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Abstract The safety of a passing train depends on different factors, of which
one of the most important is the behavior of the foundation. Therefore, the
effects of the non-linearity of ballast on the dynamic responses of the rail-
way track are a key research interest. In this paper, a new model of railway
sleepers posed on a nonlinear foundation has been developed. By coupling the
finite element method (FEM) of the sleeper with an analytical model of the
periodically supported beam model, the dynamic equation of the sleeper is de-
veloped. On the other hand, by considering a periodic series of moving loads,
this equation can be transformed to a forced nonlinear oscillation. Iteration
procedures have been built to calculate the periodic solution. This method has
demonstrated a good convergence of results by comparison with the analytical
solution in the linear case. The influence of the nonlinear foundation has been
investigated by two examples: cubic-nonlinear and bi-linear foundations. The
parametric studies demonstrate that numerical results converge with a small
number of iterations.
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1 Introduction

The stability of the railway track is one of the research interests of railway
engineers as it is key to the safety of the passing trains. Consequently, many
research projects have been undertaken to analyze the dynamic responses of
the railway track subjected to moving loads. Firstly, analytical models have
been developed for an infinite beam placed on a continuous foundation. Krylov
[1] and Timoshenko [2] are the pioneering researchers in this domain, in which
the dynamic stresses are calculated for simply supported beams under moving
loads. By using the same method, Fryba [3] studied the transverse vibrations
of a beam posed on an elastic foundation, in which the beam responses are
calculated by the sum of multiple normal modes. The free vibrations of the
beam on an elastic foundation has been solved analytically by Timoshenko
et al. [4]. Analytical and numerical methods have been developed for various
foundations such as: Winkler, Pasternak, Vlasov or Reissner [5–12]. In order to
take into account the distribution of discrete supports, Mead [13,14] developed
the periodically supported beam model under moving loads for the rail. This
model type has been also investigated for elastic foundations [15–18]. A fast
analytical method to calculate the dynamic responses of railway sleepers has
been presented by Tran et al. [19, 20]. Most recently, in order to study the
influence of non homogeneous foundation on the sleeper responses, Tran et
al. [21] developed a semi-analytical model by coupling a numerical model for
the sleeper and a periodically supported beam model for the rail.

The two models which are frequently used to describe the nonlinear be-
haviors of foundation are cubic-nonlinear and bi-linear foundations. The cubic
law describes a foundation reaction which has a cubic dependence on displace-
ment. The bi-linear foundation presents a foundation behavior which has two
different linear behaviors: one in compression and one in tension. By taking
into account the non-linearity of the foundation on the model of the beam
placed on a continuous foundation, the solutions have been calculated by us-
ing different techniques. Ding et al. [22,23] solved the problem with the help of
the Galerkin discretization and a fourth-order Runge-Kutta method. Abdel-
ghany et al. [24], Kargarnovin et al. [25] and Ansari et al. [26] used the same
method to calculate the responses of the beam under a harmonic load or to
calculate the resonance of the beam. Chen et al. [27, 28] studied the conver-
gence of Galerkin truncation for the sandwich beam on a nonlinear foundation
and a scheme to determine the convergence of this model has been presented.
Recently, Ouzizi et al. [29] presented a model of the dynamic responses of the
beam on a nonlinear frictional viscoelastic foundation with the help of an ex-
plicit scheme. The dynamic track responses are computed by using the finite
element method [30–32]. A numerical method has been also developed to cal-
culate the solutions of the beam in the case of tensionless foundation [33–35].
The nonlinear responses of beams subjected to moving loads carrying multiple
mass-spring-damper attachments has been also studied [36–41]. However, the
effect of the non-linearity of the foundation is not easy to take into account in
the periodically supported beam model.
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In this paper, we present a novel model to calculate the solution of dynamic
behavior of a railway sleeper posed on a nonlinear foundation. In Section 2,
the dynamic equation of the sleeper is written with the help of a finite element
model. When the rails are modeled as a periodically supported beam [42,43], a
relation between the rail displacements and the reaction force in the frequency
domain can be obtained and it holds for any foundation behavior. Therefore,
the forces applied by the rails on the sleeper can be rewritten in the dynamic
equation of the sleepers with the help of the Dirac delta function. By consid-
ering that the moving loads are a periodic series, this equation is equivalent to
a forced nonlinear oscillator. Then, a numerical method is developed with the
help of the harmonic balance method and the iteration procedures for nonlin-
ear oscillators [44, 45] in Section 3. The numerical applications are shown in
Section 4. In the linear case, the numerical results converge to the analytical
solutions [46]. Thereafter, the dynamic responses of the sleepers are calculated
for two types of nonlinear foundation: cubic law and bi-linear foundation. The
applications show that the numerical results converge rapidly to the solution
of the problem. In addition, parametric studies have been conducted to an-
alyze the influence of nonlinear parameters on the sleeper responses. Finally,
conclusions are drawn in Section 5.

