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Abstract

When a Markov kernel P satisfies a minorization condition and nested modulated
drift conditions, Jarner and Roberts provided in [JR02, Th. 3.2] an asymptotic poly-
nomial convergence rate in weighted total variation norm of Pn(x, ·) to the P -invariant
probability measure π. In connection with this polynomial asymptotics, we propose ex-
plicit and simple estimates on series of such weighted total variation norms, from which
an estimate for the total variation norm of Pn(x, ·) − π is deduced. The proofs are self-
contained and based on the residual kernel and the Nummelin-type representation of π.
No coupling technique is used.

AMS subject classification : 60J05

Keywords : Drift conditions; Invariant probability measure; Minorization condition;
Residual kernel

1 Introduction

Let (X,X ) be a measurable space, and let M+ (resp. M+
∗ ) denote the set of finite nonneg-

ative (resp. positive) measures on (X,X ). For any µ ∈ M+ and any µ-integrable function
g : X→R, µ(g) denotes the integral

∫
X gdµ. Any measurable function V : X→[1,+∞)

is called a Lyapunov function. For every measurable function g : X→R, we set ∥g∥V :=
supx∈X |g(x)|/V (x) ∈ [0,+∞], and we define the space

BV := {g : X→R,measurable such that ∥g∥V < ∞}.

If (µ1, µ2) ∈ (M+)2 is such that µi(V ) < ∞, i = 1, 2, then the V -weighted total variation
norm ∥µ1 − µ2∥′V is defined by

∥µ1 − µ2∥′V := sup
∥g∥V ≤1

∣∣µ1(g)− µ2(g)
∣∣. (1)

If V = 1X, then ∥ · ∥′1X = ∥ · ∥TV is the standard total variation norm. Finally recall that a
nonnegative kernel K(x, dy) ∈ M+, x ∈ X, is said to be a Markov (respectively submarkov)
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kernel if K(x,X) = 1 (respectively K(x,X) ≤ 1) for any x ∈ X. We denote by

∀x ∈ X, (Kg)(x) :=

∫
X
g(y)K(x, dy)

the functional action of K, where g : X→R is any K(x, ·)−integrable function. For every
n ≥ 1 the n−th iterate kernel of K(x, dy) is denoted by Kn(x, dy), x ∈ X, and Kn stands for
its functional action. As usual K0 is the identity map I by convention.

Throughout this paper, P is a Markov kernel on (X,X ) satisfying the following minoriza-
tion condition (S) (e.g. see [MT09])

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x), (S)

(i.e. S is a small-set of 1-order for P ), and we denote by R the associated submarkov residual
kernel:

∀x ∈ X, ∀A ∈ X , R(x,A) := P (x,A)− ν(A)1S(x). (2)

Moreover let us introduce the following well-known nested modulated drift conditions: There
exists a collection {Vi}mi=0 of Lyapunov functions with m ≥ 1 such that

∀i ∈ {0, . . . ,m− 1}, Vi+1 ≤ Vi and ∃bi > 0, PVi ≤ Vi − Vi+1 + bi 1S . (D(V0 : Vm))

The following statement was proved in [JR02, Th. 3.2], also see [FM03, Th. 1]:

Theorem 1 Assume that P is ψ−irreducible and aperiodic for some ψ ∈ M+
∗ and that

P satisfies Conditions (S) and D(V0 : Vm) with m ≥ 1. Let π denote the P−invariant
probability measure. Then

∀x ∈ X, lim
n→+∞

(n+ 1)m−1
∥∥Pn(x, ·)− π

∥∥′
Vm

= 0. (3)

In [JR02, Th. 3.2] the condition Vi+1 ≤ Vi is not assumed and the modulated drift inequalities
write as PVi ≤ Vi − Vi+1 + bi 1Si for some petite set Si. However the assumption Vi+1 ≤ Vi
is by no means restrictive since the Lyapunov functions Vi can be slightly modified in order
to satisfy this condition, e.g. see Comment 2.6.

Under Assumptions (S) and D(V0 : Vm) with m ≥ 2, the purpose of this work is to
provide quantitative estimates in connection with Property (3). Specifically we prove that
there exists a positive function Um ∈ BV0 with a computable bound ĉm of ∥Um∥V0 such that

∀x ∈ X, Sm−2(x) :=

+∞∑
n=0

(n+ 1)m−2∥Pn(x, ·)− π∥′Vm
(4a)

≤ Um(x) (4b)

≤ ĉm V0(x), (4c)

and ∀x ∈ X, ∀k ≥ 0,
∥∥P k(x, ·)− π

∥∥
TV

≤ 2m−1

km−1
Um(x). (4d)

Estimates (4b)-(4c) are precisely stated in Section 2 (see Theorem 2.2) and proved in Sec-
tion 3. Estimate (4d) is deduced from (4b) in Corollary 2.3. The key idea to prove (4b)-(4c) is
that, for any i = 1, . . . ,m, the norm ∥

∑+∞
n=0(n+1)i−1RnVi∥V0 where R is the residual kernel
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in (2), can be simply bounded using AssumptionsD(V0 : Vm) (see Proposition 2.1). Then, the
link between Pn and Rn (see (6)) and the Nummelin-type representation of π (see (5)) enable
us to obtain (4b) with Um expressed in terms of the functions Φi :=

∑+∞
n=0(n+1)i |PnϕS | for

i = 1, . . . ,m− 2 with ϕS := 1S − π(1S)1X. Moreover the norms ∥Φi∥V0 for i = 1, . . . ,m− 2,
can be explicitly bounded via recursive inequalities involving the data S, ν, m, V0 and bi of
Conditions (S) and D(V0 : Vm). This is illustrated for m = 2 and m = 3.

