using:  

𝑦𝑖
(𝑗) ∼ 𝑁�𝑋𝑖𝛽(𝑗),𝜎2(𝑗)𝐼𝑇 + 𝜄 𝜄′𝜔2(𝑗)�.          (45.46) 

We then transform each 𝑛𝑇 vector 𝑦(𝑗)  =  [𝑦𝑖
(𝑗)] together with 𝜇(𝑗) into: 

𝜋𝐹
(𝑗)(𝑧) = 1

𝑛𝑇
∑  𝑖,𝑇 �1 − 𝑦𝑖𝑡

(𝑗)

𝑧
�
𝛼

𝕀 �𝑦𝑖𝑡
(𝑗) < 𝑧� ,

𝜋𝑐
(𝑗)(𝑧) = 1

𝑛
∑  𝑖 �1 − 𝜇𝑖

(𝑗)

𝑧
�
𝛼

𝕀 �𝜇𝑖
(𝑗) < 𝑧� .

        (45.47) 

We have thus 𝑚 posterior draws of the three poverty indices and compute standard 

deviation for each of them.  

5.2 Child and adult poverty in East Germany  

Using the data set of Fourrier-Nicolaї and Lubrano (2020), we analyse how social 

transfers were alleviating child poverty compared to adult poverty in East Germany 

over the period (2002-2006), just before the most important social and redistributive 

reforms introduced by the Hartz plan in 2006. We consider both disposable and 



market incomes (after taxes and transfers including family allowances or before taxes 

and allowances, divided by the new OECD equivalence scale) to build a five year 

balanced panel. We have 500 children and 1 466 adults without children. The poverty 

line is defined as 50% of the median income.  

We adjusted a panel data model on the log of the income-to-need ratio, explained by 

an intercept, the household size and the number of children in the household (except 

for the adult sample). Posterior results (not reported here) show that before taxes and 

transfers, there is much more poverty among adults as if poor adults had decided not 

to have children. Poverty among adults is mostly chronic when it is mainly transitory 

among children. Poverty intensity is also stronger among adults while being mostly 

transient. When taxes and transfers are introduced, total poverty is much reduced, but 

the reduction is more important among adults than among children. With transfers, 

child and adult poverty become mainly transient while chronic poverty intensity is 

reduced to very low levels. We have thus a contrasted impact of social transfers on 

the dynamic of poverty in East Germany for that period. 

5.3 Poverty dynamics using pseudo panels  

Poverty dynamics can be analysed using a bivariate dynamic probit model which 

explains between two periods the transition between two states, poor and non-poor. 

Stayers or chronic poverty is being poor both at 𝑡 −  1 and 𝑡. Poverty entry is not 

being poor at 𝑡 −  1 while entering poverty at 𝑡, transitory poverty is being poor at 

𝑡 −  1 and getting out of poverty at 𝑡. This model requires consecutive observations 

to build up data pairs for dynamic analysis, which are not always available, especially 

in developing countries. The purpose of Sadeq and Lubrano (2018) was to use an 

adapted version of Cappellari and Jenkins (2004) to measure the impact of the Wall 

built on the West Bank after 2002 on poverty dynamics in occupied territories. In two 

repeated cross-sectional waves of 2004 and 2011 from the Palestinian Expenditure 

and Consumption Survey, a variable indicated if a household was impacted or not by 

the Wall. Sadeq and Lubrano (2018) considered a pseudo panel as an incomplete data 

problem. Inside the loop of a Gibbs sampler, they explain the income-to-needs ratio 

(negative for being under poverty) using time invariant data for 2004 and 2011 and 

the grouping techniques of Deaton (1985) and Verbeek and Vella (2005) to generate 



the missing values and recover information on ρ, the correlation parameter between 

the two periods error terms. Then they use both observed and latent variables to 

explain the income-to-needs ratio for 2011, this time conditionally on being poor in 

2004 and being affected or not by the Wall. They have thus two ways of measuring 

poverty dynamics and the final effect of the wall on poverty dynamics is determined 

by the difference between a marginal probability and a conditional probability taking 

into account the effect of the Wall.  

The Wall has a large effect on poverty dynamics. For those who were already poor in 

period 1, the wall increases their probability of staying poor by 58 percentage points. 

For those who were not in poverty, the probability of entering into poverty during the 

second period is increased by 18 percentages points.  

6 CONCLUSION AND FURTHER READING  

The reader might understand that we made a restricted presentation. We assumed 

most of the time that the income distribution was represented by a mixture of 

lognormals. Other mixtures are possible as noted in the text.  

We assumed that individual survey data were available. In many cases only group 

data are available. Groups can correspond to fixed bounds reporting the number of 

households inside each cell (see e.g. the American Community Survey data base). 

Groups can have variable bounds, each group containing the same proportion of 

individuals. This is convenient for reporting income shares as does the World 

Inequality data base. To each case corresponds a specific statistical problem surveyed 

in Eckernkemper and Gribisch (2021). Chotikapanich and Griffiths (2000), Griffiths 

et al. (2005), Chotikapanich and Griffiths (2005), Kakamu (2016), Kakamu and 

Nishino (2019) contributed a lot to this field. 

For many authors, the spatial dimension has to be taken into account for measuring 

poverty. Haughton and Phong (2003) estimate poverty rates in Vietnam provinces, 

considering poverty as a binomial process (poor and non-poor) within clusters 

represented by administrative districts. Wieczorek and Hawala (2011) study spatial 

poverty in the US at the county level. County poverty rates μi  are then explained in a 



logit model in order to predict poverty rates, taking into account county size and 

sampling design. Nawawi et al. (2020) use a Poisson Log-Linear Leroux Conditional 

Autoregressive model with different neighbourhood matrices for explaining 2010 

poverty rates in 66 districts of Kelantan, Malaysia by various socio-economic 

indicators. 
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