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ABSTRACT 

Bridge structural health monitoring and assessment are important subjects nowadays. In this 

paper, we propose a novel method which allows to evaluate both the bridge structural health and its 

loads based on strains and accelerations measured at the same location. The bridge is considered as 

governed by the Euler-Bernoulli beam equation. The strain can be obtained directly from sensors 

such as fiber optics. This type of sensors has many advantages such as high precision, high 

sampling frequency, durability… so that the dynamic strain component can be acquired easily. By 

decomposing the obtained signals into static and dynamic components, the correlation between 

strain and acceleration for the same type of component is clarified. The proportional coefficients, 

which reflect the intrinsic state of the beam and its load, can be obtained by optimization. From the 

variation of these coefficients, information on the damage of the bridge can be obtained. Moreover, 

in case of multiple loads (multi-axle vehicle), the distance between the axles of the vehicle can also 
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be determined. Numerical results with several scenarios will be presented to demonstrate the 

efficiency and the robustness of the method. 

 

Keywords: Damaged Identification, Moving Load, Bridge, Strain, Acceleration.  

1 INTRODUCTION 

Since most of bridges have been constructed in the 20
th

 century, bridge Structural Health 

Monitoring (SHM) and assessment is an important subject nowadays. Many studies about 

vibration-based structural damage identification have been carried out the last decades. The 

presence of damage decreases the global rigidity of the structure and leads to a reduction of its 

natural frequencies. Modal properties such as natural frequencies and mode shapes have been used 

as damage detection criteria [1, 2]. However, the change in natural frequencies is relatively small, 

and the measure is influenced by environmental conditions such as temperature, humidity…[3]. 

Allemang et al. [4] presented the Modal Assurance Criterion (MAC) that studies the correlation 

between vibration modes of a structure by two different approaches. Based on MAC, Lieven et al. 

[5] proposed the COMAC (Coordinate Modal Assurance Criterion) as an extension of MAC. In 

reality, these methods require a large number of sensors.   

The advantage of a moving load is that the excitation does not depend only on time, but also 

on space. From the dynamic response of the beam, we can find out its modal properties. Zhu and 

Law [6] presented a method that allows to identify the location of the damage from a single 

deflection time history at the midpoint of a simply supported beam, by using the Continuous 

Wavelet Transform (CWT). Nie et al. [7] used the time series of two distinct measured 

displacements in order to locate the damage. These methods work well when the velocity of the 

moving load is very small compared to the first critical velocity (i.e. resonance velocity [8]) of the 

beam. 

Nowadays, thanks to advanced technology, bridges can be monitored continuously. Unlike 

the traditionally electrical strain gauge, a long-gauge optical strand measures the average strain over 

its length. Hence, it has a higher probability to cover the damage. Moreover, Optical Strand sensors 

have many advantages such as high-sample strain measurements over long periods, high precision 

and durability [9]. 

In this paper, we present firstly a novel method that allows to evaluate the beam-like bridge 

structural health and eventually the loads of the vehicle in the absence of damage, by using the 

proportional coefficients between the measured signals (strain, acceleration). Moreover, this method 

can be used to determine the distances between the axles of the vehicle. In order to validate the 

method, we apply the optimization procedure to the passage of a 3-axle vehicle over a simply 

supported beam and re-evaluate the intrinsic properties of the beam and the vehicle. Then, a 

parametric study is carried out to study the dependence of the proposed coefficients to the 

properties of the damage (location, damage level, damage length…). 

2 FORMULATION AND IDENTIFICATION METHODS 

2.1 Analytical formulation 

The study examines a simply supported beam of length L ? as shown in Fig. 1. We assume that 

the beam follows the Euler-Bernoulli beam theory, the governing equation of the beam which 

describes the vertical displacement        is [10]:  

  
   

   
    

   

     
  

  

  
   

   

   
                 (1) 
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where EI is the bending stiffness, ρS is the mass per unit length of the beam. In Eq. 1, the term 

c(∂u/∂t) represents the external damping mechanism whereas the term                represents 

the internal damping mechanism,      denotes the Dirac distribution.  

 

 

Figure 1: A simply supported beam subjected to a single moving force. 

The beam is simply supported at its two ends, which leads to the following boundary 

conditions: 

 
               
                                   

           
 

 
  (2) 

where                   is the bending moment of the beam. The prime operator      
      denotes the derivative of the function        with respect to x. 

Moreover, before the time when the moving load enters the beam, it is considered at rest at all 

space points. Therefore, the following initial conditions are taken: 

 
        
         

              (3) 

The dot operator          denotes the derivative of the function        with respect to t. 

 

2.2 Forced responses of the beam under moving load 

By modal decomposition, the solution of Eq. (1) can be expressed as a linear combination of 

the mode shapes       and the generalized coordinated       of the n
th

 mode: 

                   

 

  (4) 

From the initial conditions (Eq. 2), and mode shapes which are normalized such that 

           
 

 
    , where     is the Kronecker delta, the form of       for a simply 

supported beam can be expressed explicitly as: 

              
   

 
                   (5) 

in which          and       . 

