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The safety of a passing train depends on different factors, of which one of the most important is the behavior of the foundation. Therefore, the effects of the non-linearity of ballast on the dynamic responses of the railway track are a key research interest. In this paper, a new model of railway sleepers posed on a nonlinear foundation has been developed. By coupling the finite element method (FEM) of the sleeper with an analytical model of the periodically supported beam model, the dynamic equation of the sleeper is developed. On the other hand, by considering a periodic series of moving loads, this equation can be transformed to a forced nonlinear oscillation. Iteration procedures have been built to calculate the periodic solution. This method has demonstrated a good convergence of results by comparison with the analytical solution in the linear case. The influence of the nonlinear foundation has been investigated by two examples: cubic-nonlinear and bi-linear foundations. The parametric studies demonstrate that numerical results converge with a small number of iterations.

Introduction

The stability of the railway track is one of the research interests of railway engineers as it is key to the safety of the passing trains. Consequently, many research projects have been undertaken to analyze the dynamic responses of the railway track subjected to moving loads. Firstly, analytical models have been developed for an infinite beam placed on a continuous foundation. Krylov [START_REF] Kriloff | Uber die erzwungenen schwingungen von gleichformigen elastischen staben[END_REF] and Timoshenko [START_REF] Timoshenko | Erzwungene schwingungen prismatischer stäbe[END_REF] are the pioneering researchers in this domain, in which the dynamic stresses are calculated for simply supported beams under moving loads. By using the same method, Fryba [START_REF] Fryba | Vibration of solids and structures under moving loads[END_REF] studied the transverse vibrations of a beam posed on an elastic foundation, in which the beam responses are calculated by the sum of multiple normal modes. The free vibrations of the beam on an elastic foundation has been solved analytically by Timoshenko et al. [START_REF] Timoshenko | Vibration Problems in Engineering[END_REF]. Analytical and numerical methods have been developed for various foundations such as: Winkler, Pasternak, Vlasov or Reissner [START_REF] Wang | Natural frequencies of Timoshenko beams on pasternak foundations[END_REF][START_REF] Adams | Critical speeds and the response of a tensioned beam on an elastic foundation to repetitive moving loads[END_REF][START_REF] Sun | A closed-form solution of a bernoulli-euler beam on a viscoelastic foundation under harmonic line loads[END_REF][START_REF] Chen | Dynamic characteristics of infinite and finite railways to moving loads[END_REF][START_REF] Mallik | Steady-state response of an elastically supported infinite beam to a moving load[END_REF][START_REF] Firat | Dynamic analysis of beams on viscoelastic foundation[END_REF][START_REF] José | Dynamic behaviour of railway tracks on transitions zones[END_REF][START_REF] Ichikawa | Vibration analysis of the continuous beam subjected to a moving mass[END_REF]. In order to take into account the distribution of discrete supports, Mead [START_REF] Mead | Wave propagation in continuous periodic structures: research contributions from southampton[END_REF][START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF] developed the periodically supported beam model under moving loads for the rail. This model type has been also investigated for elastic foundations [START_REF] Metrikine | Vibration of a periodically supported beam on an elastic half-space[END_REF][START_REF] Vostroukhov | Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track[END_REF][START_REF] Belotserkovskiy | On the oscillation of infinite periodic beams subjected to a moving concentrated force[END_REF][START_REF] Tran | Calculation of the dynamic responses of a railway track on a non-uniform foundation[END_REF]. A fast analytical method to calculate the dynamic responses of railway sleepers has been presented by Tran et al. [START_REF] Tran | Analytical model of the dynamics of railway sleeper[END_REF][START_REF] Tran | A fast analytic method to calculate the dynamic response of railways sleepers[END_REF]. Most recently, in order to study the influence of non homogeneous foundation on the sleeper responses, Tran et al. [START_REF] Tran | Influence of nonhomogeneous foundations on the dynamic responses of railway sleepers[END_REF] developed a semi-analytical model by coupling a numerical model for the sleeper and a periodically supported beam model for the rail.