For a general overview on convergence rates of Pn(x, ·) to π using drift conditions, we
refer to the books [MT09, DMPS18, and the references therein]. Recall that the nested
modulated drift conditions D(V0 : Vm), first used in [TT94], were proved to hold in [JR02]
under the single drift condition PV ≤ V − cV α + b1S with some Lyapunov function V and
some constants α ∈ [0, 1), b, c > 0 (also see [FM00]), and in [FM03, Prop. 4] under the more
general single sub-geometric drift condition PV ≤ V − ϕ ◦ V + b1S with suitable function ϕ.
Here, our basic assumption is directly D(V0 : Vm), which must be implemented in practice
anyway, regardless of the form of the starting single drift condition, see [FM03, Rem. 3].

To the best of our knowledge there are very few works providing computable rates of
convergence for series as defined in (4a). Using a coupling construction in the context of
subgeometric Markov chains, such an issue is addressed in [AFV15, Th. 1] for series of the form∑+∞

n=0 r(n)|(Png)(x)− (Png)(x′)| where (r(n))n≥0 is some sequence of positive real numbers
related to a subgeometric drift condition. Then, under Jarner-Roberts’s drift condition PV ≤
V − cV α + b1S , the case of series of the form

∑+∞
n=0(n + 1)ξα |(Png)(x) − π(g)| for some

ξα > 0 is covered by [AFV15, Cor. 1] (see Comment 2.6 for details). For Markov kernels
satisfying Conditions (S) andD(V0 : Vm), Theorem 2.2 in Section 2 seems to be the first result
providing a computable convergence rate for the series Sm−2(x) in (4a), even for S0(x) =∑+∞

n=0 ∥Pn(x, ·) − π∥′V2
. In fact, if P satisfies Conditions (S) and D(V0 : V1) (i.e. m = 1)

and if P is ψ−irreducible, aperiodic and π(V0) < ∞, we know from [MT09, Th. 14.0.1] that
there exists a constant c such that, for every x ∈ X, we have S0(x) ≤ c (1 + V0(x)). But
the constant c was previously unknown. Here, under Conditions D(V0 : V2) (i.e. m = 2)
and without assuming π(V0) < ∞, this inequality is derived from (4c), and the positive
constant ĉ2 in (4c) is easily computed from the data S, ν, V0, b0 and b1 of Conditions (S)
and D(V0 : V2) (see (22) and Comment 2.5 for further comparisons with [MT09, Th. 14.0.1]).
Actually we prove that, for any m ≥ 2, the constant ĉm in (4c) can be computed from the
data S, ν, m, V0, and bi of Conditions (S) and D(V0 : Vm). The use of both the residual
kernel R in (2) and the Nummelin-type representation (5) of π is proved to be relevant for
such a study, as already pointed out in [HL23a] for dealing with Poisson’s equation under
Assumptions (S) and D(V0 : V1).

Following on from the pioneering works [NT83, TT94], explicit bounds for ∥Pn(x, ·)−π
∥∥
TV

have been proposed in [FM03, DMS07] thanks to coupling methods under the sub-geometric
drift condition PV ≤ V − ϕ ◦ V + b1S (recall that this encompasses Jarner-Roberts’s drift
condition). Also see [DFMS04] for various statements and examples on different rates of
convergence, and [But14, DFM16] for rates of convergence in Wasserstein distance. Note
that the polynomial asymptotics (3) ensures that ∥Pn(x, ·) − π∥TV ≤ c(x)/nm−1 for every
x ∈ X, but with unknown constant c(x) to our knowledge. In particular, although the sub-
geometric drift condition induces nested modulated drift inequalities, the explicit bounds
of ∥P k(x, ·) − π∥TV in [FM03, Th. 2] and [DMS07, Th. 2.1] do not seem to provide any
information on the quantitative polynomial rate of convergence in (3). Here Issue (4d) is
directly linked to the polynomial asymptotics (3), and Estimate (19) in Corollary 2.3 of
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Section 2 seems to be the first one providing c(x) = cV0(x) with a computable constant c
under Conditions D(V0 : Vm).

Therefore, we propose a self-contained method for obtaining quantitative results on the
asymptotic result [JR02, Th. 3.2]. Note that the coupling technique is not used. Although
the bounds obtained in Theorem 2.2 and Corollary 2.3 have a much simpler formulation than
in [AFV15] and [FM03, DMS07], we do not claim that they are numerically better.

2 The statements

Let us recall that if P satisfies Condition (S), then a necessary and sufficient condition
for P to admit an invariant probability measure π on (X,X ) such that π(1S) > 0, is that∑+∞

k=0 ν(R
k1X) <∞. Actually, under any of these two equivalent conditions,

π := µ(1X)
−1 µ with µ :=

+∞∑
n=0

νRn ∈ M+
∗ (5)

is an P−invariant probability measure, and we have µ(1S) = 1 and π(1S) = µ(1X)
−1 > 0.

The Nummelin-type representation (5) of π is well-known under various assumptions on P ,
e.g. see [Num84, Th. 5.2, Cor. 5.2]), [MT09, Chap. 10]), and see [HL23b] for a simple
proof under the sole Condition (S). The assumptions in all the next statements ensure that
the condition

∑+∞
k=0 ν(R

k1X) < ∞ holds. Thus, throughout the paper, π is the P−invariant
probability measure such that π(1S) > 0 given in (5). Also recall that the key formula linking
the kernels Pn, Rn and the non-negative measures ν(Rk−1·) is from [HL20, Prop. 2.1]

∀n ≥ 1, Pn = Rn +

n∑
k=1

ν(Rk−1·)Pn−k1S . (6)

To prove that the series in (4a) converges, we first study the following functions:

∀i ∈ {1, . . . ,m}, ∀x ∈ X, Ri(x) :=
+∞∑
n=0

(n+ 1)i−1 (RnVi)(x).

