
HAL Id: hal-04357382
https://cnrs.hal.science/hal-04357382

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical investigation on combustion heterogeneity in
interior ballistics of mortar using Population Balance

Equation
Matthias Pautard, Christian Chauveau, Fabien Halter, Christophe Coulouarn

To cite this version:
Matthias Pautard, Christian Chauveau, Fabien Halter, Christophe Coulouarn. Theoretical investi-
gation on combustion heterogeneity in interior ballistics of mortar using Population Balance Equa-
tion. International Journal of Energetic Materials and Chemical Propulsion, 2024, 23 (2), pp.39-47.
�10.1615/IntJEnergeticMaterialsChemProp.2023048571�. �hal-04357382�

https://cnrs.hal.science/hal-04357382
https://hal.archives-ouvertes.fr


THEORETICAL INVESTIGATION ON COMBUSTION
HETEROGENEITY IN INTERIOR BALLISTICS OF

MORTAR USING POPULATION BALANCE EQUATION

Matthias Pautard1,2, Christian Chauveau2, Fabien Halter2, and Christophe
Coulouarn1

1Thales LAS France, Route d’Ardon, La Ferté-Saint-Aubin 45240, France
2CNRS ICARE, Avenue de la Recherche Scientifique, Orléans Cedex 2 45071, France

Abstract: The ever-rolling progress of weapon systems has proven to demand an increase in
precision in the models to be able to achieve further improvements. In the field of interior ballistics,
one of the elements that remains excluded from most models is the combustion heterogeneity due to
nonequilibrium of pressure. This paper presents a zero-dimensional model of a mortar. It includes two
chambers: the combustion chamber and the cartridge with combustion heterogeneity occurring between
these two chambers. Themodel adapted to this kind of problem is the population balance equation (PBE).
A successful attempt to solve the PBE numerically in this case, using the class method, is presented in
this work to theoretically address the quantification of the impact of combustion heterogeneities too
often ignored.
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1 Introduction

Research in the field of interior ballistics is driven by the demand for new ammunitionwith increasing
range. The need for more complex propulsion systems has arisen as a consequence, along with
faithful models to dimension those through optimization [1], since it is not possible to make an
optimization on the exit or muzzle velocity of the projectile if the results of this function are not
sufficiently precise with respect to experimental assessment. Also, the improvement of the interior
ballistics models could allow the elaboration of more precise firing tables.

To the best of our knowledge, studies on the local combustion heterogeneity of gunpowder
have not been reported yet in the interior ballistics field. This is, however, in spite of other areas
of physics, where similar behaviors, following Boltzmann equations, have been characterized for
decades, such as the study of particles in a reactive flow or process engineering [2]. In this case, the
distribution transport equation is called the population balance equation (PBE). It is mainly used to
describe crystal growth in a process reactor. An analogy can be drawn between these phenomena
and the reaction undergone by gunpowder in a heterogeneous chamber. This corresponds to the
work of Aldis and Gidaspow [3] regarding an initial polydispersed solid in a 1D interior ballistic
problem.



The present article focuses on a simplification of Aldis and Gidaspow’s PBE applied to the
mortar. Mostly composed of two chambers, this sort of ammunition affords a good example of
pressure heterogeneity. Few details are given here because it is already covered [4, 5, 6, 7]. Pressure
heterogeneity [8] and ignition [9] have already been studied in the case of 120 mm caliber; however,
the local gunpowder heterogeneity due to its own burning history has not been taken into account.

The objective of this study will therefore be to propose a new eff cient method for modeling
combustion heterogeneities and apply it to the case of mortar, as mortar is well known for its
pressure heterogeneities. Ultimately, we aim to be able to compare theoretically its impact with
that of the modeling of the initial distribution of the grain size which might be enough to predict
the muzzle velocity of the projectile. This makes it possible to discuss theoretically on the relevance
of the hypothesis of homogeneous combustion which is often applied implicitly.

2 Mortar model

2.1 Zero-Dimension with Two Chambers Interior Ballistics Model

Becausemost of the descriptionwasmade in our previouswork [5], onlymajors points are summarized
here. Figure 1 highlights the important elements of the model useful to the specific study of this
article.

Thismodel relies on the consideration of two homogeneous chambers as the propulsion system
of the mortar is mainly composed of the cartridge and the barrel chamber. The gunpowder can pass
from one to the other due to flow and drag. Ergun’s law [10] has been modified to include the inertia
of a grain.

All the calculus is based on the Noble-Abel equation of state. It follows the equation of energy
conservation with a modification of the flow law originally proposed by Anderson [6].

Figure 1: Diagram of the configuration chosen to model the mortar: (a) the cartridge chamber
initially containing the gunpowder, (b) main chamber initially empty, (c) projectile, (d) vent hole,
(e) barrel.

Combustion heterogeneity arises from the difference of burning rate induced by the pressure
imbalance and erosive burning [11]which takes place in the cartridge. To ensure themass conservation,
themass and the number of grains of gunpowder are used as variables instead of the burned thickness.
From there, the mean volume of a grain is calculated from which the burning surface area can be
computed, and thus amounts to a mass of a grain average.