2 Formulations

Let us consider the railway track shown in Fig. 1. In this track, the rails k

(with k = [1, 2]) are subjected to moving loads Q
(k)
j which are characterized

by the distance to the first wheel Dj (1 ≤ j ≤ K where K is the total number
of axles). The mutual distance Dj of the moving loads is not restricted to
be constant. The rails are periodically supported by the sleepers and each
one is separated by a length l. Next, a novel dynamic model of the sleeper is
developed by taking into account the non-linearity of the foundation.

2.1 Sleeper posed on a foundation

Fig. 2 presents a finite element model of the sleeper posed on a non linear
foundation. In this model, we use the beam element in 2D where each node
has 3 degrees of freedom (DOFs) which correspond to the 2 displacements
(ux, uz) and 1 rotation (θy). The sleeper is subjected to vertical forces at two
nodes: R1 and R2 which are the two rail positions. If nn is the number of
nodes, the number of DOFs is 3nn. We note that the main dynamic response
of the system is in the vertical direction. Each node of the sleeper is related
with the foundation by a nonlinear system which describes the behavior of the
foundation in two parts: linear and nonlinear. The linear term is modelled by
a stiffness kf and damping coefficients ζf . Meanwhile the nonlinear term of
the foundation is written in the function fNL(u, u̇).
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Fig. 1: Ballasted railway track

ζrp

Q
(2)
j

krp

Q
(1)
j

kf
ζf
fNL

Middle
nodes

Right
nodes

Left
nodes

Node R2 Node R1

x

z

Fig. 2: Finite element model of the railway sleeper posed on a nonlinear foun-
dation and subjected to the moving loads

The dynamic equation of the sleeper posed on a foundation is obtained by
using a finite element method as follows:

Msü + Ksu + Ff (u) = FR(t) (1)



Dynamic responses of railway sleepers on a nonlinear foundation 5

where Ms and Ks represent respectively the mass and rigidity matrices of the
sleeper which are generated with the help of FEM where the notation

(
�̇
)

denotes the partial derivative with respect to time t. u is a vector of nodal
displacements of sleepers and:

ui = u(xi) = [ux(xi), uz(xi), θz(xi)]
T

for the ith node of a sleeper. The vector FR(t) describes a force applied on the
sleeper for the two rail positions (see Fig. 2). The vector Ff (u) represents the
force induced by the foundation on the sleeper and we suppose that this force
follows only the vertical direction. For this reason, Ff (u) can be calculated as
follows:

Ff (u) = kfIuz
u + ζfIuz

u̇ + Iuz
fNL(u, u̇) (2)

The matrix Iuz
is calculated as follows:

Iuz
= euz

⊗ euz

where the symbol ⊗ denotes the tensor product. The vector euz
which has

3nn components is defined as follows:

euz
=
[
0 1 0 0 1 0 · · · 0 1 0

]T
2.2 Rail pad

A rail pad which is located between the rails and the sleeper, can be modeled
as a spring-damper system with stiffness krp and damping coefficient ζrp. The
reaction force of the sleeper to the rail k is expressed as follows:

Rk(t) = −ζrp
[
ẇ(k)

r (t)− u̇Rkz
(t)
]
− krp

[
w(k)

r (t)− uRkz
(t)
]

(3)

where w
(k)
r (t) and uRkz

(t) are respectively the rail and sleeper vertical displace-
ment at the contact positions between the rail k and sleeper in time domain.
So that, we can deduce the expression of the reaction force applied vertically
on the beam at two rail positions:

FR(t) = −R1(t)eR1
−R2(t)eR2

(4)

The vectors eR1
, eR2

are two column vectors which each have 3nn elements.
The two vectors are zero everywhere, except at the positions which correspond
to the vertical displacement of the two nodes R1 and R2 where they have the
value 1.