To that effect, under Conditions (S) and D(V0 : Vm) we set

∀i ∈ {0, . . . ,m− 1}, di := max

(
0,
bi − ν(Vi))

ν(1X)

)
(7)

with constants bi given in D(V0 : Vm). Obviously, we have di = 0 when bi ≤ ν(Vi). In
particular, if S is an atom for P (i.e. ∀x ∈ S, P (x, ·) = ν), then di = 0 for 0 ≤ i ≤ m − 1.
Moreover define (Dℓ)

m−1
ℓ=0 as follows:

D0 := 1 + d0 and ∀ℓ ∈ {1, . . . ,m− 1}, Dℓ := (1 + dℓ)

ℓ−1∑
j=0

Cj
ℓDj . (8)

The following Proposition 2.1 is proved in Subsection 3.1.
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Proposition 2.1 Assume that P satisfies Condition (S) and D(V0 : Vm) for some collection
{Vi}mi=0 of Lyapunov functions with m ≥ 1. Then we have for every i ∈ {1, . . . ,m}

+∞∑
n=0

(n+ 1)i−1RnVi ≤ Di−1 V0 (9a)

+∞∑
n=0

(n+ 1)i−1 ν
(
RnVi

)
≤ Di−1 ν(V0) <∞. (9b)

Note that, if P satisfies Conditions (S) and D(V0 : Vm), then we deduce from (9b) applied
with i = 1 that

π(V1) <∞, so that π(Vi) <∞ for i = 1, . . . ,m. (10)

Now, to obtain the positive function Um ∈ BV0 in Inequality (4b) under Conditions (S)
and D(V0 : Vm) with m ≥ 2, we need to study the following functions for i ∈ {0, . . . ,m− 2}:

∀x ∈ X, Φi(x) :=

+∞∑
n=0

(n+ 1)i
∣∣(PnϕS

)
(x)

∣∣ where ϕS := 1S − π(1S)1X. (11)

Recall that, for every m ≥ 2, there exists {aj,m}m−1
j=1 ∈ Rm−1 such that

∀k ≥ 1, Σm−2
k :=

k∑
n=1

nm−2 =
m−1∑
j=1

aj,m k
j , (12)

and that the real numbers {aj,m}m−1
j=1 can be computed by induction on m using binomial

expansion. Next, using Dj ’s in (8), define the following positive constants

∀ℓ ∈ {1, . . . ,m− 1}, Eℓ :=
ℓ∑

j=1

aj,ℓ+1Dj . (13)

The next theorem is proved in Subsection 3.2.

Theorem 2.2 Assume that P satisfies Conditions (S) and D(V0 : Vm) for some collection
{Vi}mi=0 of Lyapunov functions with m ≥ 2. Then the following inequalities hold in [0,+∞]:

∀g ∈ BVm , ∀x ∈ X, Sm−2(g, x) :=
+∞∑
n=0

(n+ 1)m−2
∣∣(Png)(x)− π(g)

∣∣
≤ ∥g − π(g)1X∥Vm Wm(x) (14)

and ∀x ∈ X, Sm−2(x) :=

+∞∑
n=0

(n+ 1)m−2
∥∥Pn(x, ·)− π

∥∥′
Vm

≤ θmWm(x) (15)

where θm := 1 + π(Vm)∥1X∥Vm and the function Wm is

Wm = Dm−2 V0 + ν(V0)

[ m−2∑
j=0

Cj
m−2Dj Φm−2−j + π(1S)Em−1 1X

]
. (16)
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If π(1S) > 1/2, then for every i ∈ {0, . . . ,m− 2} we have Φi ∈ BV0 and (with the convention∑0
j=1 = 0)

Φi ≤ 1

2π(1S)− 1

(
DiV0 + ν(V0)

i∑
j=1

Cj
i DjΦi−j + π(1S)ν(V0)Ei+11X

)
. (17)

Thus, if P satisfies all the assumptions of Theorem 2.2, then Estimates (4b)-(4c) in Section 1
are valid with Um(x) = θmWm(x). Indeed, Inequality (4b) is nothing else than (15). To
derive Inequality (4c), first use (16) to get

∥Wm∥V0 ≤ Dm−2 + ν(V0)
m−2∑
j=0

Cj
m−2Dj ∥Φm−2−j∥V0 + π(1S) ν(V0)Em−1∥1X∥V0 .

Next, if π(1S) > 1/2 then the norms (∥Φi∥V0)
m−2
i=0 are recursively bounded from (17) by

∥Φi∥V0 ≤ 1

2π(1S)− 1

(
Di + ν(V0)

[ i∑
j=1

Cj
i Dj ∥Φi−j∥V0 + π(1S)Ei+1∥1X∥V0

])
(18)

from which the constant ĉm in (4c) is deduced. In the atomic case, recall that the di’s (see
(7)) are zero, so that the constants Di defined in (8) and used in the previous estimates
simply depend on the integer m. We refer to Comment 2.4 for a discussion of the technical
condition π(1S) > 1/2. Finally note that ∥1X∥Vm ≤ 1 since Vm ≥ 1 and that π(Vm) ≤ bm−1

from PVm−1 ≤ Vm−1 − Vm + bm−1 1S and the P−invariance of π (recall that π(Vm−1) < ∞
from (10)). Thus the positive constant θm of Theorem 2.2 satisfies

θm ≤ 1 + bm−1.

