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stal plasticity-based constitutive model is developed to describe the thermomechan

havior of pseudoelastic NiTi single crystal. The model includes, for the first time

erature, all inelastic mechanisms influencing the fatigue behavior of NiTi SMAs in

strain framework: martensite transformation, deformation slip in austenite at hig

rature, deformation twinning in martensite at large strain, transformation-induce

ity (TRIP) as well as thermomechanical coupling. Furthermore, new internal var

and evolution laws are introduced in the monocycle model (referred as basic model

mainder of the paper) to reproduce the main features of anisotropic cyclic deform

f pseudoelastic NiTi single crystal. The numerical implementation of the constituti

is performed in the CAST3M (2019) finite element software through a user-define

subroutine. A series of simulations were performed to verify the basic and generalize

models under various conditions. Moreover, the robustness of the model is atteste

paring the simulation results with the reported data of the pseudoelastic NiTi sing

l. The effect of crystallographic orientation and anisotropic cyclic deformation b

are revealed and shown to be quantitatively in a good agreement with experiment

s. Finally, the evolution of dislocation density and stored energy is discussed from th

ctive of fatigue analysis of SMAs.
ords: NiTi SMA, finite strain, pseudoelasticity, crystal plasticity, twinning, TRIP
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omechanical coupling, cyclic deformation

troduction

eudoelastic shape memory alloys (SMAs) have the ability of accommodating large r

ble inelastic strains due to the occurrence of a stress induced solid-solid martensit

transformation (Auricchio et al., 2007). Owing to this specific property, SMAs, e

ly NiTi based SMAs, become promising materials in a wide range of industrial fiel

et al., 2014). In many of these applications, NiTi SMAs are often subjected to lar

deformations (Petrini and Bertini, 2020; Petrini and Migliavacca, 2011). Accordingl

ough study of their cyclic behaviour is the basis for a further fatigue analysis necessa

aterial and structural optimization of SMAs’ components.

om experimental point of view, lots of effort has been deployed in investigating th

deformation behavior of pseudoelastic NiTi SMAs considering single crystals (Ga

aier, 2002; Sehitoglu et al., 2001b) and polycrystallines (Brinson et al., 2004; Delvil

2011; Kang et al., 2009; Miyazaki et al., 1986; Morin et al., 2011; Wang et al., 2008

et al., 2017, 2019b; Zheng et al., 2017). The main characteristics of the cyclic r

e of pseudoelastic NiTi SMAs are: (1) accumulation of the residual strain, (2) drop

ansformation start stress, (3) increase of the transformation hardening, (4) decrease

steresis loop area, (5) dependence on the loading rate. The increment of the residu

mainly originates from two sources: plastic deformation and residual martensite (Ka

ang, 2010). Plastic deformation is attributed to the slip in austenite at high temper

Chowdhury and Sehitoglu, 2017; Shaw and Kyriakides, 1995), deformation twinning

nsite at large strain (McKelvey and Ritchie, 2000; Wang et al., 2008a) and Transfo

n induced plasticity (TRIP) at A-M (Austenite-Martensite) interfaces (Norfleet et a

Paranjape et al., 2017). TRIP is a key mechanism in the fatigue issue of SMAs and w

cussed in the next section. The accumulation of inelastic deformation induces intern

rresponding author.
ail addresses: ziad.moumni@ensta-paris.fr (Ziad Moumni), zhang.yahui@nwpu.edu.cn (Yahu
)
t submitted to International Journal of Plasticity November 1, 20
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es, which assists the martensite transformation resulting in a drop of the transform

tart stress (Xiao et al., 2018; Zaki and Moumni, 2007). Moreover, the dislocatio

y increases due to the inelastic deformation, which “hinders” the martensite form

nd makes the transformation slope steeper (Zhang et al., 2016). With the increme

idual strain and transformation hardening, the stress hysteresis loop decreases. Fu

ore, the rate dependence of SMAs is attributed to the temperature variation resultin

he mechanical dissipation, phase transformation latent heat and heat exchanges wi

rroundings (Van Humbeeck and Delaey, 1981), which affects the phase transformatio

pacts the mechanical response of SMAs (Shaw and Kyriakides, 1995). Such stron

ependence in SMAs, termed as thermomechanical coupling, is an important feature

cyclic deformation and severely influences the corresponding fatigue behavior (Grab

ruhns, 2008; He and Sun, 2010; Morin et al., 2011; Zhang et al., 2017).

om simulation point of view, a vast literature of constitutive phenomenological an

mechanical-based models have been proposed. Most of the phenomenological mode

chio et al., 2007; Lagoudas et al., 2012; Petrini and Bertini, 2020; Zaki and Moumn

are isotropic and are constructed based on macroscopic variables. The lack of physic

limits their predictive capabilities, especially in the case of thermomechanical respon

ially textured SMAs. In order to address this issue, many micromechanical-base

tutive models have been developed. Among them, crystal plasticity-based models a

used by modeling plasticity in terms of crystallographic slip at grain scale (Rote

2010). In crystal plasticity models, the inelasticity is considered through crystall

ic orientation relationships and microstructure information can be also included. As

, crystal plasticity models provide more physics background for fatigue analysis tha

menological models do.

e crystal plasticity framework has been modified to incorporate the martensite tran

tion, reorientation and detwinning of twinned martensite (Gall and Sehitoglu, 199

nd McDowell, 2002; Thamburaja, 2005). Subsequently, in order to describe the plast

ation at high temperature or at larger imposed strains, dislocation slip in austeni

hiraju and Anderson, 2010; Yu et al., 2012) or both slip and deformation twinning
3
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nsite (Wang et al., 2008b) are incorporated in the constitutive models. More recentl

et al. (2019); Yu et al. (2014a) extended the model by considering phase transform

nd plasticity triggered in both austenite slip and martensite twinning. Furthermor

is introduced into the models through friction slip systems at A-M interfaces (Xia

2018; Yu et al., 2014c) or slip systems in austenite matrix (Yu et al., 2015a).

summary of micromechanical constitutive models considering the deformation beha

pseudoelastic NiTi SMAs is listed in Table 1. This summary reveals that the majori

micromechancial models are based on small strain theory rather than finite stra

. Despite the fact that devices may be subjected to large deformations in practic

ations, the cyclic behavior of pseudoelastic NiTi under large strain (Wang et al., 2008

reproduced in these papers. To date, a micromechanical model considering martensi

ormation, deformation slip in austenite at high temperature, deformation twinning

nsite at large strain, TRIP accompanied with phase transformation, thermomechan

upling effect and cyclic loading in the framework of finite deformation theory has n

eported in literature.

cordingly, in this work, a three-dimensional thermomechanically coupled and cryst

ity-based constitutive model is constructed to describe the anisotropic cyclic respon

udoelastic NiTi single crystal under various loading conditions. For the first time

erature, all the aforementioned mechanisms influencing the fatigue behavior of NiT

are considered comprehensively in the present model. For clarity, a single cryst

model considering monocyclic deformation will be first constructed (referred as bas

in the remainder of the paper) and then extended to cyclic loading conditions b

ucing new internal variables and evolution laws.

is worth noting that the present paper is a first step towards a multi-scale fatigu

is of NiTi SMAs from simulation point of view. To this end, a brief introduction

tigue phenomena in SMAs and its link with the present model is given below.

perimental-based fatigue criteria based on macro-scale parameters have been propose

igue analysis of SMAs (Maletta et al., 2012; Moumni et al., 2005; Song et al., 2015

er, these criteria are empirically obtained from mechanical responses and are unab
4
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dict the thermomechanical coupling effect on the fatigue of SMAs components. Henc

ti-scale and multiphysics analysis, addressing the intrinsic physical mechanisms relate

atigue, is worthwhile. Based on the experimental works at micro-scale or meso-scal

portance of cyclic plastic deformation, cyclic phase transformation and their inte

with the microstructural damage has been revealed (Gloanec et al., 2013; Kato an

i, 2013; Mao et al., 2010; Niendorf et al., 2011; Polatidis et al., 2015; Rahim et a

Sedmák et al., 2015). However, the accumulated slip, microstructure-sensitive stre

islocation density are necessary but not sufficient to drive crack nucleation (Chen et a

To this end, Zhang et al. (2016) considered the stored energy in the analysis of fatigu

As. During cyclic loading, part of the hysteresis work is dissipated into heat, whi

mainder is stored in the materials and remains after the removal of external load

y the stored energy (Hodowany et al., 2000). This elastic stored energy is associate

he strain field of the generated dislocations which modifies the internal energy an

microstructural changes, such as defects (Borbély et al., 2000). It links with fatigu

at microscale and is often used as an indicator for fatigue in elastoplastic materia

et al., 2014; Warren and Wei, 2010). The situation is more complicated in the fatigu

f SMAs since the fatigue lifetime is not directly controlled by dissipated energy at th

zed cycles due to the thermomechanical coupling effect (Zhang et al., 2019b). In oth

, the dissipated energy-based criterion fails for SMAs when loading rates change an

e relevant fatigue indicator, eg. stored energy, is required. However, in the doma

As, the stored energy is not yet widely considered in the fatigue analysis, except th

tical work of Zhang et al. (2016, 2019c). To this end, the evolution of dislocation de

nd corresponding stored energy is discussed in relation with the present cyclic mod

ther future fatigue analysis of SMAs.

e paper is organized as follows. Section 2 presents the theoretical derivations of th

tutive models. Section 3 is dedicated to the numerical implementation of the mode

n 4 introduces the identification procedure of their material parameters. Section

ection 6 give the numerical simulations and validations of both basic and generalize

models, respectively. Section 7 draws the conclusions and prospects.
5
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1

ary of micromechanical constitutive models.

odels
Features

Finite strain theory A B C D E F

hamburaja and Anand (2001) ✓ ✓
im and McDowell (2002) ✓ ✓
nand and Gurtin (2003) ✓ ✓ ✓
hamburaja (2005) ✓ ✓
ang et al. (2008b) ✓ ✓
anchiraju and Anderson (2010) ✓ ✓ ✓
ichards et al. (2013) ✓ ✓ ✓
irzaeifar et al. (2013) ✓ ✓
u et al. (2013, 2015c) ✓ ✓ ✓
u et al. (2014a) ✓ ✓ ✓ ✓
u et al. (2014b) ✓ ✓ ✓
u et al. (2014c) ✓ ✓ ✓ ✓
u et al. (2015a) ✓ ✓ ✓ ✓
aranjape et al. (2016) ✓ ✓ ✓
iao et al. (2018) ✓ ✓ ✓ ✓
aranjape et al. (2018) ✓ ✓
u et al. (2018) ✓ ✓
hala et al. (2019) ✓ ✓ ✓ ✓
ie et al. (2019) ✓ ✓ ✓ ✓
ie et al. (2020) ✓ ✓ ✓ ✓ ✓
brahimi et al. (2020) ✓ ✓ ✓
ossain and Baxevanis (2021) ✓ ✓ ✓ ✓ ✓
u et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓
resent work ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: A: phase transformation; B: deformation slip in austenite; C: deformation twinning in martensite;

D: TRIP; E: thermomechanical coupling effect; F: cyclic loading (cycling up to the shakedown (stabilized)

state).

nstitutive model

this section, a crystal plasticity-based constitutive model considering the major unde

physical mechanisms is firstly developed for pseudoelastic NiTi, referred as the bas

. Then modifications are introduced to the basic model in order to predict the cycl

ation behavior. The extended model is referred as generalized cyclic model. In th

6
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t work, a single crystal of NiTi SMA is taken as a representative volume eleme

) and the inelastic deformation is defined as an average over the RVE.

inematics

e local decomposition of the deformation gradient FFF is multiplicatively decompose

lastic part FFFe and inelastic part FFFinel.

FFF = FFFeFFFinel (

ing polar decomposition, the elastic part of the deformation gradient FFFe is given

eUUUe. Accordingly, the elastic Green strain is expressed as EEEe =
1
2
(UUUe

2 − III).

e effective anisotropic elastic moduli C(t) is defined by the rule of mixture approach

C = (1− ξ)CA + ξCM , ξ =
24∑

i=1

ξ(i) (ξ(i) ∈ [0, 1] and ξ ∈ [0, 1]) (

re CA and CM are anisotropic elastic moduli of austenite and marteniste phases, r

vely. From the crystallography point of view, different theories have been develope

ount for the martensite phase transformation such as the phenomenological theo

rtensite transformation, the Lattice deformation theory and the energy minimizatio

(Matsumoto et al., 1987; Sehitoglu et al., 2000). In the present work, 24 differe

nsite correspondence variant pairs (CVPs) are adopted by selecting <011> Type

s the invariant shear mode as suggested by a variety of researchers (Dhala et a

Manchiraju and Anderson, 2010; Thamburaja and Anand, 2001). A CVP is a form

for a martensite plate containing two twin-related martensite variants. Each CVP

bed by a unique transformation direction bbb0(i) and a habit plane normal ddd0
(i), referre

ransformation system. ξ is the total martensite volume fraction, which is the sum

e fractions of all the transformation systems.

ing Hooke’s law, the second Piola-Kirchoff stress TTT is written as TTT = C : EEEe. Thu

auchy stress σσσ is given in function of TTT by:

σσσ =
1

det(FFFe)
FFFeTTTFFFT

e (
7
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e velocity gradient LLL is defined as LLL = ḞFFFFF−1 and can be decomposed as:

LLL = ḞFFeFFFe
−1 +FFFe(ḞFFinelFFFinel

−1)FFFe
−1 = LLLe +FFFeLLLinelFFFe

−1 (

LLLe and LLLinel are elastic and inelastic part of the velocity gradient, respectively. In th

t work, LLLinel is approximated by the summation of contributions from the followin

nisms: (1) plasticity in austenite due to dislocation slip, (2) martensite transformatio

IP due to the local high stress at A-M interfaces, (4) plasticity in martensite due

ation twinning.

