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In this paper, we study distortion in the group A of Affine Interval Exchange Transformations (AIET). We prove that any distorted element f of A has an iterate f k that is conjugate by an element of A to a product of infinite order restricted rotations, with pairwise disjoint supports. As consequences, we prove that no Baumslag-Solitar group, BS(m, n) with |m| = |n|, acts faithfully by elements of A; every finitely generated nilpotent group of A is virtually abelian and there is no distortion element in A Q , the subgroup of A consisting of rational AIETs.

Polterovich ( [START_REF] Polterovich | Growth of maps, distortion in groups and symplectic geometry[END_REF]) and ) proved that Diff 1 µ (Σ 2 ) does not contain distortion, where µ is a full support measure on a compact surface Σ 2 .

Novak (in [START_REF] Novak | Discontinuity growth of interval exchange maps[END_REF]) proved that there is no distortion element in the group of Intervals Exchange Transformations: bijections of the unit interval that are piecewise increasing and isometric.

In this work, we deal with a closely related problem, namely the existence of distortion elements inside the group of AIETs: Affine Intervals Exchange Transformations, denoted by A. Roughly speaking an AIET is a bijection of the unit interval that is increasing and affine on a finite number of intervals. If the endpoints of these intervals and their images are rational points, then the AIET is called a rational AIET. The set of rational AIETs is a subgroup of A and it is denoted by A Q .

Finitely generated groups of AIETs have provided several algebraically interesting groups, as for instance classical Thompson's groups F , T and V [START_REF] Cannon | Introductory notes on Richard Thompson's groups[END_REF] as well as some of their generalized versions [START_REF] Higman | Finitely presented infinite simple groups[END_REF], [START_REF] Bieri | On groups of PL-homeomorphisms of the real line[END_REF], the fundamental groups of orientable surfaces [START_REF] Ghys | Sur l'invariance topologique de la classe de Godbillon-Vey[END_REF], the modular group [START_REF] Navas | Sur les groupes de difféomorphismes du cercle engendrés par des éléments proches des rotations[END_REF], wreath products of the form Z Z ... Z ( [START_REF] Bleak | Solvability in Groups of Piecewise-linear Homeomorphisms of the Unit Interval[END_REF], [START_REF] Brin | Elementary amenable subgroups of R. Thompson's group F[END_REF], [START_REF] Navas | Quelques groupes moyennables de difféomorphismes de l'intervalle[END_REF], [START_REF] Navas | Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite[END_REF]) etc.

Our main result proves that most elements of A are in fact undistorted.

Theorem 1. For every distorted element f of A, there exists a positive integer k such that f k is conjugate by an element of A to a product of infinite order restricted rotations, with pairwise disjoint supports. This description of distorted elements of A enables us to prove the following corollaries. Corollary 2. Every torsion free nilpotent subgroup of A is abelian and every finitely generated nilpotent subgroup of A is virtually abelian.

Consequently, the Heisenberg group and thereby SL(3, Z) do not act faithfully via elements of A.

The last two corollaries were proved by Higman for Thompson's group V (see [START_REF] Higman | Finitely presented infinite simple groups[END_REF] and [START_REF] Röver | Subgroups of finitely presented simple groups[END_REF], chapter 2). Corollary 3. There is no distortion element in A Q .

The preceding corollary extends to all groups of rational AIETs, results of Bleak-Bowman-Gordon-Graham-Hughes-Matucci-Sapir (see [START_REF] Bleak | Centralizers in R.Thompson's group V n , Groups[END_REF] or [START_REF] Burillo | Obstructions for subgroups of Thompson's group V[END_REF]) and Hmili-Liousse (see [START_REF] Hmili | Dynamique des échanges d'intervalles des groupes de Higman-Thompson Vr,m[END_REF]) on the non existence of distortion in the Higman-Thompson groups V n . Its main consequence is that any group G containing distortion elements does not admit faithful actions as rational affine interval exchange transformations. Moreover, if G is almost-simple, such actions have finite image. This paper is organized as follows:

• In Section 2, definitions and basic facts are given.

