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Abstract. The study of periodic media is mainly focused on one-dimensional periodic
structures (periodic along one direction), to determine the dispersion curves or for the calculation
of the response to an external excitation. Effective methods such as the Wave Finite Element
(WFE) have been obtained for such computations. Two-dimensional periodic media are more
complex to analyse but dispersion curves can be obtained rather easily. Obtaining their
response to an excitation is much more difficult and the results mainly concern infinite media
while for finite media, few results are available. In this communication, the response of
finite two-dimensional periodic structures to an excitation is studied by limiting oneself to
structures described by a scalar variable (acoustic, thermal, membrane behaviour) and having
symmetries. Using the WFE for a rectangular substructure and imposing the wavenumber in
one direction, we can calculate the wavenumbers and mode shapes associated with propagation
in the perpendicular direction. By building solutions with null forces on parallel boundaries, we
can decouple the waves in the two directions parallel to the sides of the rectangle and solve each
case by a FFT. Summing the contributions of all these waves gives the global solution with a
low computing time even for a large number of substructures. Examples are given for the case
of a two-dimensional membrane.

1. Introduction
Authors interested in two-dimensional periodic media first aimed to determine the dispersion
curves like [1] who considered wave propagation in one, two and three-dimensional periodic
structures using finite element models or [2] who considered two-dimensional wave propagation
in periodic lattices made of beams. More complex structures were considered by [3, 4, 5, 6] who
computed dispersion relations for wave propagation in two-dimensional periodic structures by
the Wave Finite Element method (WFE). Most of these authors considered a reduced model
obtained by the Craig-Bampton method while in [7, 8, 9, 10] the reduction of the boundary
degrees of freedom was considered in addition and [11] projected the mass and stiffness matrices
on a reduced set of Bloch modes.

One can also be interested in the response of a periodic medium to an external excitation. For
instance, the computation of infinite doubly periodic structures for harmonic electromagnetic
fields was considered by [12] using hybrid Finite Element/Boundary Integral and periodic
Green’s functions. The forced response of infinite two-dimensional periodic media using WFE
was computed by [13] while [14] focused on homogeneous media still using WFE but with a
contour integration to improve the computation of some integrals giving the force response.



The responses of two-dimensional finite and infinite periodic structures to point harmonic and
impulsive forces were also computed by [15, 16]. For finite structures, he found the solution
by a modal summation of modes with periodic boundary conditions and then extended the
solution to infinite structures for points far enough from the load. Experiments were also done
by [17] for the seismic isolation by two-dimensional finite periodic foundations and they found
interesting isolation effects for frequencies band gaps even for a small number of substructures
for which comparisons with full Abaqus computations were done. In another domain, [18]
computed the acoustic radiation of two-dimensional nearly periodic metamaterial plates with
6 × 6 substructures by the finite element method with the Craig-Bampton reduction and
interpolation strategies to reduce the computational cost. In [19] two-dimensional periodic
metamaterial structures were computed using interior dofs reduction by the Craig-Bampton
method and an interface dofs reduction while [20] used an approximate solution built from a
linear superposition of waves and computed finite two-dimensional periodic structures up to
30 × 30 substructures. In all cases, the number of substructures was very limited of the order
of a few hundred to the maximum and the main goal was to develop reduction methods for
substructures to accelerate calculations.

In this paper, we consider the calculation of a finite two-dimensional periodic medium made
of a large number of substructures under external excitations. We will limit ourselves to media
described by a scalar equation such as during the propagation of acoustic waves or vibrations
of membranes and having symmetries with respect to two orthogonal planes parallel to the
edges of a substructure. One bases on the WFE by modeling a rectangular substructure by a
finite element model (FEM). By imposing the wavenumber in one direction, we can numerically
calculate the wavenumbers and mode shapes associated with propagation in the perpendicular
direction. By taking appropriately chosen solutions, we can decouple the waves in the two
directions parallel to the sides of the rectangle. The solution of each of these two problems is
obtained by a fast Fourier transformation which gives the amplitudes associated with the waves.
We thus obtain the global solution for a two-dimensional periodic medium with a large number
of substructures with a low computing time.