LLLinel ≈ LLLA
p +LLLtr +LLLtrip +LLLM

p (

ese contributions to the inelastic velocity gradient are described as follows.

Plastic deformation

e plastic deformation in the present model includes three parts: deformation slip

ite, deformation twinning in martensite and TRIP due to phase transformation.

asticity in austenite

e plastic deformation in austenite phase is due to the accumulation of slip effect in a

ted slip systems. As reported in the literature (Chumlyakov et al., 1996; Ezaz et a

Norfleet et al., 2009), three potential slip modes of {1 1 0} ⟨1 0 0⟩, {0 1 0} ⟨1 0

1 1 0} ⟨1 1 1⟩ containing 24 slip systems are considered in the present model. It mu

phasized that different from face centered cubic (fcc) and hexagonal packed cryst

metals, SMAs with ordered body centered cubic (bcc) in austenite phase exhibit no

d behavior (Alkan and Sehitoglu, 2017; Alkan et al., 2018). As a result, a modifie

d factor and a generalized yield crtierion has been proposed for NiTi (Alkan an

glu, 2017; Alkan et al., 2017). It is true that the generalized yield criterion considerin

n-Schmid behavior may provide a more accurate prediction of plastic yielding in B

However, in the present work, the yield criterion based on Schmid law has bee

ed following the majority of studies of SMAs in the framework of the continuu

(Dhala et al., 2019; Hossain and Baxevanis, 2021; Manchiraju and Anderson, 201
8
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jape et al., 2016; Xiao et al., 2018; Yu et al., 2014a, 2015a), in order to avoid th

exity of considering each independent component of the applied deviatoric stress tens

generalized yield criterion.

LLLA
p = (1− ξ)

24∑

α=1

γ̇
(α)
A SSSp

(α), where SSSp
(α) = mmm0

(α) ⊗ nnn0
(α) (

) represents the volume fraction of austenite. SSSp
(α) is the orientation tensor of a un

stem (α), mmm0
(α) and nnn0

(α) are the Burgers vector and normal vector to the slip plan
(α)
A is the slip rate of each austenite system.

asticity in martensite

reported by Miyazaki et al. (1981) and Karaman et al. (2005), when the applie

is high enough, plasticity is triggered in martensite phase after complete martensi

ormation. In order to analyze the plastic deformation in martensite under the fram

of crystal plasticity theory, five independent slip systems are needed to be activate

ommodate a certain strain increment according to Taylor’s criterion (Hosford, 1993

er, the symmetry of martensite phase in NiTi is low and only one slip system is a

to be possible (Kudoh et al., 1985). Such low number of easy slip systems tends

te deformation by twinning, which is observed by Nishida et al. (1998). As a resu

et al. (2008b) incorporated 11 twinning systems (listed by Otsuka and Ren (2005

ne slip system in martensite. Based on their work, an approximation is made he

lowing the approach of (Dhala et al., 2019; Yu et al., 2014a) and only the twinnin

nent is taken into consideration. Accordingly, the inelastic part of velocity gradie

rtensite phase is then given as:

LLLM
p = ξ

11∑

t=1

γ̇
(t)
twSSStw

(t), where SSStw
(t) = bbbtw0

(t) ⊗ dddtw
0

(t) (

is the orientation tensor relative to a unit twinning system (t), bbbtw0
(t) and dddtw

0

(t) are th

ectors of twinning direction and normal vector to the habit plane, respectively (Y

2014a) and γ̇
(t)
tw is the shear rate of twinning system (t) and is expressed as:

γ̇
(t)
tw = γ

(t)
T ξ̇

(t)
tw (

9
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γ
(t)
T and ξ(t)tw are the constant twinning shear and volume fraction of the (t)th twinnin

, respectively.

ansformation Induced Plasticity (TRIP)

r SMAs, plastic slip accumulation occurs at an applied stress level far lower than th

tresses of the individual phases. High dislocation density is observed near the interfac

or thermal cyclic loaded SMAs (Kajiwara and Kikuchi, 1982; Kajiware and Owe

Pelton, 2011; Pelton et al., 2012). Based on the observation of alignment of the sl

emanating from A-M interface and martensite twinning system (Norfleet et al., 200

et al., 2010), works have been done to explain the TRIP through the investigation

oundary (TB) evolution within a framework of atomistic simulations (Mohammed an

glu, 2020b, 2021). According to Mohammed and Sehitoglu (2020a), the irreversible sl

ciated with a dislocation reaction occurring in the presence of a barrier to the migratio

TB. While from continuum micromechanical point of view, TRIP is triggered by th

local stress at the A-M interfaces, which is necessary to accommodate lattice an

tutive match (Heller et al., 2018; Kato and Sasaki, 2013; Zhang et al., 2019b).

ary, TRIP is still an active research area and needs more investigation. In the prese

TRIP is assumed to occur in austenite phase, which is consistent with the TE

ation in the work of Choi et al. (2021). Besides, for simplification, TRIP is assume

y the same criterion as plastic deformation in austenite. Thus, the inelastic veloci

nt due to TRIP can be written as:

LLLtrip = (1− ξ)
24∑

α=1

γ̇
(α)
tripSSSp

(α) (

ilar to γ̇(α)A for deformation slip in austenite, γ̇(α)trip is defined as the slip rate due

on each austenite slip system and its evolution law is discussed later.

Phase transformation

e transformation part of inelastic velocity gradient is given by:

LLLtr =
24∑

i=1

ξ̇(i)gtrSSStr
(i), where SSStr

(i) = bbb0(i) ⊗ ddd0
(i) (1

10
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is the orientation tensor produced by a unit transformation system (i), bbb0(i) and ddd0

e unit vectors of transformation direction and normal vector to the habit plane, r

vely (Thamburaja and Anand, 2001) and gtr is the magnitude of shearing deformatio

by the transformation.

hermodynamics

Helmholtz free energy density

e Helmholtz free energy per unit reference volume is defined in the reference config

as:

ψ(EEEe, ξ
(i), θ) = ψe + ψθ + ψint + ψp + ψtrans + ψcst (1

,

ψe =
1

2
EEEe : C : EEEe (1

ψθ = C[(θ − θ0)− θ ln
θ

θ0
] + µ(θ − θ0)ξ (1

ψ̇int = −BBBint : (LLLtr +LLLtrip) (1

ψ̇p = (1− ξ)
24∑

α=1

g
(α)
A |γ̇(α)A |+ ξ

11∑

t=1

g
(t)
tw (γ̇

(t)
tw ) (1

ψtrans =
1

2
Gξ2 +

1

2
βgtrξ(1− ξ) (1

ψcst = −w0(1− ξ)−
NT∑

i=1

wiξ
(i) (1

is the elastic strain energy.

is the chemical free energy related to phase transformation in which C is the specifi

apacity, µ is the coefficient of entropy difference and θ0 is the equilibrium transform

emperature expressed as:

θ0 =
1

2
(θAM + θMA) (1

e θAM and θMA are the start temperature of forward and reverse transformation, r

vely.
11
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nt is the energy associated with the internal stress BBBint. In fact, the slip deformatio

ulation leads to residual strain during cyclic deformation of NiTi SMAs (Eggeler et a

Kang et al., 2009). Such slip deformation induces the internal stress which allow

transformation from austenite to martensite. To describe this cyclic effect on th

ormation stress plateau levels, Zaki and Moumni (2007) introduced an internal stre

s an internal variable in their phenomenological model. Although the internal stre

on monocyclic deformation is not significant, it is still taken into consideration in th

t work to lay foundation for the subsequent cyclic deformation and further fatigu

is. Based on the work of Yu et al. (2015c), BBBint is divided into 24 components an

f them has the the same orientation tensor as that of the corresponding martensi

t:

BBBint =
24∑

i=1

BBBint
(i), BBB

(i)
int =∥ BBB(i)

int ∥ SSS(i)
tr (1

e ∥ BBB(i)
int ∥ is the norm of BBB(i)

int.

is referred to the energy of plastic deformation in austenite and martensite phas

g
(α)
A and g(t)tw are the resistance of slip and twinning in each system, respectively. It

y noting that ψint and ψp are given in their rate form due to their dependence on th

ation history.

rans is the contribution of austenite and martensite interaction where G and β are th

ial parameters describing the extent of interactions between martensite variants an

en austenite and martensite, respectively.

e last term ψcst is the potential energy due to the internal constraints where w0 an

Lagrange multipliers associated with these constraints and obeying the followin

ions (Moumni et al., 2008):

w0 ≥ 0, w0(1− ξ) = 0 and wi ≥ 0, wiξ
(i) = 0 (2

12
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Thermodynamic driving forces

order to define the driving forces associated with the irreversible mechanisms, w

l to the inequality of Clausius-Duhem:

PPP : Ḟ̇ḞF − ψ̇ − ηθ̇ − qqq∇θ
θ

≥ 0 (2

e η is the specific entropy per unit reference volume, qqq is the heat flux and PPP is th

iola-Kirchoff stress (PPP = det(FFF)σσσFFF−T ).

the relations in Eq. (3) and (4), the first term of Eq. (21) turns to be:

PPP : Ḟ̇ḞF = TTT : ĖEEe +FFFT
e FFFeTTT : LLLinel (2

ituting Eq. (5) and (22) into Eq. (21) gives:

(TTT − ∂ψ

∂EEEe

) : ĖEEe − (η +
∂ψ

∂θ
)θ̇ +

24∑

i=1

[gtr(MMM : SSStr
(i))− ∂ψ

∂ξ(i)
]ξ̇(i)

+ (1− ξ)
24∑

α=1

[(MMM : SSSp
(α))γ̇

(α)
A − g

(α)
A |γ̇(α)A |] + ξ

11∑

t=1

(MMM : SSStw
(t) − g

(t)
tw )γ̇

(t)
tw

+ (1− ξ)
24∑

α=1

[(MMM +BBBint) : SSSp
(α)]γ̇

(α)
trip −

qqq∇θ
θ

≥ 0

(2

e MMM is the Mandel stress given by: MMM = FFFe
TFFFeTTT

r arbitrary thermodynamic process, the inequality is guaranteed by the following equ

TTT =
∂ψ

∂EEEe

= C : EEEe (2

η = −∂ψ
∂θ

= C ln
θ

θ0
− µ

24∑

i=1

ξ(i) (2

y following inequations which ensure the non-negative intrinsic dissipation in arbitra

13
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ions:
24∑

i=1

[gtr(MMM +BBBint) : SSStr
(i) − ∂ψ

∂ξ(i)
]ξ̇(i) ≥ 0 (2

((1− ξ)
24∑

α=1

[(MMM : SSSp
(α))γ̇

(α)
A − g

(α)
A |γ̇(α)A |] ≥ 0 (2

ξ

11∑

t=1

(MMM : SSStw
(t) − g

(t)
tw )γ̇

(t)
tw ≥ 0 (2

(1− ξ)
24∑

α=1

[(MMM +BBBint) : SSSp
(α)]γ̇

(α)
trip ≥ 0 (2

− qqq∇θ
θ

≥ 0 (3

ing that the dissipation for each transformation system is non-negative, then Eq. (2

e written as:

[gtr(MMM +BBBint) : SSStr
(i) − ∂ψ

∂ξ(i)
]ξ̇(i) ≥ 0 (3

onjugate term of ξ̇(i) in Eq. (31) is the driving force for transformation and is give

= gtr(MMM+BBBint) : SSStr
(i)− 1

2
EEEe : ∆C : EEEe−µ(θ−θ0)−Gξ−

1

2
βgtr(1−2ξ)+w0−wi (3

CM − CA is the difference of elastic tensors of martensite and austenite.

ing that sign(γ̇(α)A ) = sign(MMM : SSSp
(α)) and the dissipation for each slip system is no

ve, then Eq. (27) can be written as:

((1− ξ)(|MMM : SSSp
(α)| − g

(α)
A )γ̇

(α)
A sign(MMM : SSSp

(α)) ≥ 0 (3

onjugate term of γ̇(α)A sign(MMM : SSSp
(α)) in Eq. (33) is the driving force for slip in austeni

given by:

f
(α)
A = |MMM : SSSp

(α)| − g
(α)
A (3

ing the dissipation for each twinning system is non-negative, the conjugate term

Eq. (28) is the driving force for twinning in martensite, given as:

f
(t)
tw = (MMM : SSStw

(t))− g
(t)
tw (3

14
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rly, the conjugate term of γ̇(α)trip in Eq. (29) is the driving force for TRIP, written as

f
(α)
trip = (MMM +BBBint) : SSSp

(α) (3

erm in the left side of the Eq. (30) is the thermal dissipation.

call the Fourier’s law: qqq = −kkk · ∇θ. Since kkk is positive defined heat conductivi

, the thermal dissipation is non-negative.