The two models which are frequently used to describe the nonlinear behaviors of foundation are cubic-nonlinear and bi-linear foundations. The cubic law describes a foundation reaction which has a cubic dependence on displacement. The bi-linear foundation presents a foundation behavior which has two different linear behaviors: one in compression and one in tension. By taking into account the non-linearity of the foundation on the model of the beam placed on a continuous foundation, the solutions have been calculated by using different techniques. Ding et al. [START_REF] Hu Ding | Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[END_REF][START_REF] Hu Ding | Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load[END_REF] solved the problem with the help of the Galerkin discretization and a fourth-order Runge-Kutta method. Abdelghany et al. [START_REF] Abdelghany | Dynamic response of non-uniform beam subjected to moving load and resting on non-linear viscoelastic foundation[END_REF], Kargarnovin et al. [START_REF] Kargarnovin | Response of beams on nonlinear viscoelastic foundations to harmonic moving loads[END_REF] and Ansari et al. [START_REF] Ansari | Frequency analysis of finite beams on nonlinear Kelvin-Voight foundation under moving loads[END_REF] used the same method to calculate the responses of the beam under a harmonic load or to calculate the resonance of the beam. Chen et al. [START_REF] Hong Yan Chen | Convergent term of the Galerkin truncation for dynamic response of sandwich beams on nonlinear foundations[END_REF][START_REF] Hong Yan Chen | The Scheme to determine the convergence term of the Galerkin method for dynamic analysis of sandwich plates on nonlinear foundations[END_REF] studied the convergence of Galerkin truncation for the sandwich beam on a nonlinear foundation and a scheme to determine the convergence of this model has been presented. Recently, Ouzizi et al. [START_REF] Ouzizi | Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed[END_REF] presented a model of the dynamic responses of the beam on a nonlinear frictional viscoelastic foundation with the help of an explicit scheme. The dynamic track responses are computed by using the finite element method [START_REF] Nguyen | Finite element procedures for nonlinear structures in moving coordinates. Part 1: Infinite bar under moving axial loads[END_REF][START_REF] Nguyen | Finite element procedures for nonlinear structures in moving coordinates. part ii: Infinite beam under moving harmonic loads[END_REF][START_REF] Castro Jorge | Finite element dynamics analysis of beams on non-uniform nonlinear viscoelastic foundations under moving loads[END_REF]. A numerical method has been also developed to calculate the solutions of the beam in the case of tensionless foundation [START_REF] Chen | Steady state and stability of a beam on a damped tensionless foundation under a moving load[END_REF][START_REF] Sapountzakis | Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads[END_REF][START_REF] Yang | An explicit periodic nonlinear model for evaluating dynamic response of damaged slab track involving material nonlinearity of damage in high speed railway[END_REF]. The nonlinear responses of beams subjected to moving loads carrying multiple mass-spring-damper attachments has been also studied [START_REF] Samani | Performances of dynamic vibration absorbers for beams subjected to moving loads[END_REF][37][START_REF] Bukhari | Nonlinear vibrations analysis of overhead power lines: a beam with mass-spring-damper-mass systems[END_REF][START_REF] Hoang | Response of a periodically supported beam on a nonlinear foundation subjected to moving loads[END_REF][START_REF] Tran | Calculation of the dynamic responses of rails subjected to moving loads on ballasted railway track[END_REF][START_REF] Tran | Calculation of dynamic responses of a cracked beam on visco-elastic foundation subjected to moving loads, and its application to a railway track model[END_REF]. However, the effect of the non-linearity of the foundation is not easy to take into account in the periodically supported beam model.

In this paper, we present a novel model to calculate the solution of dynamic behavior of a railway sleeper posed on a nonlinear foundation. In Section 2, the dynamic equation of the sleeper is written with the help of a finite element model. When the rails are modeled as a periodically supported beam [START_REF] Hoang | Calculation of force distribution for a periodically supported beam subjected to moving loads[END_REF][START_REF] Hoang | Dynamical response of a timoshenko beams on periodical nonlinear supports subjected to moving forces[END_REF], a relation between the rail displacements and the reaction force in the frequency domain can be obtained and it holds for any foundation behavior. Therefore, the forces applied by the rails on the sleeper can be rewritten in the dynamic equation of the sleepers with the help of the Dirac delta function. By considering that the moving loads are a periodic series, this equation is equivalent to a forced nonlinear oscillator. Then, a numerical method is developed with the help of the harmonic balance method and the iteration procedures for nonlinear oscillators [START_REF] Ali | Introduction to perturbation techniques[END_REF][START_REF] Nayfeh | Nonlinear oscillations[END_REF] in Section 3. The numerical applications are shown in Section 4. In the linear case, the numerical results converge to the analytical solutions [START_REF] Tran | A comparison of beam models for the dynamics of railway sleepers[END_REF]. Thereafter, the dynamic responses of the sleepers are calculated for two types of nonlinear foundation: cubic law and bi-linear foundation. The applications show that the numerical results converge rapidly to the solution of the problem. In addition, parametric studies have been conducted to analyze the influence of nonlinear parameters on the sleeper responses. Finally, conclusions are drawn in Section 5.