In Sections 3 to 8, we establish the propositions that are used in the proof of Theorem 1, given in section 8.

• In Section 3, we prove that any element of A having semi-hyperbolic periodic orbits is undistorted.

• In Section 4, it is shown that, given f in A, the sequence whose general term is the number of break points of the iterate f n of f (for simplicity, this sequence will be called the "number of break points of f n " and it will be denoted by #BP (f n )) is either bounded or growths linearly. As a consequence, for any distortion element the number of break points of f n is bounded.

In the following sections, we study f in A without semi-hyperbolic periodic orbit and with bounded number of break points of f n .

• In section 5 (Theorem 2: "Extended "Alternate Version of Li's Theorem"), we establish that such an f has an iterate that is conjugate by an element of E to a product of restricted PL-homeomorphisms f i with bounded numbers of break points of f n i .

• For such a PL-homeomorphism f , in Section 6, we apply results of Minakawa [START_REF] Minakawa | Classification of exotic circles in P L(S 1 )[END_REF] to prove that f is PL-conjugate to a PL-homeomorphism B having at most two distinct slopes.

• In Section 7, under the additional assumption that f is distorted, we derive that B is a rotation, by showing that its slopes are 1.

• In Section 8, Theorem 1 is proved.

• Section 9 is devoted to prove Corollaries 1, 2 and 3 of Theorem 1.
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2 Preliminaries.

Affine Interval Exchange Transformations of

I = [0, 1). Definition 2.1.
A bijection f of [0, 1) is an Affine Interval Exchange Transformation (or AIET) of [0, 1) if there exists a finite subdivision 0 = a 0 < a 1 < .... < a p = 1 of [0, 1) such that for all i = 0, ..., p -1, one has f

(x) = λ i x + β i for x ∈ [a i , a i+1 ), where λ i ∈ R * + and β i ∈ R.
A break point is either the initial point 0 or a discontinuity of f or a discontinuity of Df , the derivative of f .

The set of break points of f is denoted BP(f ); it can be decomposed as the union of BP 0 (f ), the set consisting of 0 and all discontinuities of f and BP 1 (f ), the set of 0 and all discontinuities of Df .

We define

∆ f (x) = f + (x) -f -(x), if x ∈ (0, 1) and ∆ f (0) = f + (0) -f -(1), where f + (a) = lim x→a+ f (x) = f (a) and f -(a) = lim x→a- f (x).
The λ i 's are the slopes of f .

The jump of f at x is defined by

σ f (x) = D + f (x) D -f (x) if x ∈ (0, 1)
and

σ f (0) = D + f (0) D -f (1)
where

Df + (a) = lim x→a+ f (x)-f+(a) x-a and Df -(a) = lim x→a- f (x)-f-(a) x-a .
The sets of slopes and jumps of f are denoted respectively by Λ(f ) and σ(f ).

An AIET f of [0, 1) is an IET if Λ(f ) = {1}. Definition 2.2.
We denote by A the group consisting of all AIETs of [0, 1).

We denote by E the group consisting of all IETs of [0, 1).

Remark 1.

A homeomorphism f of the circle S 1 = [0, 1]/(0 = 1) can be seen as the bijection of [0, 1) defined by x → f (x) (mod 1).

Definition 2.3.

When this bijection is an AIET, f is called a PL-homeomorphism of [0, 1) even if it may not be continuous at eventually one point of (0, 1).