Thermomechanical coupling

commented in the introduction, thermomechanical coupling is a key feature of pse

tic SMAs’s behavior and cannot be neglected. Thus, in this paragraph, thermom

al coupling is taken into account in the monocyclic deformation by considering tw

heat sources, the intrinsic mechanical dissipation and the latent heat, as follows.

e first law of thermodynamics is given by:

U̇UU = PPP : Ḟ̇ḞF −∇ · qqq (3

e UUU is the internal energy per unit reference volume.

nsidering the definition of Helmholtz free energy (ψψψ = UUU − θη), Eq. (37) can b

ten as:

θη̇ = PPP : Ḟ̇ḞF − ψ̇ − θ̇η −∇ · qqq (3

nsidering the dissipative inequality (Eq. 21) and expression of driving forces for ea

nism (Eqs. 32-36), one gets:

η̇ =
24∑

i=1

f
(i)
tr ξ̇

(i) + (1− ξ)
24∑

α=1

f
(α)
A γ̇

(α)
A + ξ

11∑

t=1

f
(t)
tw γ̇

(t)
tw + (1− ξ)

24∑

α=1

f
(α)
tripγ̇

(α)
trip −∇ · qqq (3

bstituting Eq. (25) into (39), yields the heat equilibrium equation:

θ̇ +∇ · qqq =
24∑

i=1

f
(i)
tr ξ̇

(i) + (1− ξ)
24∑

α=1

f
(α)
A γ̇

(α)
A + ξ

11∑

t=1

f
(t)
tw γ̇

(t)
tw + (1− ξ)

24∑

α=1

f
(α)
tripγ̇

(α)
trip

︸ ︷︷ ︸
Mechanical dissipation

+ θµ

24∑

i=1

ξ̇(i)

︸ ︷︷ ︸
Latent heat

(4
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rst four terms in the right side of the Eq. (40) are the mechanical dissipation caused b

ase transformation, slip in austenite, twinning in martensite and TRIP due the hig

stress at A-M interfaces. The last term is the transformation latent heat associate

he volume fraction of martensite.

low rules

Evolution of deformation slip in austenite

e evolution of plastic slip in austenite is given by a rate-dependent power law base

work of Peirce et al. (1982):

γ̇
(α)
A = γ̇0A

∣∣∣∣∣
τ
(α)
A

g
(α)
A

∣∣∣∣∣

1
mA

sign(τ (α)A ), and τ
(α)
A = MMM : SSSp

(α) (4

τ
(α)
A is the resolved shear stress on slip system (α), γ̇0A is a reference slip rate and m

rate sensitivity. The slip resistance g(α)A for each slip system evolves as:

ġ
(α)
A =

24∑

β=1

hαβA

∣∣∣γ̇(β)A

∣∣∣ (4

hαβA = h0A
[
qA + (1− qA)δ

αβ
]
(1− gβA

g∞A
)aAsign(1− gβA

g∞A
) (4

the strain hardening matrix. h0A, g∞A and aA are material parameters, representing th

hardening coefficient, the saturation values of slip resistance and hardening exponen

tively. The parameter qA represents the ratio of latent hardening to self-hardening.

Evolution of twinning deformation in martensite

ilarly, a rate-dependent power law is adopted for describing the evolution of th

ation twin (Abdolvand et al., 2011; Kalidindi, 1998; Salem et al., 2005).

γ̇
(t)
tw =





γ̇0tw(
τ
(t)
tw

g
(t)
tw

)
1

mtw
, τ

(t)
tw > 0

0, τ
(t)
tw ≤ 0

, and τ
(t)
tw = MMM : SSStw

(t) (4
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nsidering the relationship between γ̇(t)tw and ξ̇(t)tw (equation (8)), the evolution of defo

n twin volume fraction is:

ξ̇
(t)
tw =





γ̇
(t)
tw

γ
(t)
T

, τ
(t)
tw > 0

0, τ
(t)
tw ≤ 0

, and ξ
(t)
tw ≥ 0,

11∑

t=1

ξ
(t)
tw ≤ 1, (4

here τ (t)tw is the resolved shear stress on twinning system (t), γ̇0tw is a reference shear ra

tw is the rate sensitivity for deformaiton twinning. γ(t)T is the magnitude of twinnin

of (t)th twinning system. The twinning resistance g(t)tw for each slip system evolves a

ġ
(t)
tw =

11∑

s=1

htstwγ̇
(s)
tw (4

htwtw = h0tw
[
qtw + (1− qtw)δ

αβ
]
(1− gβtw

g∞tw
)atw (4

e h0tw is the initial hardening coefficient, g∞tw is the saturation values of twinning r

ce, atw is the hardening exponent and qtw represents the ratio of latent hardening

rdening coefficient.

Evolution of TRIP

ce TRIP is introduced by phase transformation, the evolution of slip rate due

is assumed to be a function of the volume fraction of the product phase ξ̇(i) (Tale

idoroff, 2003; Xiao et al., 2018; Yu et al., 2013). Besides, TRIP is believed to be r

ible for the accumulation of residual strain during cyclic deformation of NiTi SMA an

sidual strain saturates at the stabilized cycle (shakedown state) (Morin et al., 2011

quently, an exponential form is proposed here based on the work of Zaki and Moum

in order to describe such accumulation and saturation process of irrecoverable stra

e following cyclic deformation study. A variable γsat is introduced in the evolutio

sion to represent the maximum plastic deformation resulting from TRIP. b is a tim

nt and controls the increasing rate of γ̇(α)trip. When considering the monocyclic defo

n, the γsat is linked with the part of residual strain resulting from TRIP at the end

17
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ing and b is equal to one.

γ̇
(α)
trip =





γsat
b
e−

ξc
b

∣∣∣ξ̇
∣∣∣ , f

(α)
trip > 0

0, f
(α)
trip ≤ 0

(4

resents the cumulated martensite volume fraction and its evolution is written as:

ξ̇c =
24∑

i=1

ξ̇c
(i)
, ξ̇c

(i)
=

∣∣∣ξ̇(i)
∣∣∣ (4

ding to Eq. (36), the driving force for TRIP is related with the internal stress BBBin

on the work of Zaki and Moumni (2007), the evolution of BBBint is given by:

∥ ḂBB(i)

int ∥ =
Bsat

b
e−

ξc
b ξ̇c (5

a variable introduced to represent the saturation value for the internal stress durin

deformation. Its value can be obtained from the difference of start stresses for forwa

ormation of the first and stabilized cycles. For the monocyclic deformation, Bsat

d with the maximum value of internal stress in one cycle.

Evolution of transformation deformation

e transformation rate is viewed as sufficiently fast and a rate-independent transfo

n law is used. The driving force ftr(i) for the phase transformation in each system

s bounded by a critical value fc(i):
∣∣∣f (i)

tr

∣∣∣ ≤ f
(i)
c . Thus, the transformation criteria a

below:

F (i)
AM = f

(i)
tr − f (i)

c = 0 Forward transformation (5

F (i)
MA = f

(i)
tr + f (i)

c = 0 Reverse transformation (5

cording to the dissipation inequality Eq. (26), the sign of ξ̇(i) and f (i)
tr should be sam

the phase change kinematics can be derived from relevant consistency conditions:

F (i)
AM = 0 and Ḟ (i)

AM = 0 ⇒ ξ̇ > 0 (forward transformation occurs) (5

F (i)
MA = 0 and Ḟ (i)

MA = 0 ⇒ ξ̇ < 0 (reverse transformation occurs) (5
18
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eneralization to cyclic response

Introduction of new internal variables

e local stress field is redistributed due to the phase transformation, which inhibits th

r transformation in the first transformed grain (Brinson et al., 2004). Thus, untran

d austenite (referred as UA) exists in SMAs after full transformation (Brinson et a

Zhang et al., 2019a). Similarly, the internal stress triggered by the dislocations an

ormation incompatibilities will lead to the occurrence of residual martensite (referre

) after complete unloading (Kang et al., 2009). Both UA and RM play a key role in th

ation of the recoverable strain during cyclic loading of SMAs, and further influen

tigue lifetime. Thus, the volume fraction of UA and RM (ξua and ξrm, respectivel

troduced as internal variables in the generalized model.

ξua =
24∑

i=1

ξ(i)ua , ξ(i)ua ∈ [0, 1] and ξua ∈ [0, 1] (5

ξrm =
24∑

i=1

ξ(i)rm, ξ(i)rm ∈ [0, 1] and ξrm ∈ [0, 1] (5

artensite volume fraction is limited within the range of ξ(i) ∈ [ξ
(i)
rm, 1 − ξ

(i)
ua ] an

rm, 1 − ξua]. Thus, the potential energy ψcst due to the internal constraints will b

ed as:

ψcst = −w0(1− ξua − ξ)−
24∑

i=1

wi(ξ
(i) − ξ(i)rm) (5

e the Lagrange multipliers w0 and wi obey the following equations:

w0 ≥ 0, w0(1− ξua − ξ) = 0 and wi ≥ 0, wi(ξ
(i) − ξ(i)rm) = 0 (5

Modified evolution laws

odified evolution of TRIP induced deformation

ree assumptions are made related to the evolution of TRIP.

sumption 1: TRIP triggers once the stress-induced phase transformation occurs.

sumption 2: The sign of γ̇(α)trip is consistent with that of the driving force for TRIP
19
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cording to Staroselsky and Anand (1998), the dislocation slip is bi-directional. Thu

gn of driving force f (α)
trip could be positive or negative. In order to satisfy the therm

ics compatibility (Eq. 29), the sign of γ̇(α)trip is set as same as corresponding f (α)
trip.

sumption 3: TRIP only triggers on the slip systems which have large Schmid facto

ical is the critical value to determine the active slip systems for TRIP.

cordingly, the slip rate due to TRIP is rewritten as:

γ̇
(α)
trip =

γsat
b1
e
− ξc

b1

∣∣∣ξ̇
∣∣∣ sign(f (α)

trip) when SF
(α)
plastic > SFcritical (5

time constant and controls the increasing rate of γ̇(α)trip.

order to express the different changing rates of γ(α)trip and internal stress BBBint, a distin

onstant b2 is used in the evolution law of BBBint:

∥ ḂBB(i)

int ∥ =
Bsat

b2
e
− ξc

b2 ξ̇c (6

odified evolution of transformation deformation

mentioned in Section 2.4.1, UA and RM are related with the internal stress attribute

phase transformation. Thus, the evolutions of ξ(i)ua and ξ
(i)
rm are given as a function

lume fraction of product phase ξ̇(i).

ξ̇(i)ua =
ξsatua

b3
e
− ξc

b3

∣∣∣ξ̇(i)
∣∣∣ (6

ξ̇(i)rm =
ξsatrm

b4
e
− ξc

b4

∣∣∣ξ̇(i)
∣∣∣ (6

e ξsatua and ξsatrm are the parameters representing the saturation values for volume fractio

and RM at stabilized cycles respectively. b3 and b4 are the material parameters whi

l the relevant evolution rate.

ring cyclic loading, the slope of transformation plateau will increase and the stre

esis will decrease (Delville et al., 2011). In order to capture these two characteristi

A’s cyclic behavior, the transformation hardening parameter G and critical drivin

f
(i)
c are set to evolve with the martensite volume fraction ξ̇(i) obeying the followin

20
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ions:

ḟ (i)
c =

(f
(i)
c_sat − f

(i)
c_0)

b5
e
− ξc

b5

∣∣∣ξ̇
∣∣∣ (6

Ġ =
(Gsat −G0)

b6
e
− ξc

b6

∣∣∣ξ̇
∣∣∣ (6

f
(i)
c_0 and f

(i)
c_sat represent the critical driving force for each transformation syste

t and stabilized cycles, respectively. Similarly, G0 and Gsat are used to describe th

ormation hardening under cyclic loading. b5 and b6 are the constants related wi

ion rates.

Dislocation density and corresponding stored energy

is noted that the aim of our study is the fatigue of NiTi SMAs based on stored energ

on. As a starting point, the evolution of dislocation density and the correspondin

energy during cyclic deformation are discussed in this section.

e total dislocation density in the RVE is given as:

ρtot = (1− ξ)ρA + ξ · ξtw · ρM , ρA =
24∑

α=1

ρ
(α)
A , and ρM =

11∑

t=1

ρ
(t)
M (6

e ρA and ρM are the dislocation densities in the austenite and martensite phase

tively. It should be noted that, ρA is the sum of dislocation density of 24 slip system

uted to both austenite slip at high temperature and TRIP. ρM is the sum of dislocatio

y of 11 twinning systems resulting from the twinning deformation at large strain. Th

ion equations of ρ(α)A and ρ(t)M are adopted based on the widely used dislocation densi

ion law (Lee et al., 2010).