Formulations

Let us consider the railway track shown in Fig. 1. In this track, the rails k (with k = [START_REF] Kriloff | Uber die erzwungenen schwingungen von gleichformigen elastischen staben[END_REF][START_REF] Timoshenko | Erzwungene schwingungen prismatischer stäbe[END_REF]) are subjected to moving loads Q (k) j which are characterized by the distance to the first wheel D j (1 ≤ j ≤ K where K is the total number of axles). The mutual distance D j of the moving loads is not restricted to be constant. The rails are periodically supported by the sleepers and each one is separated by a length l. Next, a novel dynamic model of the sleeper is developed by taking into account the non-linearity of the foundation.

Sleeper posed on a foundation

Fig. 2 presents a finite element model of the sleeper posed on a non linear foundation. In this model, we use the beam element in 2D where each node has 3 degrees of freedom (DOFs) which correspond to the 2 displacements (u x , u z ) and 1 rotation (θ y ). The sleeper is subjected to vertical forces at two nodes: R 1 and R 2 which are the two rail positions. If n n is the number of nodes, the number of DOFs is 3n n . We note that the main dynamic response of the system is in the vertical direction. Each node of the sleeper is related with the foundation by a nonlinear system which describes the behavior of the foundation in two parts: linear and nonlinear. The linear term is modelled by a stiffness k f and damping coefficients ζ f . Meanwhile the nonlinear term of the foundation is written in the function f N L (u, u).

y x z l Q (2) j Q (1) j Fig. 1: Ballasted railway track ζrp Q (2) j krp Q (1) j k f ζ f f N L Middle nodes Right nodes Left nodes Node R 2 Node R 1 x z
Fig. 2: Finite element model of the railway sleeper posed on a nonlinear foundation and subjected to the moving loads

The dynamic equation of the sleeper posed on a foundation is obtained by using a finite element method as follows:

M s ü + K s u + F f (u) = F R (t) (1) 
where M s and K s represent respectively the mass and rigidity matrices of the sleeper which are generated with the help of FEM where the notation ˙ denotes the partial derivative with respect to time t. u is a vector of nodal displacements of sleepers and:

u i = u(x i ) = [u x (x i ), u z (x i ), θ z (x i )] T
for the i th node of a sleeper. The vector F R (t) describes a force applied on the sleeper for the two rail positions (see Fig. 2). The vector F f (u) represents the force induced by the foundation on the sleeper and we suppose that this force follows only the vertical direction. For this reason, F f (u) can be calculated as follows:

F f (u) = k f I uz u + ζ f I uz u + I uz f N L (u, u) (2) 
The matrix I uz is calculated as follows:

I uz = e uz ⊗ e uz
where the symbol ⊗ denotes the tensor product. The vector e uz which has 3n n components is defined as follows:

e uz = 0 1 0 0 1 0 • • • 0 1 0 T 2.

Rail pad

A rail pad which is located between the rails and the sleeper, can be modeled as a spring-damper system with stiffness k rp and damping coefficient ζ rp . The reaction force of the sleeper to the rail k is expressed as follows:

R k (t) = -ζ rp ẇ(k) r (t) -uR kz (t) -k rp w (k) r (t) -u R kz (t) (3) 
where w

(k) r (t) and u R kz (t) are respectively the rail and sleeper vertical displacement at the contact positions between the rail k and sleeper in time domain. So that, we can deduce the expression of the reaction force applied vertically on the beam at two rail positions:

F R (t) = -R 1 (t)e R1 -R 2 (t)e R2 (4) 
The vectors e R1 , e R2 are two column vectors which each have 3n n elements. The two vectors are zero everywhere, except at the positions which correspond to the vertical displacement of the two nodes R 1 and R 2 where they have the value 1. Moreover, by using the Fourier transform, Eq. ( 3) can be rewritten in the frequency domain:

Rk (ω) = -k p ŵ(k) r (ω) -ûR kz (ω) (5) 
where k p = k rp + iωζ rp is the dynamic stiffness of the rail pad, ω is the angular velocity and i 2 = -1. ŵ(k) r and ûR kz are respectively the rail k and sleeper vertical displacements at the crossing point in the frequency domain. By inserting Eq. ( 23) into Eq. ( 5) (see B), we obtain the following results:

       ŵ(k) r (ω) = k p ûR kz (ω) -Q k k p + K e Rk (ω) = k p k p + K e [K e ûR kz (ω) + Q k ] (6) 

Dynamic equation of the railway sleeper

By substituting Eqs. ( 2) and ( 4) into Eq. ( 1), the dynamic equation of the sleeper under a moving load and resting on the nonlinear foundation can be written as follows:

(7) Mü + C u + Ku + f N L (u, u) = k rp w (1) r (t) + ζ rp ẇ(1) r (t) e R1 + k rp w (2) r (t) + ζ rp ẇ(2) r (t) e R2
where w

r (t) denote respectively the displacements of the rails 1 and 2 at the two contact points with the sleeper. M, C, K are the mass, damping and rigidity matrices, which represent the linear part of the model. Beside, the term f N L (u, u) is a vector that describes the non-linear behavior of the model. These matrices are calculated as follows:

     K = K s + k f I uz + k rp I R1 + k rp I R2 C = ζ f I uz + ζ rp I R1 + ζ rp I R2 M = M s
where matrix I R1 is the null matrix with size 3n n ×3n n , except the component which corresponds to the position (R 1 , R 1 ) get the value 1, same for matrix I R2 . In other word, the two matrices are calculated by:

I R1 = e R1 ⊗ e R1 I R2 = e R2 ⊗ e R2
The right side of Eq. ( 7) depends on the rail displacement. By substituting Eq. ( 6) into Eq. ( 7), the dynamic equation of the railway sleeper can be rewritten as a function of the sleeper displacement as follows (see A): ( 8)

Mü + C u + Ku + f N L (u, u) = I R   1 2π +∞ -∞ k 2 p û(ω) k p + K e e iωt dω   -   1 2π +∞ -∞ k p Q 1 (ω) k p + K e e iωt dω   e R1 -   1 2π +∞ -∞ k p Q 2 (ω) k p + K e e iωt dω   e R2
where I R = I R1 + I R2 . This equation describes the dynamic responses of the railway sleeper posed on the nonlinear foundation and it is similar to that of a nonlinear oscillator. The right side of the equation represents the interaction between the rails and the sleeper at the two rail positions. In next step, in order to simplify these terms, we consider only periodic solutions when the moving forces are a periodic series.

Periodic series of moving loads

We consider that the train contains many identical wagons as shown in Fig. 3). The distances D j of each wheel are characterized by: Lw Hw Dw Dw v Fig. 3: Diagram of the periodic series of moving loads

D j =          jH w
for wheel 1 of wagon jH w + D w for wheel 2 of wagon jH w + D w + L w for wheel 3 of wagon jH w + 2D w + L w for wheel 4 of wagon [START_REF] Mallik | Steady-state response of an elastically supported infinite beam to a moving load[END_REF] where D w is the distance of the bogie, H w is the length of the wagon and L w is the distance between wheels 2 and 3 of a wagon (see Fig. 3). This series of moving loads may be used to represent the series of charges for a railway track. In addition, we consider that the loads

Q (k) j
of each wheel j on each rail k are equal:

Q (k) j = Q (10)
By considering infinite periodic series (j ∈ Z), we will use the periodicity of this series to reduce the terms on the right side of Eq. ( 8) and we obtain the following result (see C):

Mü + C u + Ku + f N L (u, u) = I R   +∞ j=-∞ Φ j P j e iωj t   -   +∞ j=-∞ F (1) j e iωj t   e R1 -   +∞ j=-∞ F (2) j e iωj t   e R2 (11) 
In the previous equation, we supposed that the solution of the nonlinear problem can admit the same frequencies as the excitation force and the periodical solution of u(t) which can be represented as shown in the Eq. ( 30) (see C). F

(1) j and F

(2) j

represent the two forces applied on the two rails which are normally different in general.

Solution of the problem

In the previous section, the dynamic equation of a railway sleeper has been developed as shown in Eq. [START_REF] José | Dynamic behaviour of railway tracks on transitions zones[END_REF]. We remark that the right side of this equation is the sum of several infinite series. In this section, we present a method to solve this equation with the help of the harmonic balance method and the iterative procedure [START_REF] Mickens | A generalization of the method of harmonic balance[END_REF][START_REF] Mickens | A generalized iteration procedure for calculating approximations to periodic solutions of truly nonlinear oscillators[END_REF][START_REF] Hoang | Frequency dependent iteration method for forced nonlinear oscillators[END_REF] for nonlinear oscillators to develop a numerical method for the dynamic equation of sleepers. Firstly, by using the Fourier development of Eq. ( 11), we obtain the following result:

1 T T /2 -T /2 [Mü + C u + Ku + f N L (u, u)] e -iωj t dt = I R Φ j P j -F (1) j e R1 + F (2) j e R2 (12) 
By inserting Eq. ( 30) into the last result, this equation can be reduced as follows:

(13) -D j Φ j + 1 T T /2 -T /2 f N L (u, u)e -iωj t dt = I R Φ j P j -F (1) 
j e R1 + F (2) 
j e R2
where D j is the dynamic stiffness matrix of the model which is calculated by