The paper is organised as follows. In section 2, wave modes for two-dimensional periodic
media are computed. Special symmetric solutions are computed in section 3 and then the
equations of the global problem are set and solved in section 4. Section 5 presents some
numerical results for the case of a two-dimensional membrane with many substructures before
the conclusion.

2. Two-dimensional wave modes
2.1. Relations on boundary variables
The discrete dynamic equation of a substructure obtained from a FE model at a circular
frequency ω and for the time dependence eiωt is given by:

(K− ω2M)q̃ = f̃ (1)

where K and M are the stiffness and mass matrices, respectively. f̃ is the loading vector and q̃ the
vector of the degrees of freedom (dofs). Introducing the dynamic stiffness matrix D̃ = K−ω2M,
decomposing the dofs into boundary (b) and interior (i) dofs, and assuming that there are no
external forces on the interior nodes, result in the following equation:[

D̃bb D̃bi

D̃ib D̃ii

][
qb
qi

]
=

[
fb
0

]
(2)

The interior dofs can be eliminated using the second row of equation (2), which results in

qi = −D̃−1
ii D̃ibqb, fb =

(
D̃bb − D̃biD̃

−1
ii D̃ib

)
qb = Dbqb (3)
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Figure 1. A substructure in the periodic
medium.
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Figure 2. Decomposition of boundary loads
into two side loads.

The subscript b will be dropped in the following and only boundary dofs will be considered.

2.2. Condensation of transverse degrees of freedom
The substructure is meshed with an equal number of nodes on their opposite sides. The boundary
dofs are decomposed into left (L), right (R), bottom (B), top (T ) dofs and associated corners
(LB), (RB), (LT ) and (RT ) as shown in figure 1. The global vector of boundary dofs is defined
as

q = t
[
tqLB

tqL
tqLT

tqRB
tqR

tqRT
tqB

tqT
]

(4)

Consider waves with a given propagation constant λy along y. The longitudinal dofs vector is
defined as ql = t

[
tqLB

tqL
tqLT

tqRB
tqR

tqRT
]
. Thus, equation (3) is rewritten as Dll DlB DlT

DBl DBB DBT

DT l DTB DTT

 ql
qB
qT

 =

 fl
fB
fT

 (5)

Using pseudo periodic conditions with the given propagation constant λy and the effort
equilibrium at the bottom side of the substructure, relations between the transverse dofs are
given by

qT = λyqB, fB +
1

λy
fT = 0 (6)

Multiplying the third row of equation (5) with 1
λy

, taking the sum of the second and third rows

of equation (5), using conditions (6), lead to

qB = −
(

DBB + DTT +
1

λy
DTB + λyDBT

)−1(
DBl +

1

λy
DT l

)
ql (7)

Using (6) and (7), the first row of equation (5) becomes

fl =

[
Dll − (DlB + λyDlT )

(
DBB + DTT +

1

λy
DTB + λyDBT

)−1(
DBl +

1

λy
DT l

)]
ql

= Dlql (8)

which defines the dynamic stiffness matrix Dl for longitudinal dofs.



2.3. One-dimensional eigenvalue problem
Using the pseudo periodic conditions also leads to these relations between longitudinal dofs

qR = λxqL
qRB = λxqLB
qRT = λxλyqLB
qLT = λyqLB

(9)

From the pseudo periodic conditions (9), it can be seen that all components of the vector ql
depend on the reduced set of dofs defined by qr = t

[
tqLB

tqL
]
. This can be expressed as

ql = (W0(λy) + λxW1(λy)) qr (10)

where the matrices W0(λy) and W1(λy) depend on the propagation constant λy and are given
by

W0(λy) =


I O
O I
λyI O
O O
O O
O O

 W1(λy) =


O O
O O
O O
I O
O I
λyI O

 (11)