Corollary 2.3 Under all the assumptions of Theorem 2.2, we have

∀k ≥ 0,
∥∥P k(x, ·)− π

∥∥
TV

≤ 2m−1 θm
km−1

Wm(x) (19)

with θm and Wm given in Theorem 2.2.

Proof. Note that Vm in D(V0 : Vm) can be replaced with the function 1X since Vm ≥ 1X. Let
x ∈ X. Recall that the sequence (∥Pn(x, ·)− π∥TV )n is non-increasing. Let j ≥ 0. Then we
deduce from (15) that

(j + 1)m−1
∥∥P 2j(x, ·)− π

∥∥
TV

≤
2j∑
n=j

(n+ 1)m−2
∥∥Pn(x, ·)− π

∥∥
TV

≤ θmWm(x)

thus ∥∥P 2j(x, ·)− π
∥∥
TV

≤ 2m−1 θm
(2j)m−1

Wm(x).

Next, using
∑2j+1

n=j+1, we obtain the same inequality for ∥P 2j+1(x, ·)−π
∥∥
TV

replacing (2j)m−1

with (2j + 1)m−1. This proves (19). □
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Comment 2.4 The condition π(1S) > 1/2 is a technical assumption which is only used to
get the estimate (17) of Φi (see (30)). Let us explain why this condition is not restrictive
in general and how the multiplicative constant (2π(1S) − 1)−1 can be explicitly controlled.
Assume that P satisfies the drift condition PV ≤ V −W + b1S0 for some S0 ∈ X , b > 0 and
Lyapunov functions V ≥W . First note that this condition can be reduced to

b0 := sup
x∈S0

[
(PV )(x)− V (x) +W (x)

]
<∞ and PV − V +W ≤ 0 on S c

0 .

Consequently, for every S ⊃ S0, we have PV ≤ V −W + b01S (note that b0 only depends on
S0). Second observe that if π(V ) <∞ then

π(1S) ≥
mS

mS + b0 − 1
with mS := inf

x∈Sc
W (x) (20)

provided that mS > 1 − b0. This easily follows from b0 π(1S) ≥ π(W ) ≥ π(1S) +mS π(1Sc)
and π(1Sc) = 1 − π(1S). Thus, if mS →+∞ when S growths, then π(1S) > 1/2 for S large
enough. Moreover it follows from (20) that

1

2π(1S)− 1
≤ mS + b0 − 1

mS − b0 + 1
.

In general the Lyapunov functions Vi in Conditions D(V0 : Vm) are unbounded on X, excepted
possibly Vm which may be 1X, so that the above condition mS →+∞ is realistic when applied
to the couple (V,W ) = (Vm−2, Vm−1) for instance. Finally note that, for the choice of S
in practice, a trade-off must be found between the value of π(1S) and the mass ν(1X) of the
positive measure ν ≡ νS in Condition (S). Indeed, the larger the set S is, then the closer
π(1S) is to one, but the smaller the mass νS(1X) is, and so the bigger the values di in (7)
are.

Theorem 2.2 applies whenever explicit modulated drift conditions are known: for such
examples, e.g. see [FM00, FM03, DFM16] in the context of Metropolis algorithm, [LH07,
LH12] for queueing systems, [JT02] for Markov chains associated with the mean of Dirichlet
processes. Now let us detail the cases m = 2 and m = 3.

Case m = 2

Assume that P satisfies Condition (S) with π(1S) > 1/2 and D(V0 : V2) for some Lyapunov
functions V0, V1, V2. Note that Σ0

k := k, i.e. a1,2 = 1 in (12). We have E1 = D1 from (13).
Consequently it follows from (14) and (16) applied with m = 2 and from (17) with i = 0 that

∀g ∈ BV2 , ∀x ∈ X, S0(g, x) =
+∞∑
n=0

∣∣(Png)(x)− π(g)
∣∣ ≤ ∥g − π(g)1X∥Vm W2(x) (21)

≤ ∥g − π(g)1X∥Vm ĉ2 V0(x)

where

W2 = D0 V0 + ν(V0)D0Φ0 + π(1S)ν(V0)E1 1X ≤ c0V0 + c11X (22)

with c0 = (1 + d0)

(
1 +

ν(V0) (1 + d0)

2π(1S)− 1

)
c1 = ν(V0)D1

(
ν(V0) (1 + d0)

2π(1S)− 1
+ 1

)
and ĉ2 = c0 + c1∥1X∥V0

7



where D1 = (1 + d0)(1 + d1) and di = max(0, (bi − ν(Vi))/ν(1X)) for i = 0, 1. Similarly
Inequalities (15) and (19) hold with W2 defined in (22).