D j = ω 2 j M -iω j C -K and:              u(t) = ∞ j=-∞ iω j Φ j e iωj t ü(t) = ∞ j=-∞ -ω 2 j Φ j e iωj t
We remark that Eq. ( 13) is the harmonic balance form of Eq. ( 12). The set of this equation for all j ∈ Z generates a system of equations with regard to Φ j which are to be determined. The railway sleeper is modeled by the finite element method and we note that the index L , M , R , R1 and R2 are respectively the degrees of freedom at the left, middle, right of the sleeper and positions of the forces 1 and 2 (see Fig. 2). In the case of linearity of the foundation, which means that f N L (u, u) = 0, Eq. ( 13) can be explained as follows:

(14)       D j LL D j LR 2 D j LM D j LR 1 D j LR D j R 2 L Dj R 2 R 2 D j R 2 M D j R 2 R 1 D j R 2 R D j M L D j M R 2 D j M M D j M R 1 D j M R D j R 1 L D j R 1 R 2 D j R 1 M Dj R 1 R 1 D j R 1 R D j RL D j RR 2 D j RM D j RR 1 D j RR             Φ L j L Φ L j R 2 Φ L j M Φ L j R 1 Φ L j R       =        0 F (2) j 0 F (1) j 0       
where Φ L j is the solution in the case of a linear foundation and:

Dj R 1 R 1 = D j R 1 R 1 + P j Dj R 2 R 2 = D j R 2 R 2 + P j
The solution of Eq. ( 14) can be calculated easily for all j ∈ Z as follows:

(15)

      Φ L j L Φ L j R 2 Φ L j M Φ L j R 1 Φ L j R       =       D j LL D j LR 2 D j LM D j LR 1 D j LR D j R 2 L Dj R 2 R 2 D j R 2 M D j R 2 R 1 D j R 2 R D j M L D j M R 2 D j M M D j M R 1 D j M R D j R 1 L D j R 1 R 2 D j R 1 M Dj R 1 R 1 D j R 1 R D j RL D j RR 2 D j RM D j RR 1 D j RR       -1        0 F (2) j 0 F (1) j 0       
Here now, we denote the right term of Eq. ( 14) as the vectors F j . For the non-linear foundation, the term f N L (u, u) appears and we will use an iteration procedure to solve this problem. Eq. ( 13) can be rewritten as follows:

D j Φ j = F j + 1 T T /2 -T /2 f N L (u, u)e -iωj t dt (16) 
The iteration procedure considers the n first harmonics of the periodic solution, thus, the nodal displacement of sleeper can be determined as:

u nm (t) = n j=-n Φ m j e iωj t (∀m ≥ 1) (17) 
By taking Φ 1 j = 0 ∀j, we built a series of vector {Φ m j } such that Φ m j → Φ j when m, n → ∞. The index m is understood as the number of the iteration procedures, which can be defined as follows:

D j Φ m+1 j = F j + Q m j (18)
where Q j represents a vector of non-linear terms which is calculated by:

Q j = 1 T T /2 -T /2 f N L (u, u)e -iωj t dt
The series of vectors {Φ m j } can be determined from Eq. ( 18) as follows:

Φ m+1 j = D -1 j F j + Q m j (19) 
The last equation defines recurrent sequences of the vectors {Φ j } with regard to m. In the case of convergence of these sequences for all j ∈ Z when m, n → ∞, Φ m j and Φ m+1 j are replaced by their limit, which we can find once again with Eq. ( 13). It means that these sequences converge to the solution of this equation. Consequently, the approximation of the periodic solution from Eq. ( 17) is found by using the sequence of vectors {Φ j } when m is large enough. In the next section, these sequences will be used to compute the dynamic responses of the railway sleeper.

Numerical applications

A numerical model of the sleeper has been created with the help of ABAQUS software by considering a uniform section beam with the cross-section 0.1927 m× 0.2841 m. The beam length is 2L = 2.41m. The track gauge is 2a = 1.435m. The mesh of the model is generated with 76 nodes and 75 elements. The element type is 2 node-linear beam element (B21) where each node has 3 DOFs (2 displacements and 1 rotation). This element type corresponds to the Timoshenko beam model. We remark that Tran et al. [START_REF] Tran | A comparison of beam models for the dynamics of railway sleepers[END_REF] demonstrated analytically the small difference in sleeper responses (3%) by using the two beam models for the railway sleeper. The material properties of rail pad, sleeper, foundation and parameters of periodic train loads are given in Tab. 1. These parameters will be used for the numerical examples.

Linear foundation

An analytical model of the railway sleeper posed on a Kelvin-Voigt foundation has been developed by Tran et al. [START_REF] Tran | A comparison of beam models for the dynamics of railway sleepers[END_REF]. In this research, the sleeper is modeled with the help of the Timoshenko beam model and its responses are calculated by using the Green's function. When the beam is modeled by FEM, the solutions are given by Eq. [START_REF] Metrikine | Vibration of a periodically supported beam on an elastic half-space[END_REF].

