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Abstract. Railway tracks are subjected to heavy repeated loads due to the train traffic. These
loads can damage the track and especially its supports. To compute the behavior of railway
tracks, many authors used a periodicity hypothesis, which is broken by the presence of a dam-
aged zone. Researchers proposed different analytical or numerical methods to compute the
dynamics of such structures. Analytical methods permit low numerical cost computations of
the track dynamics, but are limited to very simple representations of the track, whereas numer-
ical methods allow the use of much more detailed representations of the track but with higher
numerical cost.

In most regions, railway tracks can be modeled as periodic structures. Several methods
take advantage of this periodicity to limit the numerical cost for the computation of the track
dynamics. Among these methods, the Wave Finite Element (WFE) method was initially created
to compute free vibrations in periodic structures. This method was improved to compute the
dynamic response of periodic structures subjected to any kind of loads. In recent development,
the authors adapted the WFE method to compute the response of structures composed of two
semi infinite periodic zones linked by a central zone with different mechanical properties.

In this paper, the results obtained with an analytical method will be compared to results
obtained with the WFE method for the computation of the dynamic responses of different bal-
lastless railway tracks such as healthy and damaged tracks. In these computations, the tracks
will be subjected to constant moving loads representing the load applied by a train wheel. In
the WFE results, the rail, the supports, and the supporting concrete slabs are represented with
a three-dimensional model. A special focus will be made on the state of stress of the different

Keywords: Wave Finite Element Method, Railway, Dynamics, Moving loads, Transition zones,
Damaged and reinforced tracks.
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materials which constitute the tracks. A failure criterion will be computed at components scale
for the different tracks simulated. This criterion can then be used to compute the likeliness of
long-term fatigue of the track components.
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1 Introduction

During their exploitation, railway tracks are subjected to heavy repeated loads leading to
fatigue damages. Numerical simulations can be conducted to understand the mechanical behav-
ior of railway tracks and to anticipate their degradation. To limit the cost of this computation,
several authors modeled railway tracks as periodic structures. With this periodicity hypothe-
sis, authors proposed both analytical [1-4] and numerical [5-8] models for computing railway
tracks dynamics.

In many cases the track contains portions with different mechanical properties, which breaks
its periodicity. These different mechanical properties can come from transition between portions
with different natures — like ballasted to ballastless tracks — but also from local damage or
reinforcement of the track. To simulate such tracks, one have to use tools which takes into
account the periodicity breakage.

In 2017, Hoang et al. [9] proposed an analytical model to compute the response of a railway
track resting on a non-uniform foundation subjected to constant moving loads. In this model,
the rail is represented by a Euler beam and its supports by mass-spring-dampers systems. This
model was then reused by Tran ef al. [10]. Claudet ef al. [11] developed a similar model
representing the rail by a Timoshenko beam.

In recent years, several authors proposed numerical models of railway tracks containing
periodicity breaks [5, 12-16]. Among them, Claudet et al. [16], in COMDYN 2021, proposed
a method to compute the mechanical response of structures constituted of two semi-infinite
periodic structures linked by a central part and subjected to moving or fixed loads. To do so,
the authors combined the Wave Finite Element (WFE) method — for the periodic zones — and
classical Finite Element Method (FEM) — for the central zone. In this method, the WFE method
enables taking into account the infinite nature of the geometry. In the presented example, this
method was used to simulate a damaged railway track using a one dimensional model.

In the present article, the mechanical behavior of tracks containing one damaged support is
studied. A special focus is done on evaluating the level of stresses in the tracks’ components
depending on the level of degradation of the damaged support. For this study, analytical results
will be compared to numerical ones. The analytical results are obtained with the method pro-
posed by Hoang ef al. [9] and improved by Claudet et al. [11]. The numerical model uses the
WEFE method proposed by Claudet et al [16] in COMDYN 2021. These numerical results uses
a fine three-dimensional model of the damaged tracks.

2 Methods used

This section briefly describes the two methods used in the present article to compute the
dynamical response of damaged railway tracks. In the considered tracks, each support is con-
stituted of a reinforced concrete block linked to the rail and the underlying concrete slab by
two elastic stages. The first elastic stage is situated between the rail and the concrete block and
is called rail pad. The second one, situated between the concrete bloc and the slab, is called
undersleeper pad.

2.1 Analytical method

In the analytical method proposed by Claudet ez al. [11], in healthy zone, the track is rep-
resented by a periodically supported Timoshenko beam. The beam represents the rail and the
supports are modeled by mass-springs-dampers systems (see figure 1).