Moreover, by using the Fourier transform, Eq. (3) can be rewritten in the
frequency domain:

R̂k(ω) = −kp
[
ŵ(k)

r (ω)− ûRkz
(ω)
]

(5)



6 Tran et al.

where kp = krp + iωζrp is the dynamic stiffness of the rail pad, ω is the

angular velocity and i2 = −1. ŵ
(k)
r and ûRkz

are respectively the rail k and
sleeper vertical displacements at the crossing point in the frequency domain.
By inserting Eq. (23) into Eq. (5) (see B), we obtain the following results:


ŵ(k)

r (ω) =
kpûRkz

(ω)−Qk

kp +Ke

R̂k(ω) =
kp

kp +Ke
[KeûRkz

(ω) +Qk]

(6)

2.3 Dynamic equation of the railway sleeper

By substituting Eqs. (2) and (4) into Eq. (1), the dynamic equation of the
sleeper under a moving load and resting on the nonlinear foundation can be
written as follows:

(7)
Mü + Cu̇ + Ku + fNL(u, u̇) =

[
krpw

(1)
r (t) + ζrpẇ

(1)
r (t)

]
eR1

+
[
krpw

(2)
r (t) + ζrpẇ

(2)
r (t)

]
eR2

where w
(1)
r (t) and w

(2)
r (t) denote respectively the displacements of the rails

1 and 2 at the two contact points with the sleeper. M, C, K are the mass,
damping and rigidity matrices, which represent the linear part of the model.
Beside, the term fNL(u, u̇) is a vector that describes the non-linear behavior
of the model. These matrices are calculated as follows:

K = Ks + kfIuz + krpIR1 + krpIR2

C = ζfIuz + ζrpIR1 + ζrpIR2

M = Ms

where matrix IR1
is the null matrix with size 3nn×3nn, except the component

which corresponds to the position (R1, R1) get the value 1, same for matrix
IR2 . In other word, the two matrices are calculated by:

{
IR1 = eR1 ⊗ eR1

IR2 = eR2 ⊗ eR2

The right side of Eq. (7) depends on the rail displacement. By substituting Eq.
(6) into Eq. (7), the dynamic equation of the railway sleeper can be rewritten
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as a function of the sleeper displacement as follows (see A):

(8)

Mü + Cu̇ + Ku + fNL(u, u̇) = IR

 1

2π

+∞∫
−∞

k2pû(ω)

kp +Ke
eiωtdω


−

 1

2π

+∞∫
−∞

kpQ1(ω)

kp +Ke
eiωtdω

 eR1

−

 1

2π

+∞∫
−∞

kpQ2(ω)

kp +Ke
eiωtdω

 eR2

where IR = IR1
+ IR2

. This equation describes the dynamic responses of the
railway sleeper posed on the nonlinear foundation and it is similar to that of a
nonlinear oscillator. The right side of the equation represents the interaction
between the rails and the sleeper at the two rail positions. In next step, in
order to simplify these terms, we consider only periodic solutions when the
moving forces are a periodic series.

2.4 Periodic series of moving loads

We consider that the train contains many identical wagons as shown in Fig.
3). The distances Dj of each wheel are characterized by:

Lw

Hw

DwDw

v

Fig. 3: Diagram of the periodic series of moving loads

Dj =


jHw for wheel 1 of wagon

jHw +Dw for wheel 2 of wagon

jHw +Dw + Lw for wheel 3 of wagon

jHw + 2Dw + Lw for wheel 4 of wagon

(9)

where Dw is the distance of the bogie, Hw is the length of the wagon and Lw

is the distance between wheels 2 and 3 of a wagon (see Fig. 3). This series
of moving loads may be used to represent the series of charges for a railway

track. In addition, we consider that the loads Q
(k)
j of each wheel j on each rail

k are equal:

Q
(k)
j = Q (10)
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By considering infinite periodic series (j ∈ Z), we will use the periodicity of
this series to reduce the terms on the right side of Eq. (8) and we obtain the
following result (see C):

Mü + Cu̇ + Ku + fNL(u, u̇) = IR

 +∞∑
j=−∞

ΦjPje
iωjt

−
 +∞∑
j=−∞

F
(1)
j eiωjt

 eR1

−

 +∞∑
j=−∞

F
(2)
j eiωjt

 eR2

(11)

In the previous equation, we supposed that the solution of the nonlinear prob-
lem can admit the same frequencies as the excitation force and the periodical

solution of u(t) which can be represented as shown in the Eq. (30) (see C). F
(1)
j

and F
(2)
j represent the two forces applied on the two rails which are normally

different in general.