ρ̇
(α)
A = c1(

√√√√
24∑

α=1

ρ
(α)
A − c2ρ

(α)
A )(|γ̇(α)A |+ |γ̇(α)trip|) (6

ρ̇
(t)
M = c3(

√√√√
11∑

t=1

ρ
(t)
M − c4ρ

(t)
M )|γ̇(t)tw | (6

are the parameters related with dislocation generation while c2, c4 are the paramete

lling the annihilation process of dislocation.
21
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cording to Borbély et al. (2000), the stored energy Est (per unit volume) can b

ted by the energy of dislocation and Est is given in function of dislocation density ρ

azra et al., 2009; Lan et al., 2005):

Est ≈ ρtotEdis ≈
1

2
ρtotGshearb

2 (6

e Gshear is the shear modulus and b is the magnitude of Burgers vector.

summary of the model equations is given in Table 2.

merical implementation

this section, a time-integration procedure for the constitutive relations presented abo

ulate deformation of pseudoelastic NiTi single crystal is detailed. To this end, th

ransfer condition in the real experiment is firstly simplified under the assumption

m temperature field (Wang et al., 2017; Yin and Sun, 2012; Yin et al., 2014). The

nstitutive model and the heat equations are implemented into the software CAST3

(Combescure et al., 1982) through user-defined subroutine UMAT. The algorith

ase transformation part closely follows the work of Thamburaja and Anand (200

ndix A). For rate-dependent plasticity parts, the numerical implementation is base

algorithm of Li et al. (2008).

implification of the heat transfer condition

uz(z=0)=0
ux(x=0)=0
uy(y=0)=0
uz(z=l )=uz(t)

z

x

y

Mechanical loading

Heat convection

l

Figure 1 Thermal and mechanical boundary conditions
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2

summary of the basic and generalized cyclic model
te variables
θ, ξ(i), γ̇

(α)
A , γ̇

(t)
tw , γ̇

(α)
trip, (For generalized cyclic model: ξ(i)ua and ξ

(i)
rm are also included)

in equations
FFFeFFFinel, LLL = LLLe +LLLinel ≈ LLLe +LLLA

p +LLLtr +LLLtrip +LLLM
p

= (1− ξ)
∑24

α=1 γ̇
(α)
A SSSp

(α), LLLM
p = ξ

∑11
t=1 γ̇

(t)
twSSStw

(t), LLLtrip = (1− ξ)
∑24

α=1 γ̇
(α)
tripSSSp

(α), LLLtr =
∑24

i=1 ξ̇
(i)gtrSSStr

(i)

mholtz free energy density
e, ξ

(i), θ) = ψe + ψθ + ψint + ψp + ψtrans + ψcst

1
2
EEEe : C : EEEe, ψθ = C[(θ − θ0)− θ ln θ

θ0
] + µ(θ − θ0)ξ, ψ̇int = −BBBint : (LLLtr +LLLtrip)

(1− ξ)
∑24

α=1 g
(α)
A |γ̇(α)A |+ ξ

∑11
t=1 g

(t)
tw (γ̇

(t)
tw ), ψtrans =

1
2
Gξ2 + 1

2
βgtrξ(1− ξ)

= −w0(1− ξ)−∑24
i=1wiξ

(i) (For generalized cyclic model: ψcst = −w0(1− ξua − ξ)−∑24
i=1wi(ξ

(i) − ξ
(i)
rm))

rmodynamic forces
= gtr(MMM +BBBint) : SSStr

(i) − 1
2
EEEe : ∆C : EEEe − µ(θ − θ0)−Gξ − 1

2
βgtr(1− 2ξ) + w0 − wi

= |MMM : SSSp
(α)| − g

(α)
A , f

(t)
tw = (MMM : SSStw

(t))− g
(t)
tw , f

(α)
trip = (MMM +BBBint) : SSSp

(α)

lution laws for plastic deformation
ip in austenite

= γ̇0A

∣∣∣∣
τ
(α)
A

g
(α)
A

∣∣∣∣
1

mA

sign(τ (α)A ), ġ
(α)
A =

∑24
β=1 h

αβ
A

∣∣∣γ̇(β)A

∣∣∣
ip in martensite

= γ̇0tw(
τ
(t)
tw

g
(t)
tw

)
1

mtw if τ
(t)
tw > 0, γ̇

(t)
tw = 0 if τ

(t)
tw ≤ 0

=
∑11

s=1 h
ts
twγ̇

(s)
tw , ξ̇

(t)
tw =

γ̇
(t)
tw

γ
(t)
T

(ξ(t)tw ≥ 0 and
∑11

t=1 ξ
(t)
tw ≤ 1)

ip due to TRIP
= γsat

b
e−

ξc
b

∣∣∣ξ̇
∣∣∣ if f

(α)
trip > 0, γ̇

(α)
trip = 0 if f

(α)
trip ≤ 0

r generalized cyclic model: γ̇(α)trip =
γsat
b1
e
− ξc

b1

∣∣∣ξ̇
∣∣∣ sign(f (α)

trip) when SF
(α)
plastic > SFcritical)

lution laws for phase transformation
)
M = 0 and Ḟ (i)

AM = 0 ⇒ ξ̇ > 0 forward transformation
)
A = 0 and Ḟ (i)

MA = 0 ⇒ ξ̇ < 0 reverse transformation
rnal variables related with cyclic degradation (for generalized cyclic model)

= ξsatua

b3
e
− ξc

b3

∣∣∣ξ̇(i)
∣∣∣, ξ̇

(i)
rm = ξsatrm

b4
e
− ξc

b4

∣∣∣ξ̇(i)
∣∣∣, ḟ

(i)
c =

(f
(i)
c_sat−f

(i)
c_0)

b5
e
− ξc

b5

∣∣∣ξ̇
∣∣∣, Ġ = (Gsat−G0)

b6
e
− ξc

b6

∣∣∣ξ̇
∣∣∣

lution laws for dislocation density and stored energy
islocation density: ρtot = (1− ξ)ρA + ξ · ξtw · ρM

ρ̇
(α)
A = c1(

√∑24
α=1 ρ

(α)
A − c2ρ

(α)
A )(|γ̇(α)A |+ |γ̇(α)trip|), ρ̇

(t)
M = c3(

√∑11
t=1 ρ

(t)
M − c4ρ

(t)
M )|γ̇(t)tw |

ored energy: Est ≈ 1
2
ρtotGshearb

2

e heat transfer is simplified as heat convection through the lateral surface Slat

r (see Fig.1). Then, the initial and boundary conditions of heat transfer equilibriu
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ion are given by:

θ(t = 0) = θr ∀xxx ∈ Ω initial condition (6

qqq · nnn = h(θ − θr) ∀xxx ∈ Slat boundary condition (7

e θr represents the ambient temperature, Ω is the whole domain occupied by the refe

olume element with the volume VΩ, nnn is the normal vector of the lateral surface S

is the heat exchange coefficient of ambient media.

o assumptions are made: first, the heat conductivity of austenite is assumed

tropic due to its body-centered cubic crystal; second, the conductivity coefficient

ite is assumed as same as that of martensite.

tegrating Eq. (40) over the whole domain Ω, yields:

Cθ̇ΩVΩ +

∫

Ω

∇ · qqq dΩ = (ḞMD)ΩVΩ + (ḞLT )ΩVΩ (7

e θΩ = 1
VΩ

∫
Ω
θ dΩ, (ḞMD)Ω = 1

VΩ

∫
Ω
ḞMD dΩ, (ḞLT )Ω = 1

VΩ

∫
Ω
ḞLT dΩ are the avera

rature and heat sources rates in the domain Ω, respectively.

ḞMD =
24∑

i=1

f
(i)
tr ξ̇

(i) + (1− ξ)
24∑

α=1

f
(α)
A γ̇

(α)
A + ξ

11∑

t=1

f
(t)
tw γ̇

(t)
tw + (1− ξ)

24∑

α=1

f
(α)
tripγ̇

(α)
trip (7

ḞLT = θµ

24∑

i=1

ξ̇(i) (7

sed on the assumption of uniform temperature field, the average temperature over th

n Ω is considered to be the same as the surface temperature θs, and expressed by

s = θ. Thus, considering Gauss’s theory in Eq. (71), it yields:

Cθ̇ = (ḞMD)Ω + (ḞLT )Ω − h(θ − θr) · SΩ

VΩ

(7

(ḞMD)Ω =

∑n
i=1 ViḞMD∑n

i=1 Vi
, (ḞLT )Ω =

∑n
i=1 ViḞLT∑n

i=1 Vi
(7

e SΩ is the area of surface Slat. i labels the single crystals in the whole domain, n

tal number of the grains and Vi is the volume of each crystal.
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ime-integration procedure

t t, ∆t and τ = t +∆t be the current time, the infinitesimal time increment and th

ime, respectively. The objective of the algorithm is to update all variables at tim

unction of the variables at time t and the proposed new deformation gradient FFF(τ

e t, the following variables are given: (1) FFF(t), FFFinel(t), TTT(t), σσσ(t); (2) ξ(i)(t), ξc(t

, γ(t)tw (t), γ
(α)
trip(t), τ

(α)
A (t), τ (t)tw (t), g

(α)
A (t), g(t)tw (t), BBBint(t), θ(t) (For generalized cycl

, ξ(i)ua(t), ξ(i)rm(t), fc(t) and G(t) are also given). At time τ , the following variabl

lculated: (1) FFFinel(τ), TTT(τ), σσσ(τ); (2) ξ(i)(τ), ξc(τ), γ(α)A (τ), γ(t)tw (τ), γ
(α)
trip(τ), τ

(α)
A (τ

, g(α)A (τ), g(t)tw (τ), BBBint(τ), θ(τ) (For generalized cyclic model, ξ(i)ua(τ), ξ(i)rm(τ), fc(τ) an

are also calculated).

r the sake of clarity the algorithm is detailed in appendix A.

termination of model parameters

is worth noting that some parameters are dependent on the chemistry compositio

ress state (Alkan and Sehitoglu, 2019; Alkan et al., 2017). As a result, the param

obtained by fitting the experimental curves only apply for the relevant experiment

ions and chemistry composition.

lastic and plastic parameters

the present work, the approximation of CM = 1
2
CA is made (Thamburaja and Anan

and the values of the elastic moduli are obtained by referring to (Brill et al., 1991)

e initial hardening coefficient (h0A and h0tw) and hardening exponent (aA and at

the slope during plastic deformation while the initial slip and twinning resistance (g
0
w) control the yield stress of slip in austenite and deformation twinning in martensit

tively. These parameters are chosen to match the experimental stress-strain curves.

sence of experimental data, the strain rate sensitivity (mA and mtw), reference stra

γ̇0A and γ̇0tw), latent hardening parameter (qa and qtw) and saturation value for slip an

ing resistance (g∞A and g∞tw) are taken from the work of Dhala et al. (2019); Kalidin

; Manchiraju and Anderson (2010). The parameters related with TRIP are adopte
25
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on the physical mechanisms for cyclic behavior of NiTi SMAs. Under the monocycl

g conditions, some effects of the parameters on thermomechanical response (like th

t of Bsat on transformation stress plateau levels) are not revealed. As a result, th

eters related with TRIP in the basic model are estimated based on the work of (Y

2014c). For the generalized cyclic model, these parameters will be discussed in ne

tion with the transformation related parameters since they are closely linked wi

transformation.

ransformation related parameters

me approximations are made to determine the transformation parameters. First, a

ormation systems have the same critical driving force: f (i)
c = fc. Second, the hardenin

ing from the interactions between austenite and martensite is ignored: β = 0. Thir

ntribution from elastic strain of different phases to the driving force for transformatio

lected: 1
2
EEEe : ∆C : EEEe = 0. The calibration of the transformation related paramete

basic and generalized cyclic model is discussed separately in the following subsection

For basic model considering monocyclic deformation

mentioned above (Eq. (18), θ0 is specified by θAM and θMA from DSC measurement

er to determine the value for critical driving force f (i)
c and stress-temperature coefficie

hardening interactions between martensite variants and the effect of internal stre

nored. As a result, the driving force for each transformation system is simplified as:

f
(i)
tr = gtrτ

(i)
tr − µ(θ − θ0), with τ

(i)
tr = MMM : SSS(i)

tr (7

ing the definition of σσσ (Eq. (3)), it has τ (i)tr = det(FFFe)σσσ : SSS(i)
tr ≈ σσσ : SSS(i)

tr .

e to the existence of crystal orientations, the local crystal coordinate system mig

always consistent with the global ones. Set aaa as a unit vector in the crystal coordina

, which is along the loading axis in the global system. Then the largest Schmid fact

nsformation SFmax can be written as:

SFmax = max[(aaa ⊗ aaa) : SSS(i)
tr ] (7
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cordingly, the consistency conditions for phase transformation are given by:

f
(i)
tr = gtrσAM · SFmax − µ(θ − θ0) = fc Forward transformation (7

f
(i)
tr = gtrσMA · SFmax − µ(θ − θ0) = −fc Reverse transformation (7

e σAM and σMA are the start stresses for forward and reverse transformation, respe

nsidering Eq. (78) and (79), it is deduced that:

fc =
1

2
gtr · SFmax(σAM − σMA) (8

µ =
1

2(θ − θ0)
gtr · SFmax(σAM + σMA) (8

For generalized model considering cyclic deformation

order to decouple the effect of fc and µ on the start stress of forward transformatio

ysteresis width, θ0 is written as (Lagoudas and Entchev, 2004; Yu et al., 2014a

s +
fc
µ

. Ms is the start temperature of martensite transformation. Thus, the drivin

f
(i)
tr in Eq. (32) can be rewritten as:

f
(i)
tr = gtr(MMM +BBBint) : SSStr

(i) − µ(θ −Ms)−Gξ + fc (8

g. 2 shows the illustration for determining the parameters related with transformatio

olid and dash line represent the stress-strain curve of the first and stabilized cycl

tively. The parameters {µ, Bsat, fc_0, fc_sat, G0, Gsat} could be derived from th

l points at the curves and the final forms are given as follows. The detailed derivatio
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s is listed in appendix B.