Claudet et al. supposed the track contains a finite number of supports with varying spacings
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Figure 1: Periodically supported beam model.

or dynamic stiffnesses. This structure is subjected to constant loads (); situated at v = —D);
at t = 0. These loads are moving at a constant speed v. To compute the response of this
structure, the authors considered an auxiliary problem of the response of a beam resting on a
repetition of a set of m supports. The length of the structure’s pattern is noted L. Figure 2
gives a representation of the true problem and the auxiliary problem (with m = 5) for a track
containing one damaged support.

ﬂ S
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Figure 2: Railway track containing one damaged support. True problem (top), auxiliary prob-
lem with m = 5 (bottom).

The authors proved that, at a given frequency w and a given position x, denoting Rp(w) the
force applied by the support p, the rail deflection w is given by:

m—1
A - jwPl=2 —i¥r
w(z,w) = Z Ry (w)e“ 5 n(pl — x,w) — n(0,w)Qw)e ™ (1)
p=0
Where,
(. 0) = ey Cisin (L —a) + e~ sin A\
MO =BT 2+ 02) | h cos L\, — cos L

Cysinh Ao (L — z) + e sinh Ao
Ao cosh LAy — cos %

~

K

polL 1 —iw2i

= — O . v
Q(w) . n(0,w) ]E:l Qe
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With [ the beam’s inertia, GG its shear modulus and S its section, x its Timoshenko shear

coefficient and F the Young modulus of the beam’s material, p its density.
This leads to the following system:

Cipg=1-

poL

~
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: — : . =mQ| . |+ : (2
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Which can be rewritten in the following matricial form:
CR=1Ql+w (3)

The problem is then closed using the dynamic stiffness k,(w) of each support of the pattern,

~

giving: —k,(w)(r,,w) = Ry(w). Using D = —diag(1/ko, ..., 1/ky 1), one can write:
R=0A"1 4)

Where A =1, ' (C+ D).

To solve the auxiliary problem, one can directly use Eq. (4) or the iterative procedure pre-
sented in [11]. It is considered that, if m (respectively L) is large enough, then, the solution on
one pattern in the auxiliary problem is close to the solution on the same m supports in the real
problem.

2.2 Numerical method

Being based on a very simplified representation of the track, the previous model can not give
access to stresses and strains at a fine scale. In this aim, in the present article, the numerical
method proposed by Claudet ef al. [16] is used to compute the mechanical response of railway
transition zones. In this method, the structure is divided into two semi-infinite periodic zones
— called right zone and left zone — and a central finite zone with no special property — called
transition zone. The obtained geometry is represented in Figure 3.

To compute the mechanical behavior of the obtained structure, the authors combined the
Wave Finite Element (WFE) method in the periodic zones with a Finite Element dynamic equi-
librium relationship in the transition zone.

2.2.1 The Wave Finite Element (WFE) method

The WFE method consists in reducing the computation of the mechanical behavior of a
periodic structure to a much smaller wave problem at one boundary of one of its patterns. The
main steps of this method are described in the following.
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Left Transition Right

Figure 3: Transition zone between two semi-infinite periodic railway tracks.

In the frequency domain, using the Finite Element Method, the dynamic equilibrium of one
pattern can be written. Denoting g(") the degrees of freedom of the pattern, F™ the external
forces applied on this pattern and D its dynamic stiffness matrix, the following equation is
obtained:

21] QJL QIR q, F,

gu QLL QLR 9, | = F, &)

D, Dpr Dpp g Er
Where the subscripts ;, 1, and g respectively stand for inner nodes, left boundary and right
boundary nodes.

In the WFE method this equation is transformed into the following propagation equation:

H(n+1) — éﬂ(n) + b(n) (6)
Where -
ao — |9 w_ | uL
- _F(n) ’ = D F(n) F(”)
=L =f1— =0R

S, Qq D D and Fé 1, are defined in the works of Hoang et al. [17] or Claudet et al. [8, 16].
Making use of the propagation equation (6) to compute the mechanical response of a periodic
structure, power of S matrix appears. To compute the power of S matrix, authors compute the

eigenvectors of S. They usually separate eigenvectors {qb } corresponding to eigenvalues {/;}

whose modulus are smaller than 1 and eigenvectors {gb } corresponding to eigenvalues {uj}

whose modulus are greater than 1.
Then the basis {® @} is defined as: & = [¢,...¢ ] and @* = [¢]...¢"]. Using the

subscript 7, (respectively ") for the components correspondlng to the degrees of freedom
(DoF) (resp the loads), leads to Eq. (7).
o [g : g] -
- N

Using the same sign convention as in [6, 8, 16], u™ and b™ can be written in this wave
basis:
- gg(fﬂ _ 2* g*(n)

8
b~ 2Q)) - 2 Q" v
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With this notations, Hoang et al. [6] proved:

. « k *
gg) - [(g 2qT QLI + qu QRI) Eg ) B qu E((akg]

0 = | (T T k) _ T p®)
93 B Kg gq 2“ +$q DRI) F; gq E&R}

)

2.2.2 Problem closure

In the previous paragraph, the basic WFE equations were reminded. These equations allow
to reduce the mechanical behavior of a periodic structure to a wave problem at one of its bound-
aries. To close the problem, Claudet ef al. used the equilibrium relationship of the transition
zone. Using the same notations as before, this equilibrium relationship of this zone can be
written:

19 F;
D,|q |=|F (10)
q; Fp

Lets denote (0) the left boundary of the transition zone and (1) its right boundary — see

Fig. 3. Then, denoting with "’z subscript the right zone and ;" subscript the left zone, the
following propagation equations are obtained:

Vo210l =8 u +p™
u S,u b
(n—1) -1 _.(n) -1 (n—1) (11)
Vn<0u, =85 "u"-S"b
Writing,
) _ Y S *
E(l) - gL QL gL gL (12)
u’'=2, gR - 23 93
Claudet et al. proved that the dynamics of the structure is ruled by Eq. (13):
(D,c,-¢,)a=F (13)
Where, _
q, I 0 0 0 0 0
q=1Q;|,c =10 -2, 0 /) C =102, 0
Q, 0 0 2., 0 0 2., (1)
F, 0 |
Fo| -2, 22" | _p |, NF e QpY
For+ E%F > ke g'; 9}(“ 22@ PRy g'; 9}}(“ ]

In this equation, vector g contains the unknown of the problem. For known loads, the series
S, g’Z‘l ggk) and Y 77, g’; ggk) can be computed using Eq. (9).

3 Results

In this section, the previous models are applied to the computation of the dynamic responses
of ballastless railway tracks containing a single damaged support.
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To simplify interpretation and the comparison between the two models, we assumed that the
structure is subjected to a single constant load ¢ = 100 kN moving at a constant speed v. Due
to the support degradation, the neighboring supports tend to be overloaded. The aim of this
section is to estimate the overload.

In the presented results, the damage level is represented by a decrease in the support dynamic
stiffness. More precisely, the dynamic stiffness of the two elastic stages of the damaged support
is multiplied by a coefficient lower than one. This choice is justified by the low stiffness of the
elastic stages compared to the other components in the studied track. This choice also eases the
comparison between both models.

Five levels of degradation of the damaged support are considered: 0% — healthy track —, 25%,
50%, 75% et 99% — almost completely broken support. For both methods, the computation is
made with a maximal frequency of 300 Hz and a 1 Hz frequency step.

In the numerical model, the rail, the reinforced concrete block, the two elastic pads and the
underlying concrete slab are finely modeled in three dimensions. The used geometry and mesh
are represented in figure 4. The same mesh is used in the three zones. Only the stiffness of each
elastic pad is changed in the transition zone.

29

Figure 4: Cross-sectional view of the geometry and mesh of one pattern.

The parameters used to describe the tracks in the analytical and numerical models are given
in table 1.

3.1 Analytical results

In this computation, the damaged support is numbered support 0. In Figure 5, the maximal
force applied on each support is plotted against the support number for the different damage
states of support 0. As expected, the more the central support is damaged, the more the neigh-
boring supports are loaded. In every case, the overload is mainly distributed to supports —1 and
+1.

Table 2 gives the maximum force applied on supports —2 to 2 and on support 20 which is
supposed to be far enough from the damage to be independent of the damage level. These
results are given for the different damage levels of the damaged support. The small asymmetry
between supports before and after the damaged one is due to damping in the under-sleeper and
under-rail pads.
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Parameter Value
Steel density 7.8kg/dm®
Steel Young modulus 210 GPa
Rail inertia 3.038 x 10~°m?
Timoshenko coefficient 0.4
Rail section 7.64 x 1073 m?
Shear modulus 8.077 GPa
Train speed 37m-st
Support spacing 0.6m
Concrete Young modulus 50 GPa
Concrete density 2.4kg/dm?
Under-rail pad Young modulus 20 MPa
Under-rail pad stiffness 192 MN - m~!
Under-rail pad density 1kg/dm?®
Under-rail pad dampening 1.97MN-s-m™!
Under-sleeper pad Young modulus 20 MPa
Under-sleeper pad stiffness 26.4 MN - m™!
Under-sleeper pad density 1 kg/dm?

Under-sleeper pad dampening 0.17MN -s-m™!

Table 1: Mechanical parameters of the track components.