Comment 2.5 If P is ψ−irreducible, aperiodic, and satisfies Conditions (S) and D(V0 : V1)
with π(V0) < ∞, then we know from [MT09, Th. 14.0.1] that there exists a (non explicit)
constant c such that, for any x ∈ X, we have S0(x) ≤ c (1 + V0(x)). Recall that the condition
π(V0) < ∞ is not guaranteed under Assumptions D(V0 : V1) (we only know that π(V1) < ∞
from (10)). We do not need to assume π(V0) <∞ for (21), but Assumptions D(V0 : V2) are
required. Actually, Conditions D(V0 : V1) with the additional condition π(V0) < ∞ may be
close, or even identical, to Conditions D(V0 : V2) For instance, let (Xn)n≥0 be the following
so-called random walk on the half line X = [0,+∞)

X0 ∈ X and ∀n ≥ 1, Xn := max
(
0, Xn−1 +Wn

)
(23)

where {Wn}n≥1 is a sequence of R-valued i.i.d. random variables assumed to be independent
of X0 and to satisfy E[W1] < 0 and E[max(0,W1)] < ∞. Then it is well-known that Con-
ditions D(V0 : V1) hold with S = [0, s] for some s > 0 and with Lyapunov functions V0, V1
defined on X = [0,+∞) by V0(x) = 1 + x and V1(x) = c11X for some constant c1 > 0. More-
over, it follows from [JT03, Prop. 3.5] that the condition

∫
X x dπ(x) <∞, i.e. π(V0) <∞, is

equivalent to E[(max(0,W1))
2] < ∞, so that the last moment condition is required to apply

the statement [MT09, Th. 14.0.1]. However note that the condition E[(max(0,W1))
2] < ∞

is precisely what ensures that Assumptions D(V0 : V2) hold with V0(x) = (1 + x)2 and
Vi(x) = ci(1 + x)2−i for i = 1, 2 with some ci > 0 (e.g. see [JR02]). Accordingly, in this
example, the moment condition on W1 is the same for applying (21) or [MT09, Th. 14.0.1].

Case m = 3

Assume that P satisfies Condition (S) with π(1S) > 1/2 and Conditions D(V0 : V3) for some
Lyapunov functions V0, V1, V2, V3. Here we have Σ1

k = k(k + 1)/2, i.e. a1,3 = a2,3 = 1/2 from
(12). Thus we get from (8) and (13)

i = 0, 1, Di =

i∏
j=0

(1 + di), D2 = (1 + d2)(D0 + 2D1), E1 = D1, E2 =
D1 +D2

2

with di = max(0, (bi − ν(Vi))/ν(1X)) for i = 0, 1, 2. Consequently it follows from (14) and
(16) applied with m = 3 and from (17) with i = 0, 1 that

∀g ∈ BV3 , ∀x ∈ X,
+∞∑
n=0

(n+ 1)
∣∣(Png)(x)− π(g)

∣∣ ≤ ∥g − π(g)1X∥V3 W3(x)

≤ ∥g − π(g)1X∥V3 ĉ3 V0(x)

where

W3 = D1 V0 + ν(V0)D0Φ1 + ν(V0)D1Φ0 + π(1S) ν(V0)E2 1X ≤ c0V0 + c11X (24)

with c0 = D1

[
1 +

ν(V0)D0

2π(1S)− 1

]2
c1 = ν(V0)

[
E2 +

ν(V0)D1
2 +D0E2ν(V0)

2π(1S)− 1
+
ν(V0)

2D0D1
2

(2π(1S)− 1)2

]
ĉ3 = c0 + c1∥1X∥V0 .

Similarly Inequalities (15) and (19) hold with W3 defined in (24).
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Comment 2.6 (Comparison with [AFV15] under Jarner-Roberts’s drift condition)
Thoughout this comment, the Markov kernel P is assumed to satisfies the minoration condi-
tion (S). Recall that Jarner-Roberts’s drift condition introduced in [JR02] is: There exists a
Lyapunov function V such that

∃α ∈ [0, 1), ∃b0, c > 0, PV ≤ V − c V α + b0 1S . (25)

This is the most classical case leading to Markov kernels satisfying Conditions D(V0 : Vm),
also see [MT09, DMPS18, and the references therein]. Indeed P satisfies D(V0 : Vm) with
m ≡ m(α) := ⌊(1 − α)−1⌋ ≥ 1, where ⌊·⌋ denotes the integer part function on R, and with
the Lyapunov functions

Vm := 1X ≤ Vm−1 := am−1V
αm−1 ≤ · · · ≤ V1 := a1V

α1 ≤ V0 := a0V (26)

where α1 := 1 − 1/m ∈ [0, 1) and αi = (α1 − 1) i + 1 for i = 2, . . . ,m − 1 when m ≥ 2, and
where ai’s are explicit constants strictly larger than one, see [JR02, Proof of Th. 3.6]. For
the reader’s convenience, the construction of Vi’s is detailed in Appendix A. Hence, if m ≥ 2
and π(1S) > 1/2, then for any measurable and bounded g : X→R, i.e. g ∈ B1X, and for any
x ∈ X, Theorem 2.2 provides an explicit bound for

∑+∞
n=0(n + 1)m−2|(Png)(x) − π(g)|. For

instance the bounds (22) in case m = 2, or the bounds (24) in case m = 3, apply. Under
the drift condition (25) (and some additional minor assumptions), it is proved in [AFV15,
Cor. 1, homogeneous case with ξ = 1] that there exists a constant C > 0 such that for any
(x, x′) ∈ X2 and any g ∈ B1X

+∞∑
n=0

(n+ 1)m−1|(Png)(x)− (Png)(x′)| ≤ C ∥g∥1X
(
V (x) + V (x′)− 1

)
.