In what follows, PL-homeomorphisms of S 1 will be seen as AIETs of [0, 1). For example, the circle rotation by α is viewed as the element R α of A with break points 0 and 1 -α and given by f

(x) = x + α if x ∈ [0, 1 -α) and f (x) = x + α -1 if x ∈ [1 -α, 1). We say that R α is a rotation of [0, 1). Definition 2.4.
An IET f is called a restricted rotation if there exists some interval

I = [a, b) ⊂ [0, 1) such that f is supported by I and f (x) = x + δ if x ∈ [a, b -δ) and f (x) = x + δ -b + a if x ∈ [b -δ, b), where δ ∈ R, 0 < δ < b -a. An AIET f is called a restricted PL-homeomorphism if there exists some interval I = [a, b) ⊂ [0, 1) such that f is supported by I and #(BP 0 (f )∩(a, b)) ≤ 1.
Here are some elementary properties of break points sets. Property 1. Let f and g be two elements of A. Then

• BP (f -1 ) = f (BP (f )), • BP (f • g) ⊂ BP (g) ∪ g -1 (BP (f )), • BP (f n ) ⊂ BP (f )∪f -1 (BP (f ))∪...∪f -(n-1) (BP (f )), for all integer n ≥ 0.
These still hold for BP 0 (f ).

Unfortunately, such formulas do not hold for BP 1 (f ); this is due to the following Property 2. Let f , g in A and x ∈ [0, 1), one has

σ f •g (x) = Df + (g + (x))Dg + (x) Df -(g -(x))Dg -(x) = Df + (g + (x)) Df -(g -(x)) × σ g (x). If x / ∈ BP 0 (g) then σ f •g (x) = σ f (g(x)) × σ g (x). For x ∈ BP 0 (g), σ f •g (x) = σ f (g(x)) × σ g (x), in general. Property 3. If f ∈ A and g is a PL-homeomorphism then for all x in [0, 1), σ f •g (x) = σ f (g(x)) × σ g (x) and thereby BP 1 (f • g) ⊂ g -1 (BP 1 (f )) ∪ BP 1 (g).
Indeed, if g is a PL-homeomorphism and g + (x) = g -(x) then g + (x) = 0 and g -(x) = 1 therefore Df+(g+(x))

Df-(g-(x)) = σ f (0).

Interesting subgroups of A.

Numerous generalizations of Thompson's groups have been defined and studied. We recall, for example, the works of Bieri-Strebel [START_REF] Bieri | On groups of PL-homeomorphisms of the real line[END_REF] and Higman [START_REF] Higman | Finitely presented infinite simple groups[END_REF]. Definition 2.5. Let Λ ⊂ R + * be a multiplicative subgroup and A ⊂ R be an additive subgroup invariant by multiplication by elements of Λ and such that 1 ∈ A.

We define V Λ,A as the subgroup of A consisting of elements with slopes in Λ, break points and their images in A, and E A as the subgroup of E consisting of elements with break points in A, in fact

E A = E ∩ V Λ,A .
The subgroup A Q of rational AIETs is V Q>0,Q .

Definition 2.6. Let n be a positive integer, the group V <n>, Z[1/n] is denoted by V n and called a Higman-Thompson's group.

Note that classical Thompson's group V arises as V 2 . Among many things, Higman (see [START_REF] Higman | Finitely presented infinite simple groups[END_REF], [START_REF] Röver | Subgroups of finitely presented simple groups[END_REF]) proved that V n is finitely presented and satisfies the conclusions of Corollaries 1 and 2.

Remark 2. As established in [START_REF] Dahmani | Free groups of intervals exchange transformations are rare[END_REF], Thompson's groups F , T and V are not subgroups of E. Remark 3. Similarly, one can define AIETs of any interval [a, b) ⊂ R. In anticipation of a more general use of results from [START_REF] Li | A criterion for an Interval Exchange Map to be conjugate to an irrational rotation[END_REF], [START_REF] Novak | Discontinuity growth of interval exchange maps[END_REF], [START_REF] Minakawa | Classification of exotic circles in P L(S 1 )[END_REF] stated for [0, 1), we note that there exists a unique direct affine map sending [a, b) onto [0, 1). Thus any AIET of [a, b) is affinely conjugate to an AIET of [0, 1) with the same slopes set. However, the arithmetic properties of break points might not be preserved.

Distortion.

Definition 2.7.

Let Γ be a finitely generated group and S = {s 1 , ..., s r } be a finite generating set of Γ.

The smallest integer l such that g = s 1 i1 ...s l i l , with j ∈ {-1, 1} is called the length of g relatively to S and it is denoted by l S (g).