Since the mode shapes are orthonormal, the generalized coordinates       are solutions of the 

following differential equation: 

                     
       

 

  
        (6) 

where      
         are the angular frequencies of the undamped system and    the 

damping ratio. The initial conditions that are described in Eq. (3) can be written as: 
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  (7) 

The time-history of the strain at a given point located at a distance    below the neutral axis 

of the beam is given by: 

          
              

            

 

 (8) 

As defined, the acceleration at this point is the second derivative of the displacement with 

respect to time: 

                           

 

  (9) 

Particular and homogeneous solutions. The general solution of Eq. (6) is the sum of a 

particular solution and the homogeneous solution:  

        
       

      (10) 

Substitute Eq. (10) into the Eq. (4), we have: 

                  
       

     

 

                  (11) 

By the same concept as the displacement, the strain and the acceleration are also decomposed 

into two components: the particular component and the homogeneous one, in which only the time-

dependent party       is decomposed: 

             
          

       
     

 

                  (12) 

                   
        

     

 

                  (13) 

Particular component. Hereafter, for simplification, we neglect the damping effect. By using 

the method of undetermined coefficients, a particular solution of Eq. (6) is given by the following 

expression [8]: 

  
     

  

    
         

             (14) 

where               and                . We denote               the 

critical velocity which corresponds to the n
th

 vibration mode of the beam. 

               
           

      
  for some small value of              and 

                
 . 

The particular component of strain and acceleration are then calculated: 

              
        

    

 

  (15) 

                   
    

 

     
          

    

 

  (16) 

From Eqs. (15), (16), we deduce the linear relation between the particular acceleration and the 

particular strain: 
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       (17) 

 

Homogeneous components. The right hand side of the Eq. (6) is set to be zero. Its 

homogeneous solution can be written as: 

  
              

            
             (18) 

with   
           the damped angular frequency of the system for the n

th
 natural mode. 

The coefficients       are determined from the initial conditions in Eq. (7). We deduce also: 

 
  
        

     

   
         

     
  (19) 

When the load passes the beam at small velocity (      ) and the damping ratio is also 

small (      , we can assume that:    
        

   
    . We have: 

              
        

    

 

  (20) 

                   
    

 

     
        

     

 

 
(21) 

Note that                    , we deduce the following relation between the 

homogeneous acceleration and the homogeneous strain for the n
th

 mode: 

  
     

   
 

  
  
      (22) 

 

2.3 Load and damage identification by optimization 

Load and damage identification. Now, by suitable sensors placement, we study only the 

first mode of the homogeneous components. The dynamic strain and acceleration can be written as: 

             
      (23) 

             
      (24) 

From the Eqs. (23), (24) and the proportional relations that are described in Eqs. (17), (22), 

we have: 

     
  

   
         

  

   
         (25) 

We introduce the quasi-static strain, which can be defined as the limit of the particular strain 

when the velocity of the load approaches zero. As only the first mode is retained, for a small speed 

of the load (             ), from Eq. (14), we have: 

 

Essayer de clarifier comment on obtient cette relation à partir de (14) 

           
           

  

   
         (26) 

On the other hand, the quasi-static strain can be expressed as: 
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         (27) 

where        is the bending moment influence line ordinate at strain sensor’s location in time  . 
Hence, the Eq. (25) becomes: 

     
  

   
        

   

  
                        (28) 

where         
        

       and          . 
For the measured signal      , we can define the objective function    as the sum of squared 

difference between the measured and the approximated strain signal: 

                            
 . (29) 

We search the coefficients       that minimize   . In case of an intact beam, the coefficient    
is proportional to the moving load. Otherwise, when the beam is damaged, both    and    is 

inversely proportional to the bending stiffness EI. When the load of the vehicle is unknown, we can 

use    to evaluate the damage of the beam. 

 

Axle spacing identification. In case of the passage of a multiple-axle vehicle, the quasi-static 

strain is determined by superposition of the quasi-static strain which is caused by each individual 

force. Assume that a vehicle of M axles passes over the beam with a constant velocity  . Let’s 

denote    the distance between the i
th

 and (i+1)
th

 axle and         
   
    is the distance between 

the first axle and the i
th

 axle (i≥2). By convention,     . The quasi-static strain is given by: 

      
  
  

                  
  

 
          

  

 
       (30) 

The objective function    in the Eq. (23) now becomes: 

                            
    

 
 

 

   

 

 

 

 (31) 

where            . 
For a set of given distances               , we search firstly a set of values      

   
       

       
         

     which minimize Eq. (22). Then, we optimize the following objective 

function   : 

            
             

         
    

 
 

 

   

 

 

 

 (32) 

Once the distances    that minimize the function    are determined, we have the associated 

coefficients       
     

     
       

   that have the same meaning as mentioned before.  