The equilibrium conditions between adjacent substructures can be written as(
λxW

T
0 (

1

λy
) + WT

1 (
1

λy
)

)
fl = 0 (12)

Combining (8), (10) and (12), lead to(
λxW

T
0 (

1

λy
) + WT

1 (
1

λy
)

)
Dl(λy) (W0(λy) + λxW1(λy)) qr = 0 (13)

A small damping is introduced by taking (1+ξi)ω instead of ω with ξ = 0.0001. So we always
have |λx| 6= 1 and the right-going solutions must have a decreasing amplitude as we move on
the right, meaning that

|λx| < 1, |λ?x| > 1 (14)

This allows to define the two sets of eigensolutions

Λ(λy) = [λx1(λy) · · ·λxn(λy)] , Λ?(λy) = [λ?x1(λy) · · ·λ?xn(λy)]

Φq(λy) = [φq1(λy) · · ·φqn(λy)] , Φ?
q(λy) = [φ?q1(λy) · · ·φ?qn(λy)]

ΦF(λy) = [φF1(λy) · · ·φFn(λy)] , Φ?
F(λy) = [φ?F1(λy) · · ·φ?Fn(λy)]. (15)

in which φqj is the solution of the eigenproblem (13) and φFj = t
[
tf jLB

tf jL

]
the associated

force vector.

3. Building eigenvectors with free boundary
3.1. Reduction to one-dimensional problems
Consider now a rectangular domain which undergoes forces over its left/right and bottom/top
edges, as depicted in Figure 2 where the loads are shown as red lines on the boundary while free
sides are depicted as green lines. The global loads can be decomposed as loads on the vertical



sides F1
B and loads on the horizontal sides F2

B such that the displacements of the global problem
can be recovered as the sum of the displacements of problems 1 and 2. So we have

FB = (FB)1 + (FB)2 ⇒ qB = (qB)1 + (qB)2. (16)

We focus now on one of the two problems defined previously. Consider for instance the first
problem as the second problem can be solved in the same way. From the knowledge of the
propagation constants and wave modes for one-dimensional WFE, the vectors of displacements
and forces of an assembly of Nx substructures like the one displayed in Figure 2 are expressed
on global left and right boundaries in terms of wave shapes, as follows:

qL = ΦqQ + Φ?
qµ

NxQ?, −FL = ΦFQ + Φ?
Fµ

NxQ?

qR = Φqµ
NxQ + Φ?

qQ
?, FR = ΦFµ

NxQ + Φ?
FQ

? (17)

where Q and Q? are vectors of wave amplitudes which are respectively defined at the left and
right edges of the whole domain. The elements of the diagonal matrix µ have modulus less or
equal to one. The main problem is to find the wave modes ΦF and Φ?

F with free boundaries (no
force on the bottom and top boundaries).

3.2. Symmetric solution
We suppose now that the geometry and the mechanical parameters of a period are invariant by
substituting ly − y to y. Consider a solution defined by the vectors ql

qB
qT

 and

 fl
fB
fT

 (18)

Now, denoting q(x, y) the displacement associated to this solution, one defines the symmetric
solution such that

q̃(x, y) =
1

λy
q(x, ly − y) (19)

So the symmetric solution is such that

q̃B = qB, and q̃T =
1

λy
q̃B =

1

λy
qB (20)

Concerning the forces, one has

f̃B = DBlq̃l + DBBq̃B + DBT q̃T

f̃T = DT lq̃l + DTBq̃B + DTT q̃T (21)

We make the hypothesis that the symmetry of the structure leads to the following relations on
the submatrices.

DBB = DTT , DBT = DTB, DTB = DBT (22)

From this, one can prove that the symmetric solution satisfies

f̃B = −fB, f̃T = − 1

λy
f̃B (23)

This shows that the symmetric solution is associated to the propagation constant 1
λy

. One can

also check that (
λxW

T
0 (λy) + WT

1 (λy)
)
Dl(

1

λy
)

(
W0(

1

λy
) + λxW1(

1

λy
)

)
q̃r = 0 (24)

and q̃r is associated to the propagation constant λx in the x direction and to 1
λy

in the y direction.