A comparison of sleeper responses of the 2 models is shown in Fig. 4. In this figure, we present a sleeper displacement and sleeper strain at two positions (rail seat and center) of the sleeper in one period of the moving loads, which corresponds to the time where the train moves a distance of a wagon H w . In this example, the displacement at the rail seat is larger than the one at the [START_REF] Tran | A fast analytic method to calculate the dynamic response of railways sleepers[END_REF] middle of the sleeper as demonstrated in Fig. 4a. Besides, Fig. 4b shows that the sleeper is in compression at the rail seat (strain negative), while it is in traction at the center (strain positive). The reference time t = 0 corresponds to the moment when the first wheel passes over the sleeper. In this figure, we can conclude that the two models give the same results, which confirms the validity of the FEM model. Alternatively, by substituting f N L (u, u) = 0 into Eq. ( 18), the non-linear term is avoided: Q m j = 0. The solutions of the problem can be calculated by iteration procedures as follows:

Φ m+1 j = D -1 F j
If the convergence of {Φ j } is satisfied, the iteration procedure converges to the analytical result. Fig. 5 shows the comparison of the sleeper displacement and sleeper strain when the moving load passes the sleeper at the reference time (t = 0). The calculations have been computed with the number of harmonics n = 25. The numerical results agree well with the analytical solutions (blue In this figure, we show the numerical results calculated after 3 iterations: m = 1, 2, 5. We see that, in the case of a linear foundation, the convergence of solutions is obtained after 2 iterations.

Examples of nonlinear foundations

Cubic-nonlinear foundation

In this example, we consider that the nonlinear part of the foundation obeys a cubic law which can be written as follows:

f N Li (u i , ui ) = ε c k c   0 -(u z (x i )) 3 0  
The values ε c = 1 and k c = 440 × 10 7 MNm -3 . Other track parameters are chosen in Tabs. 1 and 2. The numerical results are calculated with a number of harmonics n = 50 and n 0 = 0. As the sleeper responses are the same when the two bogies pass, the numerical results which are shown in this example correspond to a passage of one bogie. Fig. 6 presents the results for different numbers of iterations m. We note that when m ≥ 4, the responses are almost unchanged and the convergence of the iteration procedures is satisfied. Fig. 7 shows the effect of the nonlinear parameter ε c on the sleeper displacement. We have investigated several different values of ε c . The foundation is linear when ε c = 0. The foundation becomes stiffer when this parameter is bigger, thus the amplitude of displacement decreases. This phenomenon is well demonstrated in this figure. 

Bi-linear foundation

Several researches demonstrated that the ballast has different linear behaviors in compression and tension. We consider that the constitutive law of the foundation can be described by a stiffness in compression k + f and in tension k - f . In addition, the damping coefficient of the foundation (ζ f ) is considered as unchanged in the two cases. Due to the separation of the linear and nonlinear parts in the model, the nonlinear term can be rewritten as follows:

f N L (u, u) =      k + f -k f u p if u p < 0 k - f -k f u p if u p ≥ 0
where u p presents a component p of the vector displacement u with (p ∈ [1, 3n n ]). In this example, the sleeper displacements are calculated with the two stiffness of foundation: k + f = 440 MNm -1 and k - f = 352 MNm -1 . Fig. 8 shows the numerical results computed by different number of iterations while the number of harmonics is n = 25. The iteration procedures converges when the number is bigger than 8. Fig. 8b shows that the deformed shape of the sleeper at the reference time is almost unchanged when m ≥ 8. Next, the influence of the number of harmonics on the sleeper responses is shown in Fig. 9. When n ≥ 8, we find that the solution has converged. Consequently, this study demonstrates that the lower harmonics are more important than the higher. Put differently, the higher order harmonics can be neglected in this case. Finally, the effect of the nonlinear parameter r = k - f /k + f on the sleeper displacement is shown in Fig. 10. This ratio is calculated by changing the stiffness k - f while maintaining k + f as constant. For each r value, the track responses have been calculated with the same numbers of iterations, but the convergence of solutions is always satisfied. The deformed shape is obtained at the reference time: t = 0, when the first wheel moves over the sleeper. This parameter indicates a foundation with equal stiffness in compression and tension when r = 1, and a foundation that cannot support any tension when r = 0. We see that the sleeper displacements are greater when the foundation has a smaller tension stiffness. Here, we study the influence of the nonlinear parameter on the sleeper strain. In Fig. 11, we plot the sleeper strain at the rail seat in function of the sleeper at and11b). When the nonlinear term of the foundation obeys a cubic law, the sleeper strain at the center is more important than the ones at the rail seat. In the bi-linear case, the relationship between the sleeper strain at the two positions which are shown in Fig. 11 presents clearly two linear behaviors of the foundations.