3 Solution of the problem

In the previous section, the dynamic equation of a railway sleeper has been
developed as shown in Eq. (11). We remark that the right side of this equation
is the sum of several infinite series. In this section, we present a method to solve
this equation with the help of the harmonic balance method and the iterative
procedure [47–49] for nonlinear oscillators to develop a numerical method for
the dynamic equation of sleepers. Firstly, by using the Fourier development of
Eq. (11), we obtain the following result:

1

T

T/2∫
−T/2

[Mü+Cu̇+Ku+ fNL(u, u̇)] e−iωjtdt= IRΦjPj−
[
F

(1)
j eR1

+F
(2)
j eR2

]
(12)

By inserting Eq. (30) into the last result, this equation can be reduced as
follows:

(13)−DjΦj +
1

T

T/2∫
−T/2

fNL(u, u̇)e−iωjtdt = IRΦjPj −
[
F

(1)
j eR1

+ F
(2)
j eR2

]
where Dj is the dynamic stiffness matrix of the model which is calculated by
Dj = ω2

jM− iωjC−K and:
u̇(t) =

∞∑
j=−∞

iωjΦje
iωjt

ü(t) =

∞∑
j=−∞

−ω2
jΦje

iωjt
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We remark that Eq. (13) is the harmonic balance form of Eq. (12). The set of
this equation for all j ∈ Z generates a system of equations with regard to Φj

which are to be determined.
The railway sleeper is modeled by the finite element method and we note

that the index L, M , R, R1
and R2

are respectively the degrees of freedom at
the left, middle, right of the sleeper and positions of the forces 1 and 2 (see Fig.
2). In the case of linearity of the foundation, which means that fNL(u, u̇) = 0,
Eq. (13) can be explained as follows:

(14)


DjLL

DjLR2
DjLM

DjLR1
DjLR

DjR2L
D̃jR2R2

DjR2M
DjR2R1

DjR2R

DjML
DjMR2

DjMM
DjMR1

DjMR

DjR1L
DjR1R2

DjR1M
D̃jR1R1

DjR1R

DjRL
DjRR2

DjRM
DjRR1

DjRR




ΦL
jL

ΦL
jR2

ΦL
jM

ΦL
jR1

ΦL
jR

 =


0

F
(2)
j

0

F
(1)
j

0


where ΦL

j is the solution in the case of a linear foundation and:{
D̃jR1R1

= DjR1R1
+ Pj

D̃jR2R2
= DjR2R2

+ Pj

The solution of Eq. (14) can be calculated easily for all j ∈ Z as follows:

(15)


ΦL

jL

ΦL
jR2

ΦL
jM

ΦL
jR1

ΦL
jR

 =


DjLL

DjLR2
DjLM

DjLR1
DjLR

DjR2L
D̃jR2R2

DjR2M
DjR2R1

DjR2R

DjML
DjMR2

DjMM
DjMR1

DjMR

DjR1L
DjR1R2

DjR1M
D̃jR1R1

DjR1R

DjRL
DjRR2

DjRM
DjRR1

DjRR


−1 

0

F
(2)
j

0

F
(1)
j

0


Here now, we denote the right term of Eq. (14) as the vectors Fj . For the

non-linear foundation, the term fNL(u, u̇) appears and we will use an iteration
procedure to solve this problem. Eq. (13) can be rewritten as follows:

DjΦj = Fj +
1

T

T/2∫
−T/2

fNL(u, u̇)e−iωjtdt (16)

The iteration procedure considers the n first harmonics of the periodic
solution, thus, the nodal displacement of sleeper can be determined as:

unm(t) =

n∑
j=−n

Φm
j eiωjt (∀m ≥ 1) (17)

By taking Φ1
j = 0 ∀j, we built a series of vector {Φm

j } such that Φm
j → Φj

when m,n → ∞. The index m is understood as the number of the iteration
procedures, which can be defined as follows:

DjΦ
m+1
j = Fj + Qm

j (18)
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where Qj represents a vector of non-linear terms which is calculated by:

Qj =
1

T

T/2∫
−T/2

fNL(u, u̇)e−iωjtdt

The series of vectors {Φm
j } can be determined from Eq. (18) as follows:

Φm+1
j = D−1j

(
Fj + Qm

j

)
(19)

The last equation defines recurrent sequences of the vectors {Φj} with regard
to m. In the case of convergence of these sequences for all j ∈ Z when m,n→
∞, Φm

j and Φm+1
j are replaced by their limit, which we can find once again

with Eq. (13). It means that these sequences converge to the solution of this
equation. Consequently, the approximation of the periodic solution from Eq.
(17) is found by using the sequence of vectors {Φj} when m is large enough.
In the next section, these sequences will be used to compute the dynamic
responses of the railway sleeper.

4 Numerical applications

A numerical model of the sleeper has been created with the help of ABAQUS
software by considering a uniform section beam with the cross-section 0.1927
m× 0.2841 m. The beam length is 2L = 2.41m. The track gauge is 2a =
1.435m. The mesh of the model is generated with 76 nodes and 75 elements.
The element type is 2 node-linear beam element (B21) where each node has 3
DOFs (2 displacements and 1 rotation). This element type corresponds to the
Timoshenko beam model. We remark that Tran et al. [46] demonstrated ana-
lytically the small difference in sleeper responses (3%) by using the two beam
models for the railway sleeper. The material properties of rail pad, sleeper,
foundation and parameters of periodic train loads are given in Tab. 1. These
parameters will be used for the numerical examples.

4.1 Linear foundation

An analytical model of the railway sleeper posed on a Kelvin-Voigt founda-
tion has been developed by Tran et al. [46]. In this research, the sleeper is
modeled with the help of the Timoshenko beam model and its responses are
calculated by using the Green’s function. When the beam is modeled by FEM,
the solutions are given by Eq. (15).

A comparison of sleeper responses of the 2 models is shown in Fig. 4. In this
figure, we present a sleeper displacement and sleeper strain at two positions
(rail seat and center) of the sleeper in one period of the moving loads, which
corresponds to the time where the train moves a distance of a wagon Hw. In
this example, the displacement at the rail seat is larger than the one at the
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Content Notation Value Unit

Young’s modulus of the sleeper Es 48 GPa
Shear modulus of the sleeper Gs 20 GPa
Shear coefficient of the sleeper κs 0.845
Second moment of the sleeper Is 1.694×10−4 m4

Sleeper density ρs 2658 kgm−3

Stiffness of rail pad krp 192 MNm−1

Damping coefficient of rail pad ζrp 1.96 MNsm−1

Stiffness of foundation kf 440 MNm−1

Damping coefficient of foundation ζf 58.8 kNsm−1

Wagon length Hw 20 m
Distance of the wagon bogie wheels Dw 1.8 m
Distance of wagon inner wheels Lw 8.5 m

Table 1: Materials properties of the rail pad, sleeper and foundation [20]

middle of the sleeper as demonstrated in Fig. 4a. Besides, Fig. 4b shows that
the sleeper is in compression at the rail seat (strain negative), while it is in
traction at the center (strain positive). The reference time t = 0 corresponds

(a) Sleeper displacement (b) Sleeper strain

Fig. 4: Comparison of the analytical (continuous line) and numerical models
(circle)

to the moment when the first wheel passes over the sleeper. In this figure, we
can conclude that the two models give the same results, which confirms the
validity of the FEM model.

Alternatively, by substituting fNL(u, u̇) = 0 into Eq. (18), the non-linear
term is avoided: Qm

j = 0. The solutions of the problem can be calculated by
iteration procedures as follows:

Φm+1
j = D−1Fj

If the convergence of {Φj} is satisfied, the iteration procedure converges to the
analytical result. Fig. 5 shows the comparison of the sleeper displacement and
sleeper strain when the moving load passes the sleeper at the reference time
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(t = 0). The calculations have been computed with the number of harmonics
n = 25. The numerical results agree well with the analytical solutions (blue

(a) Sleeper displacement (b) Sleeper strain

Fig. 5: Comparison of dynamic responses of sleeper obtained by analytical
solution and iteration procedures

line). In this figure, we show the numerical results calculated after 3 iterations:
m = 1, 2, 5. We see that, in the case of a linear foundation, the convergence of
solutions is obtained after 2 iterations.