2.2 Polydispersed gunpowder

Solving all the PBE into one equation is computationally expensive. The main challenge of this kind
of probability transport equation is to reach its numerical solution. To eliminate this problem in our
previous work, polydispersed gunpowder was derived in a different way than Aldis and Gidaspow
[3] did. Therefore, the computational cost remains slightly higher.

The objective is to create a function that returns the surface of a grain as a function of its
volume while fixing the number of grains at its initial value. This comes down to considering a
fictitious equivalent grain. This method is similar to what has been implemented by Semenov and
Matsevich [12] for the combustion of aluminum particles.

3 Population balance equation

3.1 PBE

Aldis and Gidaspow [3] gives the following equation for the PBE applied to the mass conservation
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The subscript i refers to the ith cell. A cell contains the burnt grains whose characteristic size
R is between Ri and Ri+∆R. ϵi is the volume fraction, ρi the density,

−→
V i the velocity of solid, and

ṁi the reaction mass flow rate due to its combustion. The intervals [Ri; Ri +∆R[ then defines the
mesh cells in the grain size dimension.

The interval consideration on size is used for the implementation of a numerical method called
multiclass method [13].

With our variables, this equation can be rewritten as :
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Equation (2) corresponds to the conservation of the number of grains and Eq. (3) to the mass.
vmi is the mean volume of a grain in the class i

vmi = ϵi/Ni dV,

where dV is a local volume element and Ni the number of grains in the class i.
However, the population balancewill not be computed in the sameway; the reason is explained

in the following section.



3.2 Numerical method

The main problem of the PBE is the link between the numerical method and the kind of problem
being studied. A lot of work has been devoted to solving distribution transport equations (there are
different equations in different fields, for example with or without collisions, self-consistency, etc.),
such as the Vlasov equation [14]. To determine the best way to solve the PBE in interior ballistics,
one must observe the necessity to manage Dirac distributions. The presence of numerical diffusion
would create unrealistic behaviors.

The class method [15] works when the size distribution is wider than what the numerical
diffusion generates. For a Dirac distribution, a discrete transfer method seems to be a good way to
avoid numerical diffusion. To implement it in the case of the mortar, the numerical method used
to solve the interior ballistics model has to be described first. The numerical constraints change
during the calculation. First the burnt gases flow from the cartridge to the main chamber causing
erosive burning. This phase requires a smaller time step than during the second phase where the
two chambers are in a quasi-equilibrium. An efficient method including automatic rescale time step
is the Runge–Kutta–Merson method [16]. However, as a Runge–Kutta algorithm, it is not suitable
for handling events such as grain class change. A solution to this incompatibility will be presented
subsequently.

Keeping in mind the goal of the lowest numerical computation time, the calculation of S(vmi )
must be detailed. An efficient way to evaluate this function is done through a table, looking for the
interval [vi; vi+1] containing vmi using a dichotomy. The target value can then be estimated by a
linear approximation

S(vmi ) =
S(vi+1)− S(vi)

vi+1 − vi
(vmi − vi) + S(vi) (4)

In our case, the dichotomy is not necessary since the current interval is already known. If
vmi (t+dt) becomes smaller than vi+1, then the mass and the number of grains are transferred to the
next class. However, if this event happens during the calculation of a time step, proceeding to the
transfer will prevent the convergence of the Runge–Kutta–Merson method. To properly assess the
surface of a grain while waiting for the end of a time step to perform the transfer, a simple check is
satisfactory, which can be described as follows:

S(vmi ) =

{
S(vi+1)−S(vi)

vi+1−vi
(vmi − vi) + S(vi) , vmi ≥ vi+1

S(vi+2)−S(vi+1)
vi+2−vi+1

(vmi − vi+1) + S(vi+1) , vmi < vi+1

(5)

As a consequence, amajor computational cost problem arises, as the PBE adds asmany differential
equations as the number of classes grows. In the particular case of interior ballistics, it is reasonable
to assume that the distribution will remain narrow. Therefore, most of the PBE equations will be
applied to zero values. It is enough to ignore these equations by activating or deactivating the class
according to the presence or not of a grain in the current class. If the distribution is close to a Dirac,
the computation time will not differ a lot from that homogeneous assumption.



4 Results and Discussion

4.1 140 mmmortar characteristics

In order to evaluate the impact of heterogeneities, the 140 mm mortar proposed in our previous
work [5] is used. Other cases with thinner flakes will also be tested. The difference between initial
grains of polydispersed sizes and identical grains is studied. Most of the relevant data are gathered
in Tables 1 and 2.