µ =
gtrσσσ

1
1 : SSS(i)

tr

θ −Ms

=
gtrσ

1
1 · SFmax

tr

θ −Ms

(8

fc_0 =
1

2
gtr(σσσ

1
2 − σσσ1

3) : SSStr
(i) =

1

2
gtr(σ

1
2 − σ1

3) · SFmax
tr (8

fc_sat =
1

2
gtr(σσσ

sat
2 − σσσsat

3 ) : SSStr
(i) =

1

2
gtr(σ

sat
2 − σsat

3 ) · SFmax
tr (8

Bsat =
(σσσ1

1 − σσσsat
1 ) : SSStr

(i)

(
∑24

i=1 SSStr

(i)
) : SSStr

(i)
=

(σ1
1 − σsat

1 ) · SFmax
tr

(
∑24

i=1 SSStr

(i)
) : SSStr

(i)
(8

G0 =
gtr(σσσ

1
2 − σσσ1

1) : SSStr
(i) + gtrBBBint

∣∣
at σσσ1

2
: SSStr

(i)

ξ
∣∣
at σσσ1

2

≈ gtr(σ
1
2 − σ1

1) · SFmax
tr

ξ
∣∣
at σσσ1

2

(8

Gsat =
gtr(σσσ

sat
2 − σσσsat

1 ) : SSStr
(i)

ξ
∣∣
sat

=
gtr(σ

sat
2 − σsat

1 ) · SFmax
tr

ξ
∣∣
sat

(8

ξ
∣∣
at σσσ1

2
=
Etr

global|at σσσ1
2

gtr · SFmax
tr

(8

ξ
∣∣
sat

=
Etr

global|sat
gtr · SFmax

tr

(9

he relevant evolution rate controlling parameters {b2, b5 and b6} are obtained by fittin

T h e  s t a b i l i z e d  c y c l e
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Figure 2 Illustration for determing the material paramters

olution curves of corresponding parameters during cyclic loading.

mentioned in the introduction part, the increment of residual strain in the cycl

ation curves is attributed to the accumulation of plastic deformation and residu
28
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nsite. However, it is difficult to determine the percentage of contributions of ea

nism to the residual strain from the experimental data. Besides, the portion cou

during the cyclic deformation (Yu et al., 2014b). Thus, in the present work, on

lized forms of the γsat and ξsatrm are given:

ξsatrm =
ϕEres

global|sat
gtr

∑
i∈A SF

(i)
tr

(9

γsat =
(1− ϕ)Eres

global|sat∑
α∈B SF

(α)
plastic

(9

e ϕ and (1 − ϕ) represent the percentage of contribution on residual strain from R

RIP, respectively. It satisfies ϕ ∈ [0, 1]. Eres
global|sat is the global residual strain in th

zed cycle. The set A and B refer to the sets containing all the active transformatio

s and slip systems (SF (α)
plastic > SFcritical), respectively. The choice of ϕ and SFcriti

pendent on the specific situation of the experimental data and a trial-and-error metho

ded for determination by fitting the experimental curves.

should be noted that the UA refers to the untransformed austenite after full tran

tion other than the austenite existing in incomplete phase transformation case (

in Fig. 2). For the incomplete transformation cases, the effect of UA is neglecte
sat
a is set to be zero. For the full transformation cases, according to the work of Zhan

(2019a), the reduction in recoverable strain after stabilized cycle is attributed to th

ulation of UA and RM. Consequently, the ξsatua can be estimated from:

ξsatua =
(Esat

tr − E1
tr)− ϕEres

global|sat
gtr

∑
i∈A SF

(i)
tr

(9

d Esat
tr are the transformation strain in the first and stabilized cycles, respectively.

hermomechanical coupling parameters

is the ambient temperature taken as 298 K in the present work. Heat exchan

ient h and specific heat capacity C are taken based on the experimental condition

they are equal to 110 W m−2K−1 and 2.86 MPa/K, respectively, according to the wo

rin et al. (2011). The values of surface SΩ and volume VΩ are calculated according

mensions of the simulated body.
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islocation density related parameters

the initial state of pseudoelastic NiTi SMA, the material is in a complete austeni

. Thus, the initial dislocation density ρ0 comes from the sum of dislocation densi

h austenite slip system and the initial values for dislocation density in martensi

ing system are equal to zero. Assuming that each austenite slip system has the sam

dislocation density, it gives ρ(α)A_0 = ρA_0 =
1
24
ρ0. The value of ρ0 is set as 1×1014 m

ng to the work of Xiao et al. (2018). Besides, the controlling parameters in austeni

stems and martensite twinning systems are set to be the same (c1 = c3, c2 = c4). Th

for c1 and c2 can be determined by referring to Yu et al. (2015b).

sults of the monocyclic deformation using the basic model

this section, the basic model is implemented, following the algorithm presented in th

dix A, into the software CAST3M (2019) through a user material subroutine UMAT

is end, a solid cube with 8 nodes (CUB8) is used. The loading axis is along the

f the element with the boundary condition shown in Fig. 1. A series of uniaxial tes

various loading conditions are presented. It should be mentioned that in the form

tions, a low strain rate of 3× 10−4s−1 is used and thermomechanical coupling effect

hed off”. This effect is discussed in subsection 5.4 through a series tests under differe

rates.

3

ial parameters used for verification of the model.
lastic constants
11
A = 130 GPa, C22

A = 98 GPa, C44
A = 34 GPa, CM = 1

2
CA

lastic parameters for austenite slip
0
A = 0.002 s−1, mA = 0.02, h0A = 500 MPa, g0A = 320 MP, g∞A = 900 MPa, aA = 0.125, qA = 1.4

lastic parameters for martensite twinning
0
tw = 0.001 s−1, mtw = 0.02, h0tw = 150 MPa, g0tw = 600 MP, g∞tw = 900 MPa, atw = 0.125, qtw = 1.4

lastic parameters for TRIP
sat = 0.003 (for simulation considering TRIP), γsat = 0 (for other simulations), b = 1, Bsat = 500

hase transformation parameters
0 = 256 K, G = 0 MPa, β = 0 MPa, gtr = 0.1308, f

(i)
c = 8.003 MPa, µ = 0.406 MPa/K
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niaxial tensile test of single crystal

this subsection, the model is verified qualitatively to catch the different behavio

d with the pseudoelasticity of NiTi SMA. At this stage, no comparison with the e

ental results is carried out. Thus, the parameters used here are taken from the lite

and are listed in Table 3; Elastic constants and austenite plasticity parameters fro

hiraju and Anderson, 2010), deformation twinning parameters from (Dhala et a

plastic parameters for TRIP from (Yu et al., 2014c) and phase transformation p

ers from (Thamburaja and Anand, 2001).) It should be mentioned that the TRI

nism is “switched off” by setting γsat = 0 in the first 4 series simulations while i

ating the inelastic deformation modes of slip and twinning. The effect of TRIP

sed specifically in the last part of the subsection with enlarged value for paramet

qualitatively reveal its physical interpretation. In the simulations, [1 1 1] orientatio

sen for the crystallographic orientation since NiTi wires exhibiting dominant [1 1

e along the wire axis (Laplanche et al., 2017).

Pseudoelastic tensile response at 298 K

g. 3 shows the pseudoelasticity at 298 K and 7% strain. It can be seen that a ful

d transformation occurs with a complete reversal after unloading. No residual stra

rved which is consistent with the result shown in Fig. 3(c) and (d): local slip γA give

=
∑24

α=1 |γ
(α)
A | and deformation twinning γtw given by γtw =

∑11
t=1 |γ

(t)
tw | are inacti

this condition. The pseudoelastic strain is about 5.6%, which is less than the near

easured by Miyazaki et al. (1984) since the martensite reorientation and martensi

ning are not considered in the present work of pseudoelastic study.

Temperature effect

ulations of uniaxial tension tests at 7% strain and different temperatures are reporte

. 4. As shown in Fig. 4(a)-(c), the start stresses for both forward and reverse pha

ormation (σAM and σMA) increase as the temperature rises. This is due to the increa

k force term µ(θ− θ0) in the driving force for phase transformation (Eq. (32)), whi
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( a )

3 Simulated responses of a single crystal in uniaxial tension tested at 298 K and 7% strain (with TRIP mechani

d off”). (a) Macrostress-macrostrain response; (b) Evolution of martensite volume fraction with macrostress;

n of twinned martensite volume fraction with macrostrain; (d) Evolution of local slip activity with macrostrain.

phase transformation occurs at higher stress. When σAM is larger than the yield stre

tenite (see Fig. 4(h)-(i)), plastic slip deformation in austenite occurs before the pha

ormation. A coupling between plasticity and phase transformation is shown as th

eformation increases monotonically during the forward phase transformation. Whe

mperature increases, more austenite slip is activated, which leads to the increase

sidual strain. Besides, the volume fraction of martensite at the end of forward pha

ormation decreases with the elevation of the temperature (see Fig. 4(d)-(f)). Fig.

the simulated results of a single crystal tensile tested at 323 K and 7 % strain f

plasticity is “switched off” by setting extremely high initial slip resistance g0A as 320

Pure phase transformation without residual strain is observed in Fig. 5(a). Compare

. 4(f) and Fig. 5(b), the forward phase transformation starts at the same stress leve

e volume fraction of phase transformation is lower in the case with plasticity tha
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f the case without plasticity. This reveals the retard effect of plastic deformation o

ansformation (Dhala et al., 2019).
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4 Simulated responses of a single crystal in uniaxial tension tested at 7% strain and at different temperatures (w

echanism “switched off”). (a), (b) and (c) are the macrostress-macrostrain responses at 303 K, 313 K and 323

vely; (d), (e) and (f) are the evolutions of martensite volume fraction with macrostress at 303 K, 313 K and 323

vely; (g), (h) and (i) are the evolution of local deformation activity with macrostrain at 303 K, 313 K and 323

vely.

Strain effect

g. 6 shows the responses of uniaxial tension at 298 K under different imposed strain

esidual strain increases with the maximum imposed strains. The plastic deformatio

after the phase transformation plateau at a very high stress. According to Fi

), the plastic deformation is attributed to the deformation twinning in martensite γ

slip in austenite γA remains 0. Consistent with the twinning deformation results, th

e fraction of twinned martensite increases with the increase of strain amplitude (Fi
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5 Simulated responses of a single crystal in uniaxial tension tested at 323 K and 7% strain with plasticity is “switch

i)). The existence of twinned martensite restraints the reverse phase transformatio

ads to a residual martensite at the end of unloading (see Fig. 6(d)-(f)). This result

d agreement with the previous studies (Dhala et al., 2019; Wang et al., 2008b). Pa

martensite structure is highly deformed at large strains and it cannot fully transfor

o austenite (Sehitoglu et al., 2000). Different from the results of plastic deformation

ite, the stress-strain curve of reverse transformation is also affected by the deformatio

ing. The width of the reverse transformation plateau becomes smaller. Besides, th

ormation continues after the end of the stress plateau, which is consistent with th

in Sehitoglu et al. (2001a).

Pseudoelastic tensile response at high temperature and large strain

g. 7 shows the simulation test at 323 K and 15 %, in which case, both slip an

ation twinning are activated. Due to the large strain amplitude, a complete forwa

ormation occurs. Besides, no residual martensite is left, compared with the case

(c). Since the high temperature increases the reverse start stress σMA, martensite ca

ransform back to austenite.

Pseudoelastic tensile response considering TRIP

g. 8 shows the simulation test at 298 K and 7% strain, which considers TRIP mech

Compared with the pure pseudoelastic transformation case in Fig. 3, residual stra
34
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6 Simulated responses of a single crystal in uniaxial tension tested at 298 K and at different maximum strain (w

echanism “switched off”). (a), (b) and (c) are the macrostress-macrostrain responses at 9%, 12% and 15%, respective

and (f) are the evolutions of martensite volume fraction with macrostress at 9%, 12% and 15%, respectively; (g),

are the evolution of twinned martensite volume fraction with macrostrain at 9%, 12% and 15%, respectively; (j),

are the evolution of local deformation activity with macrostrain at 9%, 12% and 15%, respectively.

and the phase transformation becomes incomplete due to the introduction of TRI

8(a) and (b)). Since the local slip γA and γtw are inactivated (Fig. 8(c)), the plast

ation is only attributed to the TRIP given by γtrip =
∑24

α=1 |γ
(α)
trip| (Fig. 8(d)).

wn that the local slip of TRIP occurs when forward phase transformation starts an

ns unchanged when reverse phase transformation finishes. Besides, the slip of TRI

ulates monotonically during phase transformation. Fig. 9 shows the simulation te
35
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7 Simulated responses of a single crystal in uniaxial tension tested at 323 K and 15% strain (with TRIP mechani

d off”). (a) Macrostress-macrostrain response; (b) Evolution of martensite volume fraction with macrostress;

n of twinned martensite volume fraction with macrostrain; (d) Evolution of local deformation activity with macrostra

K considering TRIP mechanism. It can be seen that both conventional slip in auste

d TRIP are activated at the high testing temperature (Fig. 9(b)) and they can b

guished from simulation point of view by referring to γA and γtrip, respectively.

niaxial compresssion test of single crystal

e simulation results of a uniaxial compression test at 298 K and 7% strain are show

. 10. The parameters are given in Table. 3. Compared with Fig. 3, a clear tensio

ession asymmetry is revealed. The absolute value of start stress for forward and rever

ormation (σAM and σMA) are higher in compression test than those in tension tes

s, plastic deformation in austenite is activated in compression case. Such asymmet

s in the crystallography. According to Eq. (77), the largest Schmid factor SFm

ase transformation is related to the unit vector of loading axis. When the loadin

ion changes, the SFmax changes, and the relevant activated transformation system
36
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8 Simulated responses of a single crystal in uniaxial tension tested at 298 K and 7% strain which considers TR

rostress-macrostrain response; (b) Evolution of martensite volume fraction with macrostress; (c) Evolution of lo

tion activity with macrostrain; (d) Evolution of TRIP deformation activity with macrostrain.