4.2 Examples of nonlinear foundations

4.2.1 Cubic-nonlinear foundation

In this example, we consider that the nonlinear part of the foundation obeys
a cubic law which can be written as follows:

fNLi
(ui, u̇i) = εckc

 0

− (uz (xi))
3

0


The values εc = 1 and kc = 440 × 107 MNm−3. Other track parameters are
chosen in Tabs. 1 and 2. The numerical results are calculated with a number
of harmonics n = 50 and n0 = 0. As the sleeper responses are the same when
the two bogies pass, the numerical results which are shown in this example
correspond to a passage of one bogie. Fig. 6 presents the results for different
numbers of iterations m. We note that when m ≥ 4, the responses are almost
unchanged and the convergence of the iteration procedures is satisfied.

Fig. 7 shows the effect of the nonlinear parameter εc on the sleeper dis-
placement. We have investigated several different values of εc. The foundation
is linear when εc = 0. The foundation becomes stiffer when this parameter
is bigger, thus the amplitude of displacement decreases. This phenomenon is
well demonstrated in this figure.
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(a) Rail seat (b) Deformed shape

Fig. 6: Numerical results of cubic-nonlinear foundation computed by different
number of iterations

(a) Rail seat (b) Deformed shape

Fig. 7: Effect of the nonlinear parameter of cubic-nonlinear foundation on the
sleeper displacements

4.2.2 Bi-linear foundation

Several researches demonstrated that the ballast has different linear behav-
iors in compression and tension. We consider that the constitutive law of the

foundation can be described by a stiffness in compression
(
k+f

)
and in tension(

k−f

)
. In addition, the damping coefficient of the foundation (ζf ) is consid-

ered as unchanged in the two cases. Due to the separation of the linear and
nonlinear parts in the model, the nonlinear term can be rewritten as follows:

fNL(u, u̇) =


(
k+f − kf

)
up if up < 0(

k−f − kf
)
up if up ≥ 0

where up presents a component p of the vector displacement u with (p ∈
[1, 3nn]). In this example, the sleeper displacements are calculated with the
two stiffness of foundation: k+f = 440 MNm−1 and k−f = 352 MNm−1. Fig. 8
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shows the numerical results computed by different number of iterations while
the number of harmonics is n = 25. The iteration procedures converges when
the number is bigger than 8. Fig. 8b shows that the deformed shape of the
sleeper at the reference time is almost unchanged when m ≥ 8.

(a) Rail seat (b) Deformed shape

Fig. 8: Numerical results of bi-linear foundation computed by different number
of iterations

Next, the influence of the number of harmonics on the sleeper responses
is shown in Fig. 9. When n ≥ 8, we find that the solution has converged.
Consequently, this study demonstrates that the lower harmonics are more
important than the higher. Put differently, the higher order harmonics can be
neglected in this case.

(a) Rail seat (b) Deformed shape

Fig. 9: Numerical results of bi-linear foundation computed by different number
of harmonics

Finally, the effect of the nonlinear parameter r = k−f /k
+
f on the sleeper

displacement is shown in Fig. 10. This ratio is calculated by changing the
stiffness k−f while maintaining k+f as constant. For each r value, the track
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responses have been calculated with the same numbers of iterations, but the
convergence of solutions is always satisfied. The deformed shape is obtained
at the reference time: t = 0, when the first wheel moves over the sleeper.
This parameter indicates a foundation with equal stiffness in compression and
tension when r = 1, and a foundation that cannot support any tension when
r = 0. We see that the sleeper displacements are greater when the foundation
has a smaller tension stiffness.

(a) Rail seat (b) Deformed shape

Fig. 10: Effect of the nonlinear parameter of the bi-linear foundation on the
sleeper displacements

4.2.3 Influence of the nonlinear parameters on the sleeper strain

Here, we study the influence of the nonlinear parameter on the sleeper strain.
In Fig. 11, we plot the sleeper strain at the rail seat in function of the sleeper at

(a) Cubic-nonlinear foundation (b) Bi-linear foundation

Fig. 11: Influence of the nonlinear parameters on the sleeper strain

the center of the sleeper in one period of moving loads. In the linear case, this
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ratio is related by a linear relation (blue lines in the Figs. 11a and 11b). When
the nonlinear term of the foundation obeys a cubic law, the sleeper strain at
the center is more important than the ones at the rail seat. In the bi-linear
case, the relationship between the sleeper strain at the two positions which
are shown in Fig. 11 presents clearly two linear behaviors of the foundations.