Thus, if π(V ) <∞, then Sm−1(g, x) ≤ C ∥g∥1X(V (x)+π(V )−1). The reason why Sm−1(g, x)
can be estimated in [AFV15, Cor. 1], while Theorem 2.2 only provides an estimate for
Sm−2(g, x), is the same as in Comment 2.5, that is: The condition π(V ) < ∞ is not guar-
anteed under Assumption (25) (we only know that π(V α) < ∞). Again note that the con-
dition π(V ) < ∞ is not required for using Theorem 2.2. Actually, assuming both (25) with
α = 1 − 1/m and π(V ) < ∞, is close to assuming Condition (25) with α = 1 − 1/(m + 1).
For instance, extending the arguments of Comment 2.5, it follows from [JT03, Prop. 3.5]
that the two last assumptions are identical for random walks on the half line. Note that
(25) with α = 1 − 1/(m + 1) implies D(V0 : Vm+1), so that for any g ∈ B1X the series∑+∞

n=0(n + 1)m−1|Png − π(g)| can be estimated too using Theorem 2.2, as well as the sums
studied in [AFV15] since

∀(x, x′) ∈ X,
+∞∑
n=0

(n+ 1)m−1|(Png)(x)− (Png)(x′)| ≤ Sm−1(g, x) + Sm−1(g, x
′)

from the triangular inequality. Series with the norms ∥Pn(x, ·)−π∥′Vm
(see (15)) and estimate

of type (19) are not studied in [AFV15]. Finally mention that the comparison between the
above constant C and that derived from Theorem 2.2 is not easy to address since the constant
C in [AFV15, Cor. 1] is not completely computed. However note that this constant C involves
the real number ε−1

ν = ν(1X)
−1 and the series c∗ :=

∑+∞
j=0(1 − ν(1X))

j
∏j

k=0(1 + δkM1) for

some (δk)k ∈ RN and some constantM1. The bounds in Theorem 2.2 also involve the constant
ν(1X)

−1 through di’s in (7), but it only requires to compute finitely many constants of the form∏j
k=0(1 + dℓ) (see (8)).
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3 Proofs

3.1 Proof of Proposition 2.1

Recall that the residual kernel R defined in (2) under Assumption (S) is a submarkov kernel.
The following simple result is from [HL23a, Lemma 2.2] and allows us to transform a modu-
lated drift condition for P into a simpler drift condition for R which is in force for deriving
Proposition 2.1.

Lemma 3.1 Assume that P satisfies Condition (S) and PV ≤ V −W + b1S for some b > 0
and some couple (V,W ) of Lyapunov functions. Then we have

RVd ≤ Vd −W with Vd := V + d1X ≥ V, where d := max

(
0,
b− ν(V ))

ν(1X)

)
.

Let us prove Inequalities (9a), that is with Di−1 defined in (8)

∀i ∈ {1, . . . ,m},
+∞∑
n=0

(n+ 1)i−1RnVi ≤ Di−1V0.

We use an induction on m. Assume that D(V0 : V1) holds, that is PV0 ≤ V0 − V1 + b0 1S .
Then it follows from Lemma 3.1 applied to (V,W ) = (V0, V1) that RV0,d0 ≤ V0,d0 − V1 with
V0,d0 := V0 + d01X ≥ V0 where d0 = max{0, (b0 − ν(V0))/ν(1X)}. Equivalently we have
V1 ≤ V0,d0 − RV0,d0 . Then for every n ≥ 0 we obtain that RnV1 ≤ RnV0,d0 − Rn+1V0,d0 .
Hence we have for every N ≥ 1

N∑
n=0

RnV1 ≤
N∑

n=0

[
RnV0,d0 −Rn+1V0,d0

]
≤ V0,d0 ≤ (1 + d0)V0.

This proves (9a) when m = 1. Now suppose that Inequalities (9a) are proved for some m ≥ 1
and that Conditions D(V0 : Vm+1) hold for some collection {Vi}m+1

i=0 of Lyapunov functions.
Then it follows from Lemma 3.1 for (V,W ) = (Vm, Vm+1) that RVm,dm ≤ Vm,dm −Vm+1 with
Vm,dm := Vm + dm1X ≥ Vm, where dm := max{0, (bm − ν(Vm)/ν(1X)}. Equivalently we have
Vm+1 ≤ Vm,dm −RVm,dm , so that we obtain for every N ≥ 1

N∑
n=0

(n+ 1)mRnVm+1 ≤
N∑

n=0

(n+ 1)mRnVm,dm −
N+1∑
n=0

nmRnVm,dm

≤
N∑

n=0

[
(n+ 1)m − nm

]
RnVm,dm =

m−1∑
j=0

Cj
m

N∑
n=0

nj RnVm,dm

≤
(
1 + dm

)m−1∑
j=0

Cj
m

N∑
n=0

nj RnVj+1

≤
(
1 + dm

)(m−1∑
j=0

Cj
mDj

)
V0 = DmV0

using the binomial expansion and Vm,dm ≤ (1 + dm)Vm ≤ (1 + dm)Vj+1 for j = 0, . . . ,m− 1,
and using finally the definition of Dm. This gives Inequalities (9a) at orderm+1. Finally (9b)
follows from (9a) since, for some x ∈ S, we have ν(V0) ≤ (PV0)(x) <∞ from Assumption (S)
and (PV0)(x) ≤ V0(x)− V1(x) + b0.
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3.2 Proof of Theorem 2.2

Assume that P satisfies Conditions (S) and D(V0 : Vm) for some collection {Vi}mi=0 of Lya-
punov functions with m ≥ 2. Recall that ϕS := 1S − π(1S)1X. For every i ∈ {0, . . . ,m − 2}
set:

∀N ≥ 1, ∀x ∈ X, Φi,N (x) :=
N∑

n=0

(n+ 1)i
∣∣(PnϕS

)
(x)

∣∣. (27)

The following lemma plays a crucial role to prove Theorem 2.2.