We set l S (e) = 0. The function l S : Γ → N is symmetric (l S (g -1 ) = l S (g) and satisfies l S (gh) ≤ l S (g) + l S (h). In particular, for all g in Γ, the sequence l S (g n ) is sub-additive, thus the sequence l S (g n ) n converges. This leads to Definition 2.8.

We say that g is distorted (or of distortion or a distortion element) in Γ =< S > if g has infinite order and lim

n→+∞ l S (g n ) n = 0. Remark 4.
The property of being a distortion element is independent of the choice of generating set S. Definition 2.9.

More generally, if G is not finitely generated, an element g of G is distorted in G if g is a distortion element in some finitely generated subgroup of G.

Properties 2.1.

• Let g ∈ G, the following properties are equivalent

1. g is distorted in G, 2. ∃N ∈ Z * : g N is distorted in G, 3. ∀N ∈ Z * : g N is distorted in G. • If Φ : Γ → G is a morphism and g ∈ Γ is distorted in Γ then its image Φ(g) ∈ G is either of finite order or distorted in G.
3 Semi-hyperbolicity prevents distortion.

Definition 3.1. Let f ∈ A, we say that p ∈ [0, 1] is a semi-hyperbolic periodic point of period l, if either: • p is not a break point of f l , f l (p) = p and Df l = 1 (hyperbolic) or • p is a break point of f l , f l + (p) = p and Df l + (p) = 1 or f l -(p) = p and Df l -(p) = 1 (virtual). Proposition 3.1. If f ∈ A has a semi-hyperbolic periodic point then f is undis- torted in A.
Proof. Let p be a semi-hyperbolic periodic point of f .

Without lost of generality, we can suppose that f + (p) = p and the right derivative of f at p: Df + (p) = λ = 1. For clarity, Df + will be denoted by D + f . By absurd, suppose that f is distorted in a subgroup G of A generated by S = {g 1 , ..., g s }. Then f can be written as f n = g i ln ...g i1 with lim n→+∞ l n n = 0.

We have

D + f n (p) = D + g i ln (p ln ) ... D + g i1 (p 1 )
, where p 1 = p and p j = g ij-1 ... g i1 (p), for j = 2, ..., l n .

Then (Inf D + g i ) ln ≤ D + f n (p) ≤ (Sup D + g i ) ln and l n log(Inf D + g i ) n ≤ log(D + f n )(p) n ≤ l n log(Sup D + g i ) n , where Inf D + g i = inf i,x D + g i (x) and Sup D + g i = sup i,x D + g i (x).
As f is distorted, one has lim

n→+∞ log(D + f n )(p) n = 0.
On the other hand, since p is a fix point of f , one has D + f n (p) = λ n and then

lim n→+∞ log(D + f n )(p) n = log λ = 0, this is a contradiction.
4 Alternative for the growth of the number of break points and characterization of distortion.

We recall that BP (f ) the set of break points of f is the union of the two following sets

BP 1 (f ) = {a ∈ [0, 1) : σ f (a) = 1} ∪ {0} and BP 0 (f ) = {a ∈ [0, 1) : ∆ f (a) = 0} ∪ {0}.
We denote by #BP * (f ) the cardinality of BP * (f ).

4.1 Alternative for the growth of the number of break points.

According to Property 1 (Section 2), one has:

#BP (f n ) ≤ #BP (f ) × n and #BP 0 (f n ) ≤ #BP 0 (f ) × n.
The main purpose of this section is to prove the following

Proposition 4.1. If f ∈ A then either • #BP (f n ) has linear growth or • #BP (f n ) is bounded.
The proof of Proposition 4.1 will be done in two steps: in Step 1, we prove

that if #BP 0 (f n ) is not bounded then #BP 0 (f n ) and therefore #BP (f n ) have linear growth; in Step 2 assuming that #BP 0 (f n ) is bounded, we establish that if #BP 1 (f n ) is not bounded then #BP 1 (f n ) and therefore #BP (f n ) have linear growth. In conclusion, either #BP 0 (f n ) and #BP 1 (f n ) are bounded or #BP (f n ) has linear growth.
We start by recalling and giving some basic properties and related definitions. Note that for all integer n, the set BP (f n ) is included in the union over all a ∈ BP (f ) of the sets