9 Simulated responses of a single crystal in uniaxial tension tested at 323 K and 7% strain which considers TRIP.

ress-macrostrain response; (b) Evolution of local slip with macrostrain.

ange consequently. Assuming the critical driving force for phase transformation is th

under tension and compression cases, then the start stress for phase transformatio

ange in order to satisfy the consistency condition (Eq. (78) and (79)). This explai

he absolute value of σAM in compression test is different from that in tensile test. Sin
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10 Simulated responses of a single crystal in uniaxial compression tested at 298 K and 7% strain. (a) Macrostre

rain response; (b) Evolution of martensite volume fraction with macrostress; (c) Evolution of twinned martens

fraction with macrostrain; (d) Evolution of local deformation activity with macrostrain. (Here, the absolute values

ress and macrostrain are used)

M is high in compression case, the plastic slip in austenite occurs before the forwa

transformation and results in a residual strain after unloading.

ffect of crystal orientations

e simulations of uniaxial compression tests are carried out on a single crystal at 29

along different crystallographic directions of [2 2 1], [2 1 0], [1 2 3], [1 0 0], [2 1 1] an

]. According to the experimental results of Gall et al. (2002), predominantly plast

ation is observed in [1 1 1] orientation while [2 1 0] orientation exhibits almost perfe

oelasticity. Thus, the [1 1 1] experimental response is used for fitting the plastici

eters and the phase transformation parameters are calibrated according to stres

curve of [2 1 0]. The calibrated parameters are listed in Table 4. The compariso

ulated and experimental results are plotted in Fig. 11, using dash-dot lines and sol

respectively. It is seen that the mechanical responses from simulations are in goo
38
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4

ial parameters calibrated for single crystal of solutionized Ti-50.9 at.%Ni SMA.
lastic constants
11
A = 130 GPa, C22

A = 98 GPa, C44
A = 34 GPa, CM = 1

2
CA

lastic parameters for austenite slip
0
A = 0.002 s−1, mA = 0.02, h0A = 1400 MPa, g0A = 188 MP, g∞A = 900 MPa, aA = 0.125, qA = 1.4

lastic parameters for martensite twinning
0
tw = 0.001 s−1, mtw = 0.02, h0tw = 150 MPa, g0tw = 600 MP, g∞tw = 900 MPa, atw = 0.125, qtw = 1.4

lastic parameters for TRIP
sat = 0.003 , b = 1, Bsat = 500

hase transformation parameters
0 = 257 K, G = 5 MPa, β = 0 MPa, gtr = 0.1308, f

(i)
c = 10 MPa, µ = 0.3654 MPa/K

ent with experiments, except for the orientation of [1 1 1]. Extreme plastic wo

ning is shown in the experimental curves of [1 1 1] orientation, which is also failed

tured in former works (Dhala et al., 2019; Hossain and Baxevanis, 2021; Yu et a

). As mentioned by Gall et al. (2002), the specimens were heated to 373 K aft

ing and no recovered strain were measured. Thus, the residual strain in the curv

rmanent plastic strain and not strain from residual martensite. This characteristic

aptured by the proposed model. The volume fraction of martensite turns back to ze

unloading. The stress-strain curves are strongly dependent on the crystallograph

ations, and the start stresses for phase transformation, the slope of transformatio

width of hystersis loop and residual strain differ in different orientations. It should b

oned that the experimental data used here is for solutionized NiTi single crystal. Th

teristics of the mechanical responses might change for the aging treated samples sin

nt aging treatments lead to different sizes of Ti3Ni4, which alter the resistances to bo

transformation and dislocation motion, and subsequently influence the transformatio

ratures and the mechanical responses of NiTi single crystal (Gall et al., 2001; Gall an

, 2002; Miyazaki et al., 1984).

ffect of thermomechanical coupling

g. 12 shows the simulation results of a uniaxial tensile test at 298 K and 7% strain wi

nt strain rates (using parameters in Table. 3). The stress-strain curves are plotte
39
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11 Simulated mechanical responses in uniaxial compression for single NiTi SMAs oriented along different directio

1]; (b) [2 1 0]; (c) [1 2 3]; (d) [1 0 0]; (e) [2 1 1]; (f) [1 1 1]. The experimental results from Gall et al. (2002) are a

by solid lines in the figures for comparison.

. 12(a). At a low strain rate 3 × 10−4s−1, it shows pure phase transformation wi

ntal plateau, similar to Fig. 3(a), indicating an isothermal response at this strain rat

the increase of the strain rate, the phase transformation curve becomes steeper an

sidual strain becomes more obvious. Fig. 12(b) shows the temperature evolution wi

lized time under different strain rates. At a strain rate of 3×10−4s−1, the temperatu

changes. When the strain rate is higher, the temperature increases during forwa

transformation stage and decreases during reverse phase transformation. This is du

predominant role of latent heat compared with other heat sources. Also, the differen

en maximum and initial temperature becomes more distinct when the strain rate

. At a large strain rate of 3 × 10−1s−1, the heat convection is insufficient and th

temperature is higher than the initial temperature. According to Eq. (32), the ba

term µ(θ − θ0) in the driving force increases during phase transformation due to th

se of temperature θ, similarly as kinematic hardening. As a result, a larger stress

d to continue the phase transformation. It is consistent with the results in Fig. 12(c

ch the same volume fraction of martensite in forward transformation, a higher stre
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12 Simulated responses of a single crystal in uniaxial tension tested at 298 K and 7% strain with different load

) Macrostress-macrostrain response; (b) Evolution of temperature with normalized time; (c) Evolution of martens

fraction with macrostress; (d) Evolution of local deformation activity with macrostrain.

uired for the curves of larger strain rates. Besides, phase transformation becom

plete at higher strain rates. The stress increases during forward transformation sta

hen it reaches the yield stress of austenite, slip deformation is activated. In Fig. 12(d

cal slip in austenite starts around 4.5% and accumulated until the end of loading. Th

omechanical coupling strongly affects the fatigue behavior of shape memory alloy

ut involving thermomechanical coupling, the accuracy of fatigue prediction from th

will be hampered (Moumni et al., 2005). Thus, in the present work, the couplin

is taken into account for further fatigue study.

sults of the cyclic deformation using the generalization cyclic model

ilar to the basic model, a solid cube CUB8 is used for testing the generalized mod

the boundary condition shown in Fig. 1. This section is divided into two parts.

st part (Section 6.1), the generalized model is calibrated to the reported data in (Ga
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aier, 2002) and is used to reproduce the anisotropic cyclic deformation of single NiT

with various crystallographic orientations. Since the experiments in (Gall and Maie

are conducted under small strain amplitudes, some of the inelastic mechanisms a

tivated. Thus, in the second part (Section 6.2), a series of tests at different loadin

ions are presented to comprehensively verify the generalized cyclic model.

omparison with experimental results from literature

5

ial parameters calibrated for cyclic deformation of pseudoelastic NiTi single crystal.
lastic constants
C11

A = 130 GPa, C22
A = 98 GPa, C44

A = 34 GPa, CM = 1
2
CA

lastic parameters for austenite slip
0
A = 0.002 s−1, mA = 0.02, g∞A = 900 MPa, aA = 0.125, qA = 1.4, h1 = 1200 MPa, h2 = 1600 MPa,
3 = 10 MPa, g0A

∣∣
<100>{010} = 700 MPa, g0A

∣∣
<100>{011} = 350 MPa, g0A

∣∣
<111>{100} = 280 MPa

lastic parameters for TRIP
sat = 0.008 , Bsat = 10000, b1 = 0.7, b2 = 1.33

hase transformation parameters
s = 247 K, gtr = 0.1308, µ = 0.52 MPa/K, G0 = 21.97 MPa, Gsat = 77.29 MPa, β = 0 MPa,

c_0 = 9.37 MPa, fc_sat = 2.63 MPa, ξsatua = 0, ξsatrm = 0, b3 = 1, b4 = 1, b5 = 2.59, b6 = 1.26

6

imental and predicted residual strain of single NiTi SMA in different crystallographic orie

s at 100th cycle ((Gall and Maier, 2002)).
Permanent strain at 100th cycle

ystallographic orientations [2 1 0] [1 1 1] [3 2 1] [2 1 1] [2 2 1] [1 1 0]

Experiment (%) 0.98 2.42 2.39 3.19 2.19 2.35
Prediction (%) 1.09 2.30 2.28 1.71 2.46 2.36

e parameters used here are determined from the experimental data in the work

nd Maier (2002). The determination process are explained in appendix C and th

eters values are listed in Table 5. It should be mentioned that the simulation tests a

cted under strain control to a maximum strain of about 3% and unloaded under loa

l to a minimum stress of about 20 MPa according to Gall and Maier (2002). Beside

ration of loading and unloading stage is set as 30 kinematic time as reported.
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e experimental and simulation mechanical responses of NiTi single crystal in [2

ntation at different loading cycles are shown in Fig. 13 as the solid and dash-d

respectively. It can be seen that the main characteristics of the cyclic deformatio

ptured. Fig. 14 shows the comparison of the experimental and simulation results

] sample. As presented by the experimental curves (solid lines), the hysteresis loo

in the first 4 cycles and disappears from the 16th cycle. Such evolution feature

ably reproduced by the proposed model as shown in dash-dot lines. The robustness

esent model is further attested by the good agreement of experimental and simulatio

in [3 2 1] orientation where parameters calibrated from [2 1 0] and [1 1 1] curves a

Fig. 15). Fig. 16 shows the predicted evolution of the permanent strains for the

orientations. The experimental data is also given for comparison in different type

ls. It can be seen that the evolution shapes of the predicted permanent strains a

lose to those of the experimental ones. The values of the residual strains after 10

in various orientations are listed in Table 6.

addition to the three orientations mentioned above, the permanent strains at 100

in three other orientations ([2 1 1], [2 2 1] and [1 1 0]) are also listed in Table

t [2 1 1], the predicted permanent strains of the other orientations fit well with th

mental data. The corresponding simulated cyclic stress-strain curves are shown

7. No experimental curves are provided here for comparison because of the absen

chanical curves of these three orientations in the work of Gall and Maier (2002).

odel verification under various loading conditions

Cyclic loading at large strain amplitudes

g. 18 shows the the simulated cyclic responses of [1 1 1] orientated NiTi single cryst

under large strain amplitude. The parameters used are listed in Table 7. It shou

ed that the ξsatua and ξsatrm are set to zero in this case for simplification. The occurren

stic deformation is observed after the complete martensitic transformation at lar

in Fig. 18(a). Such inelastic deformation is mainly attributed to the deformatio

ing in martensite as shown in Fig. 18(c) and (d). Moreover, the curve presents
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13 Simulated mechanical responses of single NiTi SMAs oriented along [2 1 0] direction at different cycles: (a)

) 2nd cycle; (c) 4th cycle; (d) 16th cycle; (e) 100th cycle. The experimental results from Gall and Maier (2002)

tted by solid lines in the figures for comparison (Here, the absolute values of macrostress and macrostrain are used)

ransformation hysteresis without deformation twinning after the first cycle, which

tent with the experimental observation of cyclic behavior of pseudoelastic NiTi und

strain (Wang et al., 2008a). The evolution of martensite volume fraction is plotte

. 18(b). It can be seen that the reverse transformation is not completely finished

in the enlarged figure. This is due to the existence of highly deformed martensite

strain, which can not fully transform back to austenite (Sehitoglu et al., 2000).
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14 Simulated mechanical responses of single NiTi SMAs oriented along [1 1 1] direction at different cycles: (a)

) 2nd cycle; (c) 4th cycle; (d) 16th cycle; (e) 100th cycle. The experimental results from Gall and Maier (2002)

tted by solid lines in the figures for comparison (Here, the absolute values of macrostress and macrostrain are used)

Effect of thermomechanical coupling on cyclic deformation behavior

order to verify the thermomechanical coupling effect on the cyclic deformation of NiT

crystal, a simulation test is conducted in [2 1 0] orientation under the same loadin

ion as Section 6.1, but with a higher strain rate of 1 ×10−1s−1. The correspondin

nical and thermal responses are shown in Fig. 19 and 20, respectively. Compared wi

echanical responses at a low strain rate of 1 ×10−3s−1 (Fig. 13), a higher peak stre

rger residual strain are observed in Fig. 19. Moreover, the start stress of forwa
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15 Simulated mechanical responses of single NiTi SMAs oriented along [3 2 1] direction at different cycles: (a)

) 2nd cycle; (c) 4th cycle; (d) 16th cycle; (e) 100th cycle. The experimental results from Gall and Maier (2002)

tted by solid lines in the figures for comparison (Here, the absolute values of macrostress and macrostrain are used)

ormation for each cycle is higher in the high-strain-rate test.

g. 20 plots the thermal responses of tests at different strain rates. The periodic

rature evolution is attributed to the mechanical dissipation and latent heat assoc

ith phase transformation. At a low strain rate (Fig. 20(a)), the mean temperatu

ses a little bit at the first five cycles and then tends to stabilize at 298 K. Howeve

igh strain rate (Fig. 20(b)), the mean temperature increases at the first two cycl

eeps rising to 308 K. Comparing Fig. 20(a) and (b), it can be seen that the mea
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7

ial parameters used for generalized cyclic model verification.
Plastic parameters for TRIP
γsat = 0.003 (for the large strain amplitude test), γsat = 0.01 (for the effect of UA and RM test)
b1 = 0.7, b2 = 1.33

Phase transformation parameters
Ms = 251.3 K, gtr = 0.1308, µ = 0.54 MPa/K , G0 = 2 MPa, Gsat = 5 MPa, β = 0 MPa
fc_0 = 8.1 MPa, fc_sat = 5 MPa, ξsatua = 0, ξsatrm = 0 (for the large strain amplitude test)
ξsatua = 0.02, ξsatrm = 0.05 (for the effect of UA and RM test), b3 = 6, b4 = 6, b5 = 6, b6 = 6

Dislocation density realted parameters
ρ0=1× 1014 m−2, c1 = c3 = 1.7× 108 m−1, c2 = c4 = 1.9× 10−9 m

tes: The values for elastic constants, plastic parameters for austenite slip and plastic parameters

martensite twinning are the same as those listed in Table 3 and not listed here for clarity.
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18 Simulated responses in uniaxial tension for single NiTi SMAs in [1 1 1] orientation tested at 12% strain:

ress-macrostrain response; (b) Evolution of martensite volume fraction with loading cycles; (c) Evolution of twinn

ite volume fraction with loading cycles; (d) Evolution of local deformation activity with loading cycles.

rature is higher for high strain rate, which explains the difference in transformatio

tresses under two different strain rates conditions.
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Effect of UA and RM

this section, the single NiTi in [1 1 1] orientation experiences a cyclic tension-unloadin

ation under stress control to a peak stress of 800 MPa. The peak stress is chosen

the fully transformation for studying the effect of UA and RM on the mechanic

ses. The parameters used are listed in Table 7. The predicted cyclic mechanical curv

otted in Fig. 21(a). Fig. 21(b) shows the evolution of martensite volume fraction wi

g cycles. It can be seen that the maximum ξ after forward transformation never reach

decreases with the increase of loading cycles, as marked by red dash lines. Beside

inimum ξ at the end of unloading never returns back to zero and increases during th
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21 Simulated responses in uniaxial tension for single NiTi SMAs in [1 1 1] orientation tested under stress control t

m stress of 800 MPa: (a) Macrostress-macrostrain response; (b) Evolution of martensite volume fraction with load

c) Evolution of UA volume fraction with loading cycles; (d) Evolution of RM volume fraction with loading cycles.

deformation, as marked by blue dash lines. Such incomplete phase transformation

the introduction of internal variables ξua and ξrm. As shown in Fig. 21(c) and (d

lume fraction of UA and RM increases with the loading cycles and tends to stabilize

reaching the saturation value of 0.02 and 0.05, respectively.