Lemma 3.2 Assume that P satisfies Conditions (S) and D(V0 : Vℓ) for some collection
{Vi}ℓi=0 of Lyapunov functions with ℓ ≥ 2. Let (gn)n≥0 ∈ B N

Vℓ
and ψ ∈ BVℓ

such that
|gn| ≤ ψ ≤ Vℓ and π(gn) = 0 for every n ≥ 0. Then we have for every N ≥ 1 (with the usual
convention

∑0
j=1 = 0)

N∑
n=0

(n+ 1)ℓ−2
∣∣Pngn

∣∣ ≤ Dℓ−2 V0 +

( +∞∑
k=1

ν(Rk−1ψ)

)
Φℓ−2,N

+ ν(V0)

[ ℓ−2∑
j=1

Cj
ℓ−2Dj Φℓ−2−j,N + π(1S)Eℓ−1 1X

]
. (28)

Proof of Theorem 2.2. Note that Φi,N ≤ Φi for every N ≥ 1, with Φi given in (11). If
g ∈ BVm is such that ∥g∥Vm ≤ 1 and π(g) = 0, then Inequality (14) in [0,+∞] with Wm given
in (16) directly follows from Inequality (28) applied to ℓ := m, gn = g, ψ = Vm, and from

+∞∑
k=1

ν(Rk−1Vm) ≤
+∞∑
k=1

ν(Rk−1V1) ≤ D0 ν(V0) (29)

thanks to (9b) applied with i = 1. If π(g) ̸= 0, replace g with g − π(g)1X.

Next, to prove Inequality (15), recall that θm = 1 + π(Vm)∥1X∥Vm , and first note that

∀h ∈ BVm , ∥h− π(h)1X∥Vm ≤ θm∥h∥Vm .

Now let (hn)n≥0 ∈ B N
Vm

be such that ∥hn∥Vm ≤ 1 and set fn := hn−π(hn)1X. For any n ≥ 0,
we have ∥fn∥Vm ≤ θm, so that gn := fn/θm is such that |gn| ≤ Vm and π(gn) = π(fn) = 0.
Then, applying Inequality (28) to ℓ := m, ψ = Vm, we obtain that

∀N ≥ 1,

N∑
n=0

(n+ 1)m−2
∣∣(Pnhn)(x)− π(hn)

∣∣ ≤ θmWm(x)

using again (29). Taking the suppremum bound over the functions h0, . . . , hN , we obtain
that

∀N ≥ 1,

N∑
n=0

(n+ 1)m−2∥Pn(x, ·)− π
∥∥′
Vm

≤ θmWm(x)

from which we deduce (15).

Now assume that π(1S) > 1/2. Then we have:

+∞∑
k=1

ν
(
Rk−1|ϕS |

)
≤ 2π(1Sc) < 1. (30)
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Indeed we have ϕS = (1 − π(1S))1S − π(1S)1Sc , so that |ϕS | = (1 − π(1S))1S + π(1S)1Sc .
Recall that µ(1S) = 1 and π = π(1S)µ (see (5)). Thus

+∞∑
k=1

ν
(
Rk−1|ϕS |

)
≤ (1− π(1S))µ(1S) + π(1S)µ(1Sc) = 1− π(1S) + π(1Sc) = 2π(1Sc).

This proves (30).

Observe that Assumptions D(V0 : Vm) obviously imply that, for every i = 0, . . . ,m − 2,
Assumptions D(V0 : Vi+2) hold too. Therefore, for any i = 0, . . . ,m − 2, it follows from
Inequality (28) with ℓ = i+ 2 applied to gn := ϕS , ψ := |ϕS |, and from (30) that(

1− 2π(1Sc)
)
Φi,N ≤ Di V0 + ν(V0)

[ i∑
j=1

Cj
iDj Φi−j,N + π(1S)Ei+1 1X

]
.

Recall that
∑0

j=1 = 0 by convention in (28). When N→+∞, the previous inequality for
i = 0 shows that the series Φ0 is convergent and satisfies (17) for i = 0. Next this inequality
for i ∈ {1, . . . ,m − 2} ensures that the series Φi is convergent from the convergence of the
(Φj)

i−1
j=0, and that Φi satisfies Inequality (17). The proof of Theorem 2.2 is complete, provided

that Lemma 3.2 is proved. □

Proof of Lemma 3.2. Let (gn)n≥0 ∈ B N
Vℓ

and ψ ∈ BVℓ
such that |gn| ≤ ψ ≤ Vℓ and π(gn) = 0

for every n ≥ 0. Note that µ(gn) :=
∑+∞

k=1 ν(R
k−1gn) = 0 since π(gn) = 0 (see (5)). Then

we get from Formula (6) and
∑n

k=1 ν(R
k−1gn) = −

∑+∞
k=n+1 ν(R

k−1gn) with the convention∑0
k=1 = 0

∀n ≥ 0, Pngn = Rngn +

n∑
k=1

ν(Rk−1gn)P
n−k1S

= Rngn +
n∑

k=1

ν(Rk−1gn)P
n−kϕS − π(1S)

( +∞∑
k=n+1

ν(Rk−1gn)

)
1X. (31)

First, using the positivity of R and |gn| ≤ Vℓ ≤ Vℓ−1, it follows from (9a) with i = ℓ− 1 that

AN :=

N∑
n=0

(n+1)ℓ−2 |Rngn| ≤
+∞∑
n=0

(n+1)ℓ−2Rn|gn| ≤
+∞∑
n=0

(n+1)ℓ−2RnVℓ−1 ≤ Dℓ−2 V0. (32)