3 NUMERICAL RESULTS AND DISCUSSION  

3.1 Intact beam: Loads and axle distances identification 

In this section, a simply supported Euler-Bernoulli beam is studied. The length of the beam is 

      . The cross section is square of dimensions          . The beam is made of steel, 

which has the modulus of elasticity           and the density             . The damping 

ratio of steel is equal to 2%. The fundamental frequency of the beam is                 
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       . The beam is subjected to a 3-axle vehicle whose loads are         and       
    . The distances between the loads P1-P2 and P2-P3 are respectively          and          

(Fig. 2). At    , the vehicle enters the beam with constant speed        , which is about 11% 

vc1. Two sensors are placed at the midpoint of the beam, namely an accelerometer and an optical 

strand (long fiber optic strain sensor) of length 2 m. 

 

Figure 2: Three-axle vehicle passing a simply supported beam at constant speed. 

The responses are calculated analytically and the 12 first frequencies are taken into account, 

so that the cumulative effective mass factor is 90,4%. Then, these responses are filtered by a low-

pass filter with a cut-off frequency that is equal to 1.7f0. Then, they are served as input of 

optimization process.  

Table 1 presents the results of the optimization process in comparison with the reference for 

some parameters. The errors of the estimated values are relatively small.  

Table 1: Results of optimization 

Parameter Notation Unit Reference values Estimated values Error (%) 

1
st
 critical velocity vc1 m/s 47.06 47.29 0.50 

Distance P1-P2 d1 m 3.50 3.50 0.02 

Distance P1-P2 d2 m 1.40 1.42 1.39 

Fist axle load P1 N 1000 993.15 0.68 

Second axle load P2 N 2000 1975.55 1.22 

Third axle load P3 N 2000 2032.04 1.60 

 

3.2 Damage beam: Parametric study 

For the parametric study, we use the same steel beam as the previous example. A two-axle 

vehicle         and         passes over the beam with constant speed        , which is 

equal to 11 %  the first critical velocity of the beam. The distance between these loads is       

(Fig. 3). The damage is modelled as a uniform decrease of bending stiffness over the length of the 

damaged zone [11]. In this study, we take a damaged zone of length   , with various locations and 

various reductions of bending stiffness     (the orange segment). The location of the damage is 

characterized by the position of its centre (  ). Moreover, we denote    the overlaying length of the 

damaged and the strain sensor (the green segment). An accelerometer and an optical strand of 

length 2 m are placed at the midpoint of the beam, like the previous example. 
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Figure 3: Damaged beam subjected to a 2-alxle moving load. 

The beam is modelled in code_Aster, an Open Source FEM software. The FEM model has 40 

linear beam elements, which follows the Euler-Bernoulli beam theory. The transient response is 

calculated on a generalized basis, using Newmark’s scheme for temporal integration with       

and      . The maximum frequency taken into account is up to 100 Hz. The sampling frequency 

of the responses is set to be 100 Hz, which is common to most optical strands in service. In this 

parametric study, we investigate 2 cases:  

1. The damaged zone is located at the center of the beam:       . Its length    and the 

reduction of stiffness     are of various values. 

2. The length of the damage is fixed at       , its position    and the reduction of stiffness 

    change (Fig. 3). 

Aligner à droite le paragraphe ci-dessous 

           Figure 4 shows the dependence of relative change on    as a function of the length of the 

damage and the reduction of the stiffness     in case 1. When the length of the damage excesses 

the length of the optical strand, the coefficient    remains constant (Fig. 4a). We can also see this 

on Fig 4b, the curves that correspond to            are coincident. When the stiffness reduction 

is small (    ), the relative change of    varies linearly in terms of    . Over this value, the 

change on    is more sensitive to the level of the damage.  

 
(a) 

 
(b) 

Figure 4: Case 1: Relative change of the coefficient    as a function of (a): the length of the damage 

   and (b): reduction of stiffness    . 

Figure 5 shows the results of case 2. When the damage is located at midspan of the beam, the 

change on    is maximal (Fig 5b.). On Fig 5b., we see that the curves corresponding to        or 

       are very close, because they have the same overlaying length (    ). When the damage 

is not covered by the optical strand, the coefficient    does not change. 
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(a) 

 
(b) 

Figure 5: Case 2: Relative change of the coefficient    as a function of (a): the position of the 

damage    and (b): reduction of stiffness    . 

In both cases, the estimated distance obtained from the optimization procedure is     
    m, The accuracy is equal to 1.67 %. 

CONCLUSION 

In this paper, we have presented a novel method that allows to detect the presence of a 

damage on a simply supported beam and the distance between axles of a vehicle. Numerical results 

demonstrate the sensitivity of the proposed method to damage. In the case of an intact structure, the 

method can be used to determine the vehicle’s load.  
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