50 : : : - 50~

40t 1 40¢f

Rpar (kN)

20 1

10 1
I Timoshenko I Timoshenko
I Euler-Bernoulli I Euler-Bernoulli
I T I T e I 0 [ | 0 |5
-20 -10 0 10 20 -20 -10 0 10 20

Support number Support number

Figure 5: Maximum load applied on each support for a damage level of 0.25 (left) and 0.99
(right).

3.2 Numerical results

The numerical method developed by Claudet et al. [16] gives access to the displacements at
every nodes in the mesh. These displacements are numerically derived to compute the strains
in each element. Then, using Hooke law, the stress tensor is computed. Finally, this stress is
used to compute a failure criterion in every element of the mesh. As the concrete has different
strengths in tension o, and compression o, the Drucker-Prager yield criterion was chosen. This
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Damage level Support number
-2 -1 0 1 2 20
0 36.1 36.1 36.1 36.1 36.1 36.1
0.25 36.50 37.6 29.7 377 36.3 36.1
0.50 369 394 21.8 39.7 36.6 36.1
0.75 374 415 12 421 369 36.1
0.99 379 445 0.5 453 372 36.1

Table 2: Maximal loads (kN) applied on each support in function of the damage level.

criterion can be expressed as follows:

= (V3h - BL) /A (15)

Where .J; and [; are the usual stress tensor invariants and A and B are defined by:

A=2 Uft
O¢ O¢

L _ oo, (16)
Oc+ 0

This failure criterion compares the stress computed in each element to the strenghts of their
constitutive material. A value of 1 means the material will experience plastic yield in one cycle.

Drucker-Prager Criterion
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Figure 6: Drucker-Prager failure criterion at ¢ = 0 for a damage level of 0.25 (top) and of 0.99
(bottom).

Figure 6 gives a cutted view of the computed Drucker-Prager criterion at ¢ = 0 for different
damage levels of the damaged support. The localization of the maximum of this criterion shows
a strong agreement with damages observed in real track supports. As expected, more loaded
supports experience a higher Drucker-Prager criterion. This phenomenon can lead to early
fatigue damage and, therefore, damages propagation along the track.

As previously, we numbered the different supports with number 0 corresponding to the dam-
aged support. Table 3 gives the maximum value of the Drucker-Prager criterion in function
of the support number and the damage level of the damaged support. Once again, the overload
seems to be mainly supported by the two closest supports. This overload grows with the damage
level.
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Damage level Support number
-3 -2 —1 0 1 2 3
0 0.173 0.173 0.174 0.173 0.174 0.173 0.173
0.25 0.173 0.175 0.181 0.141 0.182 0.175 0.173
0.5 0.173 0.177 0.191 0.103 0.192 0.177 0.173
0.75 0.173 0.179 0.204 0.057 0.204 0.179 0.174
0.99 0.173 0.182 0.219 0.004 0.221 0.182 0.174

Table 3: Maximum value of Drucker-Prager criterion in function of support number and damage
level.

3.3 Comparison of the results given by the two methods

The analytical method allows a rapid computation of the maximal force applied on each sup-
port. On the other hand, with a much higher cost, the numerical can give access to the Drucker-
Prager failure criterion at components scale. In Figure 7, the maxima of Drucker-Prager failure
criterion for each support are plotted in function of the maxima of forces computed with the an-
alytical model. These two values show a strong linear correlation with a regression coefficient
R? = 0,998. This result proves that, in the case a a track containing a single damaged support,
the analytical method can be a good method with low cost to assess the stresses in the supports.

Drucker-Prager

0.25

0.27

0.15¢

CD Pmazx

017

0.05¢

0 10 20 30 40 50

Frar (KN)
Figure 7: Temporal maximum Drucker-Prager failure criteria computed with the numerical
method in function of maximum loads computed with the analytical one. Results and linear
regression.

4 Conclusion

In this article, we studied the load level of the different supports in a ballastless railway track
containing one damaged support. To compute these load levels, two different methods were
used. The first one is based on a very simplified representation of the track whose response
is computed analytically. Being analytical, this method allows very quick computation of the
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track behavior. To access finer results — such as stresses and strains at the component scale — we
used a numerical method. With this method, the use of a fine three-dimensional representation
of the track implies a much higher numerical cost.

With the numerical method, the Drucker-Prager failure criterion was computed at the compo-
nent scale with a three-dimensional geometry. The localization of the maxima of this criterion
was in strong agreement with the damages observed in real tracks.

In the final section, the analytical results were compared with the numerical ones. We found
that the maximum loads per support analytically computed are in strong linear correlation with
the maximum Drucker-Prager criterion numerically computed. This correlation demonstrates
the analytical method’s usefulness in providing a quick assessment of stresses in the different
materials of the supports.
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