Second, using again the convention
∑0

k=1 = 0 and the inequality |gn| ≤ ψ, we have

BN :=
N∑

n=0

(n+ 1)ℓ−2

∣∣∣∣ n∑
k=1

ν(Rk−1gn)P
n−kϕS

∣∣∣∣ ≤
N∑

n=0

(n+ 1)ℓ−2
n∑

k=1

ν(Rk−1|gn|)
∣∣Pn−kϕS

∣∣
=

N∑
k=1

ν(Rk−1|gn|)
N∑

n=k

(n+ 1)ℓ−2
∣∣Pn−kϕS

∣∣
≤

N∑
k=1

ν(Rk−1ψ)
N∑

n=0

(n+ 1 + k)ℓ−2
∣∣PnϕS

∣∣
=

ℓ−2∑
j=0

Cj
ℓ−2

( N∑
k=1

kj ν(Rk−1ψ)

)
Φℓ−2−j,N

≤
ℓ−2∑
j=0

Cj
ℓ−2

( +∞∑
k=1

kj ν(Rk−1ψ)

)
Φℓ−2−j,N
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where the Φi,N ’s are defined in (27). Then, separating the term for j = 0 in the last sum and
using ψ ≤ Vℓ ≤ Vj+1 for j = 1, . . . , ℓ− 2, it follows from (9b) that

BN ≤
( +∞∑

k=1

ν(Rk−1ψ)

)
Φℓ−2,N + ν(V0)

ℓ−2∑
j=1

Cj
ℓ−2Dj Φℓ−2−j,N . (33)

Third, recall that, for any k ≥ 1, Σℓ−2
k :=

∑k
n=1 n

ℓ−2 =
∑ℓ−1

j=1 aj,ℓ k
j from (12). Then

CN := π(1S)

( N∑
n=0

(n+ 1)ℓ−2

∣∣∣∣ +∞∑
k=n+1

ν(Rk−1gn)

∣∣∣∣)1X
≤ π(1S)

( +∞∑
n=0

(n+ 1)ℓ−2
+∞∑

k=n+1

ν(Rk−1|gn|)
)
1X

≤ π(1S)

( +∞∑
n=0

(n+ 1)ℓ−2
+∞∑

k=n+1

ν(Rk−1Vℓ)

)
1X = π(1S)

( +∞∑
k=1

ν(Rk−1Vℓ)

k∑
n=1

nℓ−2

)
1X

≤ π(1S)

( ℓ−1∑
j=1

aj,ℓ

+∞∑
k=1

kj ν(Rk−1Vℓ)

)
1X

≤ π(1S)ν(V0)

( ℓ−1∑
j=1

aj,ℓDj

)
1X = π(1S) ν(V0)Eℓ−11X (34)

using (9b) (note that |gn| ≤ Vℓ ≤ Vj+1 for j = 1, . . . , ℓ− 1) and the definition of Eℓ−1 in (13).

From the triangular inequality applied to (31), we obtain that

N∑
n=0

(n+ 1)ℓ−2|Pngn| ≤ AN +BN + CN .

Therefore Inequality (28) follows from (32)-(34). The proof of Lemma 3.2 is complete. □
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A Construction of the Lyapunov functions Vi in Comment 2.6

Assume that P satisfies Condition (S) and that there exists a Lyapunov function V such that

∃α ∈ [0, 1), ∃b0, c > 0, PV ≤ V − c V α + b0 1S (35)

with S given in (S). The construction of the Lyapunov functions Vi in D(V0 : Vm) is based
on the following fact. If W is a Lyapunov function and if 0 < θ2 < θ1 < 1 are such that

∃b, c > 0, PW θ1 ≤W θ1 − cW θ2 + b 1S ,

then ∃b′, c′ > 0, PW θ2 ≤W θ2 − c′W θ3 + b′ 1S with θ3 := 2θ2 − θ1. (36)

Indeed we know from [JR02, Lem. 3.5] that

∀η ∈ (0, 1], ∃bη, cη > 0, PW ηθ1 ≤W ηθ1 − cη (W
θ1)θ2/θ1+η−1 + bη1S .

Then (36) is obtained with η := θ2/θ1 < 1. Next note that α1 = 1− 1/m ≤ α, so that

PV ≤ V − c V α1 + b0 1S (37)

from (35). Of course we can replace c with c1 < 1. Recall that m := ⌊(1− α)−1⌋. Then:

� If α1 = 0, i.e. m = 1 or α ∈ [0, 1/2), then D(V0 : V1) holds with V0 := c−1
1 V ≥ V1 := 1X.

� If α1 = 1/2, i.e. m = 2 or α ∈ [1/2, 2/3), then we deduce from (37) and Property (36)
applied to W := V, θ1 = 1, θ2 = α1 that

∃b1, c2 > 0, PV α1 ≤ V α1 − c2 V
α2 + b11S (38)

with α2 := 2α1− 1 = 0. Again note that we can choose c2 < 1. Then the procedure stops,
and Conditions D(V0 : V2) hold with V0 := c−1

1 c−1
2 V ≥ V1 := c−1

2 V α1 ≥ V2 := 1X.

� If α1 > 1/2, then Property (36) can be used recursively to provide inequalities of the form
PV αi−1 ≤ V αi−1 − ci V

αi + bi−11S with ci < 1 and αi = 2αi−1 − αi−2 = (α1 − 1) i + 1.
Actually (36) can only be used until the value i = m since αm = 0 and αi < 0 for i > m.
Then Conditions D(V0 : Vm) hold with Vi given in (26), where ai = [

∏m
k=i+1 ck]

−1.
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