5 Conclusions

In this paper, the dynamics response of a railway track posed on a nonlinear
foundation has been studied by a semi-analytical model. The iteration method
has been developed which permits to obtain fast results. The convergence of
the method is also studied with numerical examples (linear and non-linear).
Thus, the dynamic responses of the nonlinear track can be calculated quickly.
In addition, this model can be applicable for different nonlinear foundations.
The numerical examples shows that the ratio between the strain at rail seats
and center of the sleeper depends on the foundation behavior. This result is
significant and can be used to study the foundation in the future work.
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A Mathematical transformation

By performing the Fourier transform, and then the inverse Fourier transform of the right
term of the Eq. (7), we can obtain the following result:

krpwr(t) + ζrpẇr(t) =
1

2π

+∞∫
−∞

kpŵr(ω)eiωtdω (20)
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The right term of the last equation depends on the rail displacements. It can be rewritten
as a function of the sleeper displacement by substituting Eq. (6) into Eq. (20) as follows:

1

2π

+∞∫
−∞

kpŵr(ω)eiωtdω =
1

2π

+∞∫
−∞

k2pûRkz
(ω)

kp +Ke
eiωtdω −

1

2π

+∞∫
−∞

kpQe

kp +Ke
eiωtdω

By combining the previous result and Eq. (7), we obtain the following result:

(21)

Mü + Cu̇ + Ku + fNL(u, u̇) =

 1

2π

+∞∫
−∞

k2pûR1z (ω)

kp +Ke
eiωtdω

 eR1

−

 1

2π

+∞∫
−∞

kpQ1(ω)

kp +Ke
eiωtdω

 eR1

+

 1

2π

+∞∫
−∞

k2pûR2z
(ω)

kp +Ke
eiωtdω

 eR2

−

 1

2π

+∞∫
−∞

kpQ2(ω)

kp +Ke
eiωtdω

 eR2

where Q1(ω) and Q2(ω) are the equivalent train loads at the rail 1 and rail 2 respectively
(see Appendix B). ûR1z

and ûR2z
are respectively the two displacement of the sleeper at

the crossing points with the two rails in the frequency domain. By developing the first and
the third terms on the right side of Eq. (8), it can be rewritten as follows:

 1

2π

+∞∫
−∞

k2pûR1z
(ω)

kp +Ke
eiωtdω

 eR1 = IR1

 1

2π

+∞∫
−∞

k2pû(ω)

kp +Ke
eiωtdω


 1

2π

+∞∫
−∞

k2pûR2z
(ω)

kp +Ke
eiωtdω

 eR2
= IR2

 1

2π

+∞∫
−∞

k2pû(ω)

kp +Ke
eiωtdω


Finally, by inserting the last result in Eq. (21), we have:

(22)

Mü + Cu̇ + Ku + fNL(u, u̇) = IR

 1

2π

+∞∫
−∞

k2pû(ω)

kp +Ke
eiωtdω


−

 1

2π

+∞∫
−∞

kpQ1(ω)

kp +Ke
eiωtdω

 eR1

−

 1

2π

+∞∫
−∞

kpQ2(ω)

kp +Ke
eiωtdω

 eR2

B Periodically supported beam in steady-state

Fig. 12 presents a periodically supported beam model. In this model, each rail k of the track
is modeled by an infinite beam posed on periodic supports. The sleeper spacing is l. The

train loads are considered by the concentrated loads Q
(k)
j . Each load is characterized by its

distance Dj to the first axle and the train speed v.
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Q
(k)
j Q

(k)
1

l

Rn

v

Dj

−∞ +∞

Fig. 12: Periodically supported beam model

In the frequency domain, Hoang et al. [42,43] have demonstrated a relation between the

reaction force R̂k(ω) and the displacement of the rail ŵr(0, ω) in the frequency domain as
follows:

R̂k(ω) = Keŵr(0, ω) +Qk (23)

where: Ke and Qk are the equivalent stiffness and equivalent loads of the system. The two
functions are calculated by the parameters of the rail and the train loads as follows:

Ke(ω) = 4λ3rErIr

[
sin lλr

cos lλr − cos ωl
v

−
sinh lλr

cosh lλr − cos ωl
v

]−1

Qk(ω) =
Ke(ω)

vErIr
[(

ω
v

)4 − λ4r]
K∑

j=1

Q
(k)
j e−iω

Dj
v

(24)

where: λr =
4

√
ρrSrω2

ErIr
. Er, Ir, ρr and Sr are respectively the Young’s modulus of rail, the

second moment of area of the rail, the density of rail and cross-sectional area of rail. The
expressions show that Eq. (23) is applicable for any foundation behavior. In this paper, the
rail parameters are given in Tab. 2.

Content Notation Value Unit

Young’s modulus of the rail Er 210 GPa
Second moment of area of the rail Ir 3×10−5 m4

Rail density ρr 7850 kgm−3

Rail cross-sectional area Sr 7.69× 10−3 m2

Sleeper spacing l 0.6 m
Moving force rail 1 Q1 80 kN
Moving force rail 2 Q2 80 kN
Train speed v 50 ms−1

Table 2: Parameters of the periodically supported beam model [42]
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C Calculation of equivalent load

By substituting Eq. (9) into Eq. (24) and together with the assumption (10), a new expres-
sion of the equivalent charge Qk(ω) can be expressed as follows:

Qk =
QKe

vErIr

(
1 + e−iω Dw

v + e−iω Dw+Lw
v + e−iω 2Dw+Lw

v

)
(
ω
v

)4 − λ4r
∞∑

j=−∞
e−iω Hw

v
j (25)

The parameters of Eq. (25) are explained in B. Moreover, a property of the Dirac comb [52]
gives the following result:

∞∑
j=−∞

e−iω Hw
v

j = 2π
v

Hw

∞∑
j=−∞

δ

(
ω +

2πv

Hw
j

)
(26)

By introducing this property into Eq. (25), the equivalent loads can be expressed as follows:

(27)Qk =
2πQKe

ErIrHw

(
1 + e−iω Dw

v + e−iω Dw+Lw
v + e−iω 2Dw+Lw

v

)
(
ω
v

)4 − λ4r
∞∑

j=−∞
δ

(
ω +

2πv

Hw
j

)

Thus, Eq. (27) leads to the following result:

1

2π

+∞∫
−∞

kpQk

kp +Ke
eiωtdω =

∞∑
j=−∞

Fjeiωjt (28)

where Fj is calculated by:

Fj =
Q

ErIrHw

1 + e−iω Dw
v + e−iω Dw+Lw

v + e−iω 2Dw+Lw
v(

ω
v

)4 − λ4r
kpKe

kp +Ke


ω=ωj

(29)

The last equation describes a forced oscillation with the exciting force
∑
Fjeiωjt with fre-

quency f0 = v/Hw. We remark that ωj = 2πfj = 2πjf0. We suppose that the solution of
the nonlinear problem can admit the same frequencies as the excitation force. Therefore,
with this assumption, there exists a periodic solution of u(t) which can be represented as
follows:

u(t) =
∞∑

j=−∞
Φjeiωjt (30)

Moreover, by performing the Fourier transform, Eq. (30) can be explained in the frequency
domain as follows:

û(ω) = 2π

∞∑
j=−∞

Φjδ(ω − ωj) (31)

So that, we can deduce the following result:

1

2π

+∞∫
−∞

k2pû

kp +Ke
eiωtdω =

∞∑
j=−∞

ΦjPjeiωjt (32)

where Pj is calculated by:

Pj =

[
k2p

kp +Ke

]
ω=ωj

(33)
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When ωj = 0, we have particularly the values: P0 = krp and F
(k)
0 = 2Q(k) Lw

Hw
. Finally, by

combining Eqs. (8), (28) and (32), the dynamic equation of the sleeper can be written by:

(34)

Mü + Cu̇ + Ku + fNL(u, u̇) = IR

 +∞∑
j=−∞

ΦjPjeiωjt

−
 +∞∑
j=−∞

F
(1)
j eiωjt

 eR1

−

 +∞∑
j=−∞

F
(2)
j eiωjt

 eR2
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