4. Fast solution for the two-dimensional periodic structures
4.1. Decomposition of force vectors
The solution is searched under the form of waves associated to propagation constants λy,n =

eiπn/Ny along y, for −Ny ≤ n ≤ Ny−1, leading to the propagation constants λx+ and λx− along

x. Along x one has propagation constants λx,m = eiπm/Nx , for −Nx ≤ m ≤ Nx − 1, leading to
the propagation constants λy+ and λy− along y. For instance, the force on the global bottom
boundary can then be decomposed as

fB(pB) =

n=Ny−1∑
n=−Ny

(
Fx+
Bn(Λx+

n )pBax+n + Fx−
Bn(Λx−

n )pB−(Nx−1)ax−n

)

+

m=Nx−1∑
m=−Nx

eiπpBm/Nx

(
Fy+
Bmay+m + Fy−

Bm(Λy−
m )−(Ny−1)ay−m

)
(25)

for 0 ≤ pB ≤ Nx − 1 and where |λx+nj |, |λ
y+
nj | < 1, |λx−nj |, |λ

y−
nj | > 1 and for instance

Λx+
n = diag

(
λx+nj

)
j=1...J+

n

, Λx−
n = diag

(
λx−nj

)
j=1...J−

n

Fx+
Xn =

[
fx+Xn1, ..., f

x+
Xnj , ..., f

x+

XnJ+
n

]
, Fx−

Xn =
[
fx−Xn1, ..., f

x−
Xnj ..., f

x−
XnJ−

n

]
ax+n =

[
ax+n1 , ..., a

x+
nj , ..., a

x+

nJ+
n

]T
, ax−n =

[
ax−n1 , ..., a

x−
nj , ..., a

x−
nJ−

n

]T
(26)

From relations (13), one has in a general way,

Λx+
n = (Λx−

−n)−1, Λy+
m = (Λy−

−m)−1 (27)

Supposing that the substructure is symmetric, we also have

Λx+
−n = Λx+

n , Λx−
n = Λx−

−n, Λy+
−n = Λy+

n , Λy−
n = Λy−

−n

Fx+
B(−n) = −Fx+

Bn, Fx−
B(−n) = −Fx−

Bn (28)

One can choose the decomposition such that

ax+−n = ax+n , ax−−n = ax−n , ay+−m = ay+m , ay−−m = ay−m (29)

Inserting relations (27), (28) and (29) into (25) leads to

fB(pB) =

m=Nx−1∑
m=−Nx

eiπpBm/Nx

(
Fy+
Bmay+m + Fy−

Bm(Λy−
m )−(Ny−1)ay−m

)
Using the relation

Fy−
Tm + Fy−

BmΛy−
m = 0 (30)

we finally get

fB(pB) =

m=Nx−1∑
m=−Nx

eiπpBm/Nx

(
Fy+
Bmay+m − Fy−

Tm(Λy−
m )−Nyay−m

)
(31)

And similar relations for the three other parts of the boundary.



4.2. System to solve
The precedent relations can be written in a more compact form as

FB = ωxF
y+
B ay+ − ωxFy−

T (Λy−)−Nyay−

FR = −ωyFx+
L (Λx+)Nxax+ + ωyF

x−
R ax−

FT = −ωxFy+
B (Λy+)Nyay+ + ωxF

y−
T ay−

FL = ωyF
x+
L ax+ − ωyFx−

R (Λx−)−Nxax− (32)

with for instance

FL =


fL(0)
fL(1)

...
fL(Ny − 1)


Fx+
L = diag

(
Fx+
L(−Ny)

, ...,Fx+
Ln , ...,F

x+
LNy−1

)
, Fx−

L = diag
(
Fx−
R(−Ny)

, ...,Fx−
Rn, ...,F

x−
RNy−1

)
Λx− = diag

(
Λx−

−Ny
, ...,Λx−

n , ...,Λx−
Ny−1

)
, ωy =

(
λnmy Inm

)
0≤n≤Ny−1,−Ny≤m≤Ny−1

(33)

with λy = eiπ/Ny , Inm = Inl×nl
and nl = nLB + nL the number of reduced dofs.