Term Data
Radius of barrel 70 mm

Displacement length 1 m
Projectile mass 20 kg
Cartridge volume 175,7 cm3

Main chamber volume 5222 cm3

Exchange area 39,1 cm2

Rupture pressure 10 MPa

Table 1: Projectile launch system data

Term Data
Shape Flake
Mass 94 g
Web thickness 0,22; 0,26; 0,3 mm

Density 1600 kg.m−3

Heat of reaction 4,8 MJ.kg−1

Specific heat ratio 1,205
Vieille Law with P in Pa 1.10−8P 0,9 + 1.10−3 m.s−1

Table 2: Characteristics of the gunpowder

4.2 Results

Figure 2 shows the pressure evolution in the mortar chamber for different grain thicknesses. With
all of them being initially identical, a consequence is the presence of a stair-step shape visible on
Fig. 3. Due to the numerical approach of locally packing the burnt thickness and flake shape, the
total surface decreases discontinuously while the gunpowder is about to vanish.



Figure 2: Pressure evolution over time for different web thicknesses, (a) 0, 22mm, (b) 0, 26mm, (c)
0, 3mm.

Figure 3: Total surface of the gunpowder in the main chamber over time for different web
thicknesses, (a) 0, 22mm, (b) 0, 26mm, (c) 0, 3mm.

Figure 4 illustrates the impact of a polydispersed gunpowder considering a standard deviation
of the thickness of σ = 2.10−6 m and a web-thickness of 0, 26mm. This does not alter significantly
the phenomena studied here while making the surface of a grain continuous, so the stair-step shape
no longer appears. The modification of the gunpowder is plotted on Fig. 5.



Figure 4: Total burning surface area in the main chamber over time (a) without initial polydispersed
size or (b) with initial polydispersed size.

Figure 5: Burning surface area of one flake with (a) or without (b) polydispersed size.

To sum it all up, Fig. 6 highlights the consequences of combustion heterogeneity in the mortar.



Figure 6: Comparison of the total burning surface area in the main chamber over time with (a) the
PBE or (b) the homogeneous assumption.

4.3 Mesh convergence

All the previous calculations were achieved with 128 cells in volume particle dimension.
Table 3 shows the low dependency on the mesh size. Regarding the computation time, for this

type of gunpowder, a mesh of a size of 128 cells is sufficient.

Mesh size Velocity Compute time
128 104,579 m.s−1 0,703 s
256 104,582 m.s−1 1,484 s
516 104,582 m.s−1 3,688 s
1024 104,581 m.s−1 15,66 s
Homogeneous 104,588 m.s−1 0,547 s

Table 3: Comparaison for different mesh size

4.4 Discussion

Themain source of combustion heterogeneity in themortar is the difference of burning rate between
the cartridge and the main chamber. This is due to the pressure difference and the erosive burning.
This results in the behavior observable on Fig. 3. The gunpowder area increases due to its transport
from the cartridge to the chamber. Since the distribution remains narrow and the form factor barely
varies, no difference is noticeable in Fig. 6.



However, the gradual disappearance of the grain changes from a brutal transition to a progressive
end, akin to the initial polydisperse size. The nondiffusive numerical method ensures the absence
of spreading which would modify the disappearance of the gunpowder and so the evolution of the
pressure. In contrast to the polydisperse distribution, heterogeneities seem to generate a Poisson
distribution instead of a Gaussian one in the mortar case.

Finally, the results considering a realistic initial polydisperse size are shown Fig. 7. No major
differences can be observed, the spreading due to the polydisperse size affecting principally the
surface evolution rather than the combustion heterogeneities.

Based on these observations, especially the result displayed in Fig. 7, and those presented in
Table 3, the effect of initial polydispersed size is much more impactful than that of the combustion
heterogeneity on the pressure in themain chamber and therefore themuzzle velocity of the projectile.
It therefore seems that the Aldis method [3] of using PBE for combustion heterogeneities and initial
grain size distribution is not relevant for mortar ammunition. Since the combustion heterogeneities
have a negligible impact and there is a much simpler method to only model the initial polydispersed
size [5], it is more suitable in the present case not to use the straight PBE.

Figure 7: Comparison of the total burning surface area of the gunpowder in the main chamber over
time with (a) the PBE or (b) homogeneous assumption with a polydispersed size of σ = 5.10−5 m.

5 Conclusion

In this paper, a newnumericalmethod dedicated to solving PBEwith no diffusion has been introduced.
It allows accounting for narrow distributions due to heterogeneities. This solution is well adapted
for interior ballistics problems. The heterogeneities not being known in advance, diffusion would
spread the distribution even with a homogeneous chamber, while the computational cost remains
close to that of the homogeneous method.



Also, the decoupling of the initial polydisperse size and the distribution due to heterogeneities
is efficient.

Themortar configuration described here does not require themodeling of combustion heterogeneities
in order to roughly predict the output velocity. To the first-order prediction of the muzzle velocity
for a mortar ammunition, it is not necessary to model the combustion heterogeneities but only the
initial polydispersed size. However, it could be very interesting to test this method in 2D or 3D
to challenge this guess. Moreover, it would be very interesting to compare these conclusions with
experimental measurements and this will be addressed in future work.

It is very likely that not taking into account the PBE, for heterogeneities and polydisperse size,
would induce larger errors in small calibers than in a mortar.
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