Conclusions

In this paper, the dynamics response of a railway track posed on a nonlinear foundation has been studied by a semi-analytical model. The iteration method has been developed which permits to obtain fast results. The convergence of the method is also studied with numerical examples (linear and non-linear). Thus, the dynamic responses of the nonlinear track can be calculated quickly.

In addition, this model can be applicable for different nonlinear foundations.

The numerical examples shows that the ratio between the strain at rail seats and center of the sleeper depends on the foundation behavior. This result is significant and can be used to study the foundation in the future work.

The right term of the last equation depends on the rail displacements. It can be rewritten as a function of the sleeper displacement by substituting Eq. ( 6) into Eq. ( 20) as follows:

1 2π +∞ -∞ kp ŵr(ω)e iωt dω = 1 2π +∞ -∞ k 2 p ûR kz (ω) kp + Ke e iωt dω - 1 2π +∞ -∞ kpQe kp + Ke e iωt dω
By combining the previous result and Eq. ( 7), we obtain the following result:

(21)

Mü + C u + Ku + f N L (u, u) =   1 2π +∞ -∞ k 2 p ûR 1z (ω) kp + Ke e iωt dω   e R 1 -   1 2π +∞ -∞ kpQ 1 (ω) kp + Ke e iωt dω   e R 1 +   1 2π +∞ -∞ k 2 p ûR 2z (ω) kp + Ke e iωt dω   e R 2 -   1 2π +∞ -∞ kpQ 2 (ω) kp + Ke e iωt dω   e R 2
where Q 1 (ω) and Q 2 (ω) are the equivalent train loads at the rail 1 and rail 2 respectively (see Appendix B). ûR 1z and ûR 2z are respectively the two displacement of the sleeper at the crossing points with the two rails in the frequency domain. By developing the first and the third terms on the right side of Eq. ( 8), it can be rewritten as follows:

                   1 2π +∞ -∞ k 2 p ûR 1z (ω) kp + Ke e iωt dω   e R 1 = I R 1   1 2π +∞ -∞ k 2 p û(ω) kp + Ke e iωt dω     1 2π +∞ -∞ k 2 p ûR 2z (ω) kp + Ke e iωt dω   e R 2 = I R 2   1 2π +∞ -∞ k 2 p û(ω) kp + Ke e iωt dω  
Finally, by inserting the last result in Eq. ( 21), we have:

Mü + C u + Ku + f N L (u, u) = I R   1 2π +∞ -∞ k 2 p û(ω) kp + Ke e iωt dω   -   1 2π +∞ -∞ kpQ 1 (ω) kp + Ke e iωt dω   e R 1 -   1 2π +∞ -∞ kpQ 2 (ω) kp + Ke e iωt dω   e R 2 (22) 
B Periodically supported beam in steady-state 

(k) j Q (k) 1 l Rn v D j
-∞ +∞ Fig. 12: Periodically supported beam model

In the frequency domain, Hoang et al. [START_REF] Hoang | Calculation of force distribution for a periodically supported beam subjected to moving loads[END_REF][START_REF] Hoang | Dynamical response of a timoshenko beams on periodical nonlinear supports subjected to moving forces[END_REF] have demonstrated a relation between the reaction force Rk (ω) and the displacement of the rail ŵr(0, ω) in the frequency domain as follows:

Rk (ω) = Ke ŵr(0, ω) + Q k ( 23 
)
where: Ke and Q k are the equivalent stiffness and equivalent loads of the system. The two functions are calculated by the parameters of the rail and the train loads as follows:

               Ke(ω) = 4λ 3 r ErIr sin lλr cos lλr -cos ωl v - sinh lλr cosh lλr -cos ωl v -1 Q k (ω) = Ke(ω) vErIr ω v 4 -λ 4 r K j=1 Q (k) j e -iω D j v (24) 
where: λr = 4 ρrSrω 2 ErIr . Er, Ir, ρr and Sr are respectively the Young's modulus of rail, the second moment of area of the rail, the density of rail and cross-sectional area of rail. The expressions show that Eq. ( 23) is applicable for any foundation behavior. In this paper, the rail parameters are given in Tab. 