4.3. Symmetric relations
Consider relation (31), one has

fB(pB) =

m=Nx−1∑
m=−Nx

eiπpBm/Nx

(
Fy+
Bmay+m − Fy−

Tm(Λy−
m )−Nyay−m

)

=

m=Nx−1∑
m=−Nx

e−iπpBm/Nx

(
Fy+
B(−m)a

y+
m − Fy−

T (−m)(Λ
y−
m )−Nyay−m

)
(34)

because λx,−Nx = λx,Nx = −1, and for instance Fy+
B(−Nx)

= Fy+
BNx

. Note also that, for instance,

Fy+
B(−m) = 1

λx,m
F̃y+
B(m), and a similar relation for the top component, so that we finally gets

f̃B(pB) =

m=Nx−1∑
m=−Nx

e−iπ(pB+1)m/Nx

(
Fy+
Bmay+m − Fy−

Tm(Λy−
m )−Nyay−m

)
with f̃B(pB) obtained from fB(pB) by inverting the dofs on the bottom boundary on each
substructure between 0 and lx. The function fB(pB) can now be defined for −Nx ≤ pB ≤ Nx−1

with fB(−pB − 1) = f̃B(pB). The global system to solve is then

FB

F̃B

FR

F̃R

FT

F̃T

FL

F̃L


=



O O ω+
x Fy+

B −ω+
x Fy−

T (Λy−)−Ny

O O ω−
x Fy+

B −ω−
x Fy−

T (Λy−)−Ny

−ω+
y Fx+

L (Λx+)Nx ω+
y Fx−

R O O

−ω−
y Fx+

L (Λx+)Nx ω−
y Fx−

R O O

O O −ω+
x Fy+

B (Λy+)Ny ω+
x Fy−

T

O O −ω−
x Fy+

B (Λy+)Ny ω−
x Fy−

T

ω+
y Fx+

L −ω+
y Fx−

R (Λx−)−Nx O O

ω−
y Fx+

L −ω−
y Fx−

R (Λx−)−Nx O O




ax+

ax−

ay+

ay−



(35)



with

F̃B =

F̃B(Nx − 1)
...

F̃B(0)

 , FB =

 FB(0)
...

FB(Nx − 1)



ω−
x =


e−iπNxm/Nx

e−iπ(Nx−1)m/Nx

...

e−i2πm/Nx

e−iπm/Nx


−Nx≤m≤Nx−1

, ω+
x =


1

eiπm/Nx

...

eiπ(Nx−2)m/Nx

eiπ(Nx−1)m/Nx


−Nx≤m≤Nx−1

(36)

4.4. Use of FFT for an efficient solution
Taking the Fast Fourier Transform of both sides of (35) for each of the four parts of the boundary,

noting that FFT

(
ω+
x

ω−
x

)
= 2NxI and that after the FFT the right hand side is made of block

matrices, the system can be decomposed as the following subsystems for each component of the
FFT (

FRn
FLn

)
= 2Nx

(
−Fx+

Ln(Λx+
n )Nx Fx−

Rn
Fx+
Ln −Fx−

Rn(Λx−
n )−Nx

)(
ax+n
ax−n

)
(37)

with for instance FRn the nth component of fft

(
FR

F̃R

)
. The solution of this small size system

gives to nth component of the amplitude and the whole solution can then be rebuilt.