Evolution of dislocation density and corresponding stored energy

e predicted evolution curves of dislocation density and stored energy in the stre

lled test mentioned in Section 6.2.3 are shown in Fig. 22. It can be seen that th

ation density increases at the first few cycles and barely changes after 12 cycles. Simil

ion curves are reported in the simulation work of Yu et al. (2015a) and the experiment

of Zotov et al. (2017). Fig. 22(b) shows the evolution curve of corresponding store

. It presents the same trend as the evolution curve of dislocation density. It shou

ted that the curves here only represent the qualitative evolution characteristics du
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lack of the experimental results. Subsequent work is needed in the experiment

rement of dislocation density and stored energy in NiTi SMAs.
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Figure 22 Simulated evolution of: (a) Dislocation density; (b) Corresponding stored energy.

nclusions

crystal plasticity-based constitutive model is developed in a finite strain framewo

cribe the thermomechanical behavior of pseudoelastic NiTi single cyrstal. For th

ime, the model takes into account all physical mechanisms which affects the fatigu

ior of NiTi SMAs: martensite transformation, deformation slip in austenite at hig

rature, deformation twinning in martensite at large strain, TRIP as well as thermom

al coupling. Subsequently, new internal variables and evolution laws are introduce

er to reproduce the main features of anisotropic cyclic deformation of pseudoelast

single crystal. The basic and generalized cyclic constitutive models are implemente

AST3M (2019) and verified through simulations under different temperatures, stra

tudes, crystallographic orientations, loading directions and strain rates. The effect

rature and strain amplitude on thermo-mechanical responses are qualitatively ca

Besides, it is worth noted that the features of cyclic performance of NiTi SMAs u

rge strain amplitude with deformation twinning involved are also reproduced. TRI

erved when forward transformation starts and remains unchanged after reverse tran

tion finishes. Moreover, the tension-compression asymmetry in pseudoelastic respon
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ated from the differences of activated transformation systems in tension and compre

predicted. The features concerning the thermomechanical coupling, i.e. increase

sidual strain and transformation slope with strain rate are captured through the sim

tests under different strain rates. Furthermore, the model is verified by predicting th

mental results reported by (Gall et al., 2002) and (Gall and Maier, 2002). The cha

stics of crystallographic orientation effect and anisotropic cyclic deformation behavi

ell reproduced. A quantitatively good fit of the simulation and experimental data

ed since the physical mechanisms of cyclic performance are all considered. Finall

olution of dislocation density and stored energy is discussed in this work from th

ctive of fatigue analysis of SMAs.
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ndix A : time-integration procedure

this appendix, the numerical integration procedure is presented. Firstly, a detaile

ure is given in Table 8 and 9 for the basic model. Since the time-integration procedu

e generalized cyclic model is similar to that of the basic model with some difference

he modified part are listed in Table 10 for the generalized cyclic model.

ndix B : determination of transformation related parameters

e forward phase transformation starts at the point σ1
1 for the first cycle in Fig. 2. A

oint, the internal stress triggered by phase transformation is equal to zero (BBBint = 0

ding to the consistency condition (Eq. (51)), the transformation condition at the poi

be written as:

gtrσσσ
1
1 : SSStr

(i) − µ(θ −Ms) = 0 (9
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integration procedure for the basic model
Step 1: calculate the trail Elastic Green strain EEEe(τ)

trial

FFFe(τ)
trial = FFF(τ)FFFinel(t)

−1, AAA(τ)trial = (FFFe(τ)
trial)TFFFe(τ)

trial, EEEe(τ)
trial = 1

2
(AAA(τ)trial − III)

Step 2: calculate the effective elastic moduli C(t)
C(t) = (1− ξ(t))CA + ξ(t)CM

Step 3: calculate the trial second Piola-Kirchoff stress TTT(τ)trial and Mandel stress MMM(τ)trial

TTT(τ)trial = C(t) : EEEe(τ)
trial, MMM(τ)trial = AAA(τ)trialTTT(τ)trial

Step 4: calculate the trial resolved shear stresses for slip and twinning deformation
τA

(α)(τ)
trial

= MMM(τ)trial : SSSp
(α), τtr

(i)(τ)
trial

= (MMM(τ)trial +BBBint(t)) : SSStr
(i)

τtw
(t)(τ)

trial
= MMM(τ)trial : SSStw

(t), τtrip
(α)(τ)

trial
= (MMM(τ)trial +BBBint(t)) : SSSp

(α)

Step 5: calculate the trial driving force for each mechanism:
f
(i)
tr (τ)

trial = gtrτtr
(i)(τ)

trial − 1
2
EEEe : ∆C(t) : EEEe − µ(θ(t)− θ0)−Gξ(t)− 1

2
βgtr(1− 2ξ(t))

f
(α)
A (τ)trial = |τA(α)(τ)

trial| − g
(α)
A (t), f

(t)
tw (τ)

trial = τtw
(t)(τ)

trial − g
(t)
tw (t), f

(α)
trip(τ)

trial = τtrip
(α)(τ)

tr

Step 6: calculate ∆γ
(α)
A (τ), ∆γ(t)tw (τ), ∆ξ(i)(τ) and ∆γ

(α)
trip(τ). (A detailed procedure is shown afterwards.

Step 7: renew ξ(i)(τ), ξ(τ) and ξc(τ)

ξ(i)(τ) = ξ(i)(t) + ∆ξ(i)(τ), ξ(τ) =
∑24

i=1 ξ
(i)(τ), ξc(τ) = ξc(t) +

∑24
i=1|∆ξ(i)(τ)|

Step 8: calculate the temperature change ∆θ(τ)

∆FMD(τ) =
∑24

i=1 f
(i)
tr (τ)

trial∆ξ(i)(τ) + (1− ξ(τ))
∑24

α=1 f
(α)
A (τ)trial∆γ

(α)
A (τ)

+ξ(τ)
∑11

t=1 f
(t)
tw (τ)

trial∆γ
(t)
tw (τ) + (1− ξ(τ))

∑24
α=1 f

(α)
trip(τ)

trial∆γ
(α)
trip(τ)

∆FLT (τ) = θ(t)µ
∑24

i=1∆ξ
(i)(τ), C∆θ(τ) =

∑n
i=1 Vi∆FMD(τ)∑n

i=1 Vi
+

∑n
i=1 Vi∆FLT (τ)∑n

i=1 Vi
− h(θ(t)+∆θ(τ)−θr)·SΩ

VΩ

Step 9: calculate and normalize inelastic deformation gradient FFFinel(τ)

FFFinel(τ) = [1 + (1− ξ(τ))
∑24

α=1 ∆γ
(α)
A (τ)SSSp

(α) +
∑24

i=1 ∆ξ
(i)(τ)gtrSSStr

(i)

+ξ(τ)
∑11

t=1∆γ
(t)
tw (τ)SSStw

(t) + (1− ξ(τ))
∑24

α=1∆γ
(α)
trip(τ)SSSp

(α)]FFFinel(t)

JJJinel = det(FFFinel(τ)), FFFinel(τ) = JJJ− 1
3

inelFFFinel(τ)

Step 10: update C(τ)
C(τ) = (1− ξ(τ))CA + ξ(t)CM

Step 11: compute FFFe(τ),TTTe(τ) and σσσ(τ)
FFFe(τ) = FFF(τ)FFFinel(τ)

−1, TTT(τ) = C(τ) : EEEe(τ) = C(τ) : 1
2
(FFFe(τ)

TFFFe(τ)− III)

σσσ = 1
det(FFFe(τ))

FFFe(τ)TTT(τ)(FFFe(τ))
T

Step 12: renew a group of internal variables

γ
(α)
A (τ) = γ

(α)
A (t) + |∆γ(α)A (τ)|, γ

(t)
tw (τ) = γ

(t)
tw (t) + |∆γ(t)tw (τ)|, γ

(α)
trip(τ) = γ

(α)
trip(t) + |∆γ(α)trip(τ)|

τA
(α)(τ) = FFFe(τ)(FFFe(τ))

TTTT(τ) : SSSp
(α), τtw

(t)(τ) = FFFe(τ)(FFFe(τ))
TTTT(τ) : SSStw

(t)

g
(α)
A (τ) = g

(α)
A (t) +

∑24
β=1 h

αβ
A

∣∣∣∆γ(β)A (τ)
∣∣∣, g

(t)
tw (τ) = g

(t)
tw (t) +

∑11
s=1 h

ts
tw

∣∣∣∆γ(s)tw (τ)
∣∣∣

BBBint(τ) = BBBint(t) +
∑24

i=1(
Bsat

b
e−

ξc(τ)
b ∆ξc(τ))SSS(i)

tr , θ(τ) = θ(t) + ∆θ(τ)
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etailed procedure for Step 6
• Plasticity in austenite

(1) The slip increment is approximated as:
∆γ

(α)
A (τ) ≈ [(1− θ1)γ̇

(α)
A (t) + θ1γ̇

(α)
A (τ)]∆t

(θ1 is a parameter between [0, 1]. In the present work, θ1 is taken as 0.5.)
(2) Employing a Taylor expansion:

γ̇
(α)
A (τ) = γ̇

(α)
A (t) +

∂γ̇
(α)
A

∂τ
(α)
A

∣∣∣∣
t

∆τ
(α)
A (τ) +

∂γ̇
(α)
A

∂g
(α)
A

∣∣∣∣
t

∆g
(α)
A (τ)

(3) The slip increment is rewritten as:

∆γ
(α)
A (τ) = ∆t(γ̇

(α)
A (t) + θ1

∂γ̇
(α)
A

∂τ
(α)
A

∣∣∣∣
t

∆τ
(α)
A (τ) + θ1

∂γ̇
(α)
A

∂g
(α)
A

∣∣∣∣
t

∆g
(α)
A (τ))

Where, ∆τ (α)A (τ) = τ
(α)
A (τ)trial − τ

(α)
A (t), ∆g

(α)
A (τ) =

∑24
β=1 h

αβ
A

∣∣∣∆γ(β)A (τ)
∣∣∣

• Phase transformation

(1) Determine the set of potentially active systems PA

a. For forward transformation, the system belongs to PA if it satisfies:
f
(i)
tr (τ)

trial − f
(i)
c > 0 , ξ(i)(t) ∈ [0, 1) and ξ(t) ∈ [0, 1)

b. For reverse transformation, the system belongs to PA if it satisfies:
f
(i)
tr (τ)

trial + f
(i)
c < 0 , ξ(i)(t) ∈ (0, 1] and ξ(t) ∈ (0, 1]

(2) Solve a equation set deriving from the consistency conditions:
∑

j∈PA Aijxj = bi , i ∈ PA

a. For the forward phase transformation, it has:
Aij = [gtr

2CCC
(j)
trans(τ)

trial −∑24
k=1(

Bsat

b
e−

ξc(t)
b SSS(k)

tr )] : SSS(i)
tr +G− βgtr

bi = f
(i)
tr (τ)

trial − f
(i)
c

xi = ∆ξ(i)(τ) > 0

b. For the reverse phase transformation, it has:
Aij = [gtr

2CCC
(j)
trans(τ)

trial +
∑24

k=1(
Bsat

b
e−

ξc(t)
b SSS(k)

tr )] : SSS(i)
tr +G− βgtr

bi = f
(i)
tr (τ)

trial + f
(i)
c

xi = ∆ξ(i)(τ) < 0

(3) If the solution ∆ξ(i)(τ) is negative during forward transformation, this system is inactive and remove
Aij will be recalculated. Similar conduction for reverse transformation (when ∆ξ(i)(τ) positive).

(4) Such iterative procedure is continued until all ∆ξ(i)(τ) satisfy the requirement.

• TRIP

(1) If f (α)
trip(τ)

trial > 0, start to calculate ∆γ
(α)
trip(τ).