C Calculation of equivalent load

By substituting Eq. ( 9) into Eq. ( 24) and together with the assumption [START_REF] Firat | Dynamic analysis of beams on viscoelastic foundation[END_REF], a new expression of the equivalent charge Q k (ω) can be expressed as follows: 

Q k =
The parameters of Eq. ( 25) are explained in B. Moreover, a property of the Dirac comb [START_REF] Bracewell | The Fourier transform and its applications[END_REF] gives the following result:

∞ j=-∞ e -iω Hw v j = 2π v Hw ∞ j=-∞ δ ω + 2πv Hw j (26) 
By introducing this property into Eq. ( 25), the equivalent loads can be expressed as follows: F j e iω j t (28

)
where F j is calculated by: The last equation describes a forced oscillation with the exciting force F j e iω j t with frequency f 0 = v/Hw. We remark that ω j = 2πf j = 2πjf 0 . We suppose that the solution of the nonlinear problem can admit the same frequencies as the excitation force. Therefore, with this assumption, there exists a periodic solution of u(t) which can be represented as follows:

F j = Q ErIrHw   1 + e -iω Dw
u(t) = ∞ j=-∞ Φ j e iω j t (30) 
Moreover, by performing the Fourier transform, Eq. ( 30) can be explained in the frequency domain as follows:

û(ω) = 2π ∞ j=-∞ Φ j δ(ω -ω j ) (31) 
So that, we can deduce the following result:

1 2π +∞ -∞ k 2 p û kp + Ke e iωt dω = ∞ j=-∞ Φ j P j e iω j t (32) 
where P j is calculated by:

P j = k 2 p kp + Ke ω=ω j (33) 
When ω j = 0, we have particularly the values: P 0 = krp and F (k) 0 = 2Q (k) Lw Hw . Finally, by combining Eqs. ( 8), ( 28) and [START_REF] Castro Jorge | Finite element dynamics analysis of beams on non-uniform nonlinear viscoelastic foundations under moving loads[END_REF], the dynamic equation of the sleeper can be written by: 
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 4 Fig. 4: Comparison of the analytical (continuous line) and numerical models (circle)
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 5 Fig. 5: Comparison of dynamic responses of sleeper obtained by analytical solution and iteration procedures
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 67 Fig. 6: Numerical results of cubic-nonlinear foundation computed by different number of iterations
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 8 Fig. 8: Numerical results of bi-linear foundation computed by different number of iterations
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 9 Fig. 9: Numerical results of bi-linear foundation computed by different number of harmonics
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 10423 Fig. 10: Effect of the nonlinear parameter of the bi-linear foundation on the sleeper displacements
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 11 Fig. 11: Influence of the nonlinear parameters on the sleeper strain

Fig. 12

 12 Fig.12presents a periodically supported beam model. In this model, each rail k of the track is modeled by an infinite beam posed on periodic supports. The sleeper spacing is l. The train loads are considered by the concentrated loads Q (k) j . Each load is characterized by its distance D j to the first axle and the train speed v.

Q

  

QKe vErIr 1 +

 1 e -iω Dw v + e -iω Dw +Lw v

v

  + e -iω Dw +Lw v + e -iω 2Dw +Lw v

( 34 )

 34 Mü + C u + Ku + f N L (u, u) = I R

Table 1 :

 1 Materials properties of the rail pad, sleeper and foundation

	Content	Notation	Value	Unit
	Young's modulus of the sleeper	Es	48	GPa
	Shear modulus of the sleeper	Gs	20	GPa
	Shear coefficient of the sleeper	κs	0.845	
	Second moment of the sleeper	Is	1.694×10 -4	m 4
	Sleeper density	ρs	2658	kgm -3
	Stiffness of rail pad	krp	192	MNm -1
	Damping coefficient of rail pad	ζrp	1.96	MNsm -1
	Stiffness of foundation	k f	440	MNm -1
	Damping coefficient of foundation	ζ f	58.8	kNsm -1
	Wagon length	Hw	20	m
	Distance of the wagon bogie wheels Dw	1.8	m
	Distance of wagon inner wheels	Lw	8.5	m

  2. 

	Content	Notation	Value	Unit
	Young's modulus of the rail	Er	210	GPa
	Second moment of area of the rail	Ir	3×10 -5	m 4
	Rail density	ρr	7850	kgm -3
	Rail cross-sectional area	Sr	7.69 × 10 -3	m 2
	Sleeper spacing	l	0.6	m
	Moving force rail 1	Q 1	80	kN
	Moving force rail 2	Q 2	80	kN
	Train speed	v	50	ms -1

Table 2 :

 2 Parameters of the periodically supported beam model[START_REF] Hoang | Calculation of force distribution for a periodically supported beam subjected to moving loads[END_REF] 
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A Mathematical transformation

By performing the Fourier transform, and then the inverse Fourier transform of the right term of the Eq. ( 7), we can obtain the following result:

kp ŵr(ω)e iωt dω [START_REF] Tran | A fast analytic method to calculate the dynamic response of railways sleepers[END_REF]