BP (f n ) ∩ O f (a) (by Property 1), where O f (a) = {f n (a), a ∈ Z} is the f -orbit of a. Property 4. If a ∈ BP (f ) is f -periodic then for all integer n, the set BP (f n ) ∩ O f (a)
is finite and has cardinality less or equal than the period of a.

Property 5. Let a ∈ BP (f ).
1. If a is not f -periodic then there exists a segment S a of the orbit of a of the form S a = {b = f -p (a), f -p+1 (a), ..., a, ..., f l (a) = c}, where b and c belong to BP (f ) and for all k

∈ N * , f -k (b) / ∈ BP (f ) and f k (c) / ∈ BP (f ).
Such a break point b is called an initial break point of f . Therefore:

2. If a is an initial break of f point then S a = { a, f (a), ... , f Na (a) } and

• O f (a) ∩ BP (f n ) ⊂ {f -(n-1) (a), ..., f Na (a)}, for all integer n ≥ 0, • O f (a) ∩ BP (f -n ) ⊂ {f (a), ..., f Na+n (a)}, for all integer n ≥ 0.
In particular:

(a) f -k (a) / ∈ BP (f m ), for all integers k ≥ m ≥ 0, (b) f k (a) / ∈ BP (f m ), for all integers m ≥ 0, k > N a and (c) f -k (a) / ∈ BP (f -p ) = f p (BP (f p )), for all integers p ≥ 0, k ≥ 0.
Indeed, as #BP (f ) is finite, if (1) does not hold then there exist some d ∈ BP (f ), m 1 and m 2 distinct integers such that d = f m1 (a) = f m2 (a). This contradicts the non periodicity of a. We derive the second item from Property 1.

Step 1: Alternative for #BP 0 (f n ).

This part is devoted to the proof of

Lemma 4.1. Let f ∈ A. • If exists a ∈ BP 0 (f ) a non periodic initial break point with ∆ f Na +1 (a) = 0 then #BP 0 (f ) × n ≥ #BP 0 (f n ) ≥ n -N a .
That is #BP 0 (f n ) has linear growth.

• If for all a ∈ BP 0 (f ) non periodic initial break points, ∆ f Na +1 (a) = 0, then

BP 0 (f n ) ≤ a∈A 2N a + a∈B period(a),
where A = {a ∈ BP 0 (f ) non periodic initial} and B = {a ∈ BP 0 (f ) periodic}.

That is

#BP 0 (f n ) is bounded.
Let a ∈ BP 0 (f ) be a non periodic initial break point and S a = {a, f (a), ..., f Na (a)}; for simplicity of notation, we set N = N a . Sublemma 4.1.

• If ∆ f N +1 (a) = 0 then for all integer l ≥ 1, ∆ f N +l (a) = 0. • If ∆ f N +1 (a) = 0 then for all integer l ≥ 1, ∆ f N +l (a) = 0. Proof. Let l ≥ 1, one has f N +l + (a) = f N +l (a) = f l-1 (f N +1 (a)), f N +l - (a) = f l-1 -(f N +1 - (a)). If ∆ f N +1 (a) = 0 then ∆ f N +l (a) = f l-1 (f N +1 (a)) -f l-1 -(f N +1 (a)) = 0, since f l-1 is continuous at f N +1 (a) by Property 5 (2b). If ∆ f N +1 (a) = 0, as f l-1 is continuous at f N +1 (a), the point f l-1 (f N +1 (a)) can not be equal to f l-1 -(c) for some c = f N +1 (a). It follows that f N +l (a) = f l-1 (f N +1 (a)) = f l-1 -(f N +1 - (a)) = f N +l - (a), since f N +1 (a) = f N +1 - (a).
Sublemma 4.2. Let a be an initial break point and n be a positive integer.