∆γ
(α)
trip(τ) =

γsat
b
e−

ξc(τ)
b

∑24
i=1

∣∣∆ξ(i)(τ)
∣∣

• Plasticity in martensite

The procedure is similar as that of plasticity in austenite mentioned above.
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cations of the time-integration procedure for generalized cyclic model
• The driving force for transformation in Step 5 is rewritten as:

f
(i)
tr (τ)

trial = gtrτtr
(i)(τ)

trial − 1
2
EEEe : ∆C(t) : EEEe − µ(θ(t)−Ms)−Gξ(t)− 1

2
βgtr(1− 2ξ(t)) + f

(i)
c (t)

• Add calculation of ∆ξ(i)ua(τ) and ∆ξ
(i)
rm(τ) and renew of ξ(i)ua(τ) and ξ

(i)
rm(τ) between Step 7 and 8

∆ξ
(i)
ua(τ) =

ξsatua

b3
e
− ξc(τ)

b3

∣∣∆ξ(i)(τ)
∣∣, ∆ξ

(i)
rm(τ) =

ξsatrm

b4
e
− ξc(τ)

b4

∣∣∆ξ(i)(τ)
∣∣

ξ
(i)
ua(τ) = ξ

(i)
ua(t) + ∆ξ

(i)
ua(τ), ξ

(i)
rm(τ) = ξ

(i)
rm(t) + ∆ξ

(i)
rm(τ)

ξua(τ) =
∑24

i=1 ξ
(i)
ua(τ), ξrm(τ) =

∑24
i=1 ξ

(i)
rm(τ)

If ξua(τ) > ξsatua , set ξua(τ) = ξsatua . Similar conduction for ξrm(τ).

• Renew internal variables of BBBint(τ), fc(τ) and G(τ) in Step 13

BBBint(τ) = BBBint(t) +
∑24

i=1(
Bsat

b2
e
− ξc(τ)

b2 ∆ξc(τ))SSS(i)
tr , fc(τ) = fc(t) +

(fc_sat−fc_0)
b5

e
− ξc(τ)

b5

∑24
i=1

∣∣∆ξ(i)(τ)
∣∣

G(τ) = G(t) + (Gsat−G0)
b6

e
− ξc(τ)

b6

∑24
i=1

∣∣∆ξ(i)(τ)
∣∣

• If ∆ξ(i)(τ) > 0 and SF
(α)
plastic > SFcritical, start to calculate ∆γ

(α)
trip(τ).

∆γ
(α)
trip(τ) =

γsat
b1
e
− ξc(τ)

b1

∑24
i=1

∣∣∆ξ(i)(τ)
∣∣ sign(f (α)

trip)

us, the parameter µ is given as:

µ =
gtrσσσ

1
1 : SSS(i)

tr

θ −Ms

=
gtrσ

1
1 · SFmax

tr

θ −Ms

(9

the first cycle, the transformation condition at the end of forward transformation an

ginning of reverse transformation can be written as:

gtr(σσσ
1
2 +BBBint

∣∣
at σσσ1

2
) : SSStr

(i) − µ(θ −Ms)−G
∣∣
at σσσ1

2
ξ
∣∣
at σσσ1

2
= 0 (9

gtr(σσσ
1
3 +BBBint

∣∣
at σσσ1

3
) : SSStr

(i) − µ(θ −Ms)−G
∣∣
at σσσ1

3
ξ
∣∣
at σσσ1

3
= −2fc

∣∣
at σσσ1

3
(9

ce no phase transformation occurs between point σ1
2 and σ1

3, it holds BBBint

∣∣
at σσσ1

2

t σσσ1
3

and ξ
∣∣
at σσσ1

2
= ξ

∣∣
at σσσ1

3
. Neglecting the change of fc at the first forward transformatio

mbining Eq. (96) and (97), it gives the expression for fc_0:

fc_0 ≈ fc
∣∣
at σσσ1

3
=

1

2
gtr(σσσ

1
2 − σσσ1

3) : SSStr
(i) =

1

2
gtr(σ

1
2 − σ1

3) · SFmax
tr (9
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ilarly, in the stabilized cycle, the transformation condition at the end of forwa

ormation and the beginning of reverse transformation can be written as:

gtr(σσσ
sat
2 +BBBint

∣∣
sat

) : SSStr
(i) − µ(θ −Ms)−G

∣∣
sat
ξ
∣∣
sat

= 0 (9

gtr(σσσ
sat
3 +BBBint

∣∣
sat

) : SSStr
(i) − µ(θ −Ms)−G

∣∣
sat
ξ
∣∣
sat

= −2fc_sat (10

mbining Eq. (99) and (100), it gives the expression for fc_sat:

fc_sat =
1

2
gtr(σσσ

sat
2 − σσσsat

3 ) : SSStr
(i) =

1

2
gtr(σ

sat
2 − σsat

3 ) · SFmax
tr (10

e transformation condition at the beginning of forward transformation in the stabilize

can be written as:

gtr(σσσ
sat
1 +BBBint

∣∣
sat

) : SSStr
(i) − µ(θ −Ms) = 0 (10

mbining Eq. (94) and (102), and considering the definition of BBBint (Eq. (19)), th

eter Bsat can be obtained as:

Bsat =
(σσσ1

1 − σσσsat
1 ) : SSStr

(i)

(
∑24

i=1 SSStr

(i)
) : SSStr

(i)
=

(σ1
1 − σsat

1 ) · SFmax
tr

(
∑24

i=1 SSStr

(i)
) : SSStr

(i)
(10

e parameter G is related with the slope of transformation plateau. Thus, combinin

4) and (96), it gives the expression for G0:

G0 ≈
gtr(σσσ

1
2 − σσσ1

1) : SSStr
(i) + gtrBBBint

∣∣
at σσσ1

2
: SSStr

(i)

ξ
∣∣
at σσσ1

2

≈ gtr(σ
1
2 − σ1

1) · SFmax
tr

ξ
∣∣
at σσσ1

2

(10

ξ
∣∣
at σσσ1

2
=
ϵtrlocal|at σσσ1

2

gtr
=
Etr

global|at σσσ1
2

gtr · SFmax
tr

(10

the change of G and BBBint at the first forward transformation are neglected. The ξ
∣∣
at

martensite volume fraction at the end of forward phase transformation in first cyc

obtained from the global transformation strain Etr
global.

ilarly, Gsat can be obtained from combining Eq. (102) and (99):

Gsat =
gtr(σσσ

sat
2 − σσσsat

1 ) : SSStr
(i)

ξ
∣∣
sat

=
gtr(σ

sat
2 − σsat

1 ) · SFmax
tr

ξ
∣∣
sat

(10

ξ
∣∣
sat

=
Etr

global|sat
gtr · SFmax

tr

(10
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23 Cyclic mechanical responses in uniaxial compression for solutionized single NiTi SMAs oriented along differe

s. (a) [2 1 0]; (b) [1 1 1]; (c) [3 2 1] (Here, the absolute values of macrostress and macrostrain are used).

ndix C : material calibration for the work of Gall and Maier (2002)

e parameter determination process of fitting the experimental cyclic curves of sol

ed NiTi single crystal reported by Gall and Maier (2002) is presented. According to th

mental results (Fig. 23), [2 1 0] orientation exhibits almost perfect pseudoelastici

predominantly plastic deformation is observed in [1 1 1] orientation. Thus, the pha

ormation related parameters are calibrated according to stress-strain curve of [2 1

e [1 1 1] experimental response is used for fitting the plasticity parameters.

ansformation related parameters

the experiments of Gall and Maier (2002), the testing temperature θ and start tem

re of martensite transformation Ms are 298 K and 247 K, respectively. The sampl

00 loading cycles were heated to 373 K to recover the residual strain that attribute

residual martensite. As a result, the UA and RM are not considered in this case f

fication (ξsatua = ξsatrm = 0). Besides, the largest Schmid factor for transformation SFm

1 0] orientation under uniaxial compression test is calculated to be 0.51. From Fi
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11

ated Schmid factors for the slip systems in austenite.

Slip modes n Slip direction Slip plane
Schmid factor

[2 1 0] [1 1 1] [3 2 1]

<1 0 0>{0 1 0}

1 [1 0 0] (0 1 0) 0.40 0.33 0.14
2 [1 0 0] (0 0 1) 0.00 0.33 0.21
3 [0 0 1] (1 0 0) 0.00 0.33 0.21
4 [0 0 1] (0 1 0) 0.00 0.33 0.43
5 [0 1 0] (1 0 0) 0.40 0.33 0.14
6 [0 1 0] (0 0 1) 0.00 0.33 0.43

<1 0 0>{0 1 1}

7 [0 1 0] (1 0 1) 0.28 0.47 0.40
8 [0 1 0] (1 0 -1) 0.28 0.00 -0.20
9 [1 0 0] (0 1 1) 0.28 0.47 0.25
10 [1 0 0] (0 1 -1) 0.28 0.00 0.05
11 [0 0 1] (1 1 0) 0.00 0.47 0.45
12 [0 0 1] (-1 1 0) 0.00 0.00 0.15

<1 1 1>{1 1 0}

13 [-1 1 1] (1 1 0) -0.24 0.27 0.35
14 [1 -1 1] (1 1 0) 0.24 0.27 0.17
15 [-1 1 1] (1 0 1) -0.16 0.27 0.47
16 [1 1 -1] (1 0 1) 0.49 0.27 0.00
17 [1 1 -1] (0 1 1) 0.24 0.27 0.00
18 [1 -1 1] (0 1 1) 0.08 0.27 0.29
19 [1 1 -1] (-1 1 0) -0.24 0.00 0.00
20 [1 1 1] (-1 1 0) -0.24 0.00 0.17
21 [1 1 1] (-1 0 1) -0.49 0.00 0.35
22 [1 -1 1] (-1 0 1) -0.16 0.00 0.12
23 [1 1 1] (0 -1 1) -0.24 0.00 0.17
24 [-1 1 1] (0 -1 1) 0.08 0.00 0.12

the start stress for forward transformation in the first cycle σ1
1 is about 400 MP

Eq. (83), the µ is obtained as 0.52. Similarly, {Bsat, fc_0, fc_sat, G0, Gsat} can b

ed from Eq. (84-90) and the values are listed in Table 3.

astic parameters

ce the experiments are conducted in the small strain amplitude (maximum stain

3%), deformation twinning is not taken into consideration under this circumstanc

niaxial compression test in [1 1 1] orientation, the SFmax is 0.25. Thus, its theore

art stress for phase transformation in the first cycle σ1
1 is calculated to be 813 MP

ing to Eq. (83). However, the inelastic deformation occurs at around 745 MPa

23(b), far below the theoretical σ1
1 value. As a result, it is reasonable to conclud

he plastic deformation in austenite starts at 745 MPa before the occurrence of pha
58
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ormation at 813 MPa. Tabel 11 lists the calculated Schmid factors for the slip system

tenite. It can be seen that the largest Schmid factor SFplastic for [1 1 1] orientation

the second slip mode <1 0 0>{0 1 1}. Thus, the initial slip resistance of second sl

can be calculated from the critical stress of plastic deformation (g0A
∣∣
<100>{011} = 35

. The second largest Schmid factor SFplastic occurs in the first slip mode <1 0 0>{0

0.33. Because of the smaller inter-planar distance of slipping plane in <1 0 0>{0 1 0

hat in <1 0 0>{0 1 0}, the <1 0 0>{0 1 0} slip mode has higher initial slip resistan

0>{010} (Yu et al., 2015a). Recall the strain hardening matrix hαβA for slip in austeni

3), and assume each slip modes has distinct values of the initial hardening coefficie

r α ∈ [1, 6], h0A = h1; for α ∈ [7, 12], h0A = h2; for α ∈ [13, 24], h0A = h3). The value

0>{010}, h1 and h2 are set through fitting the stress-strain curves of [1 1 1] orientatio

the value of g0A
∣∣
<111>{110} and h3 are determined from the curves of [2 1 0] orientatio

nsidering the plastic deformation from austenite slip mainly contributes to the residu

in the first cycle, the residual strain in the following cyclic loading are attributed

(Yu et al., 2015a). Thus, the TRIP induced global residual strain Eres
global|TRIP can b

ted by the difference of residual strain at stabilized cycle and at the end first cycle, e

l|sat−Eres
global|at 1st cycle). From Fig. 23(a) and (c), it is seen that the Eres

global|TRIP in [2

ntation is about 0.56 %, almost half of that in [3 2 1] orientation (1.13 %). Accordin

. (92), it is clear that the global residual strain contributed from TRIP at stabilize

is dependent on the γsat and
∑

α∈B SF
(α)
plastic. For different orientation, the difference

|TRIP lies in the sum of the Schmid factors for activated slip systems since the valu

is the same. As a result, in order to satisfy the twice difference in Eres
global|TRIP of th

ientations, the SFcritical is chosen as 0.4082 to modify the
∑

α∈B SF
(α)
plastic.
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Highlights
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1. A crystal plasticity-based constitutive model which, for the first time in the
literature, takes into account all physical mechanisms liable to impact the fa-
tigue behavior of pseudoelastic SMA is developed.

2. Characteristics related with monocyclic deformation of single crystal NiTi
SMA are addressed within the finite strain framework and the numerical imple-
mentation is performed in CAST3M (2019) finite element software.

3. The model is generalized to predict the large cyclic deformation of NiTi
SMAs.

4. The model is able to qualitatively capture all the features associated with
pseudoelastic NiTi SMA.

5. The model is quantitatively validated against the experimental mechanical
responses reported in the literature.
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