5. Numerical results
5.1. Validation with a homogeneous structure
We first consider the case of the Helmholtz equation (modelling acoustic or a membrane
vibration) on a homogeneous medium divided into rectangular substructures. The equation
is

∆p+ k2p = 0 in Ω,
∂p

∂n
= q0 over ∂Ω (38)

with k = ω/c, ω the circular frequency and c = 343m/s the sound velocity. The structure Ω is
divided into Nx×Ny substructures of size Lx×Ly. q0 is a given function on the boundary. In this
case it is simple to find an analytical solution to estimate the accuracy of the proposed method.
For example a solution is p0(x) = i

4H0(k|x − xs|) for a point source xs outside the domain Ω

and q0 = ∂
∂np0. We compare the results of the analytical solution, a full Finite Element (FEM)

solution and the present two-dimensional WFE method in table 1 for structures with 5× 5 and
25× 25 substructures. The substructures are meshed with 10× 10 quadratic 8 nodes elements.
The sizes are Lx = Ly = 0.1m. The position of the source is at xs = (−0.5m,−0.5m). It can
be observed in table 1 that there is a perfect agreement for low frequencies and that for high
frequencies the accuracy of the 2D WFE is similar to the full FEM.

5.2. Structure with holes
We consider now a substructure with a central hole of radius 0.02m as in figure 3. All the
other properties are the same as before. The mesh of a substructure is shown in figure 3 and is
made of 654 nodes with linear triangular elements obtained from gmsh. The boundary condition



Table 1. Comparison of the solution for different methods, number of substructures, frequencies
and computation points.

5× 5 25× 25

100Hz Analytic WFE 2D FEM Analytic WFE 2D FEM
(0, 0) −0.071 + 0.156i −0.071 + 0.156i −0.071 + 0.156i −0.071 + 0.156i −0.071 + 0.156i −0.071 + 0.156i
(Lx, Ly) −0.101 + 0.120i −0.101 + 0.120i −0.101 + 0.120i −0.101 + 0.120i −0.101 + 0.120i −0.101 + 0.120i
(5Lx, 5Ly) −0.121− 0.023i −0.121− 0.023i −0.121− 0.023i −0.121− 0.023i −0.121− 0.023i −0.121− 0.023i

4000Hz Analytic WFE 2D FEM Analytic WFE 2D FEM

(0, 0) −0.019 + 0.020i −0.021− 0.002i −0.014 + 0.016i −0.019 + 0.020i −0.023 + 0.020i −0.021 + 0.019i
(Lx, Ly) 0.025 + 0.003i 0.026 + 0.022i 0.021 + 0.006i 0.025 + 0.003i 0.026 + 0.004i 0.025 + 0.004i
(5Lx, 5Ly) −0.014− 0.013i −0.016− 0.039i −0.009− 0.017i −0.014− 0.013i −0.012− 0.016i −0.012− 0.015i

Figure 3. Substructure with a central
hole.

Figure 4. Computing times.

is obtained by the normal derivative of a plane wave of direction (1/
√

2, 1/
√

2). The case of
a structure made of 25 × 25 substructures computed at 1000Hz is shown in figure 5 for the
full FEM computation and in figure 6 for the 2D WFE. A perfect agreement between the two
computations is observed. The same computation is also made for structures of increasing sizes
between N × N = 10 × 10 substructures and N × N = 1000 × 1000. The computing time is
shown in figure 4 for the 2D WFE. For the FEM the computation is only done up to 100× 100
substructures. The computing time is strongly increasing for the FEM while it increases only
mildly for the 2D WFE. Note that for the 1000 × 1000 structure the number of nodes for a
classical FEM computation would be about 650 millions. This problem is solved by the present
2D WFE in 9 seconds with Matlab on a personal computer with a memory of 16Go and a
processor Intel Core(TM) i7-9700.

6. Conclusion
We have developed a new method to compute two-dimensional periodic media for the case
of a scalar wave equation. This is based on the Wave Finite Element Method by considering
propagation along the two directions parallel to the boundary of a substructure. For a boundary
excitation the method proves to be very efficient and allows to get the solution for structures
made of millions of substructures. Future works should try to extend the method for the case of
two-dimensional elasticity meaning structures described by vectorial equations and substructures
having no special symmetry. The case of loading on the internal dofs should also be considered.



Figure 5. FEM solution at 1000z. Figure 6. 2D WFE at 1000Hz.
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