∆ f n (f -k (a)) = ∆ f n-k (a), for 0 ≤ k ≤ n -1. Proof. By Property 5 (2), O f (a) ∩ BP (f n ) ⊂ { f -(n-1) (a), ... a, ... , f N (a) }. Let us compute ∆ f n (f -k (a)), for 0 ≤ k ≤ n -1, we get: ∆ f n (f -k (a)) = f n + (f -k (a)) -f n -(f -k (a)) = f n-k (a) -f n-k - (f k -(f -k (a)).
Moreover, for all k ≥ 0, one has

f k -(f -k (a)) = a, according to Property 5 (2a). Finally, ∆ f n (f -k (a)) = f n-k (a) -f n-k - (a) = ∆ f n-k (a).
We turn now to the proof of Lemma 4.1, estimating #BP 0 (f n ) for a given positive integer n. Combining the two preceding sublemmas, we deduce the following alternative for any initial break point a: Step 2: Alternative for #BP (f n ).

• If ∆ f N +1 (a) = 0 then ∆ f n (f -k (a)) = 0, for all n -k > N . Hence #(BP 0 (f n ) ∩ O f (a)) ≥ n -N . • If ∆ f N +1 (a) = 0 then ∆ f n (f -k (a)) = 0, for all n -k > N . Hence #(BP 0 (f n ) ∩ O f (a)) ≤ N + (n -(n -N )) = 2N .
By Lemma 4.1, if #BP 0 (f n ) is not bounded then #BP (f n ) has linear growth therefore in this part, we will focus on the case where #BP 0 (f n ) is bounded and prove the following Lemma 4.2 which will complete the proof of Proposition 4.1.

Lemma 4.2. Let f ∈ A with #BP 0 (f n ) bounded. • If exists a ∈ BP 1 (f ) a non periodic initial break point such that Π a = 1, then #BP (f ) × n ≥ #BP 1 (f n ) ≥ n -N a .
Hence #BP 1 (f n ) and #BP (f n ) have linear growth.

• If for all a ∈ BP 1 (f ) non periodic initial break point, Π a = 1, then

#BP 1 (f n ) ≤ a∈A 2N a + a∈B period(a), where A = {a ∈ BP 1 (f ) non periodic initial} and B = {a ∈ BP 1 (f ) periodic}. Hence #BP 1 (f n ) and #BP (f n ) are bounded.
Proof. Let a ∈ BP (f ) be a non periodic initial break point and S a = {a, f (a), ..., f N (a)} be the smallest segment containing all the break points of f on O f (a).

Let

n ≥ N + 1, recall that BP (f n ) ∩ O f (a) ⊂ {f -(n-1) (a), ..., a, ..., f N (a)}. Let us compute the jump of f n at the point f -k (a) for k ≥ 0 and n-1-k > N , that is for 0 ≤ k < n -1 -N .
Iterating the composition formula given in Property 2, we get:

σ f n (f -k (a)) = Df + (f n-1 + (f -k (a))) ... Df + (f k + (f -k (a))) ... Df + (f -k (a)) Df -(f n-1 - (f -k (a))) ... Df -(f k -(f -k (a))) ... Df -(f -k (a))
.

According to Property 5(2c),

f -k (a) = f -k -(a) and therefore f l -(f -k (a)) = f l -(f -k -(a)) = f l-k -(a), for any integer l ≥ 0; in addition, if l ≤ k then f l -(f -k (a)) = f l-k (a). Therefore, noting that n -1 -k > N , we get σ f n (f -k (a)) = R 1 × R 2 × R 3 , where R 1 = Df + (f n-1-k + (a)) ... Df + (f N +1 + (a)) Df -(f n-1-k - (a)) ... Df -(f N +1 - (a)) , R 2 = Df + (f N + (a)) ... Df + (a) Df -(f N -(a)) ... Df -(a)
and ). Thus, the first ratio R 1 is also trivial. Finally,

R 3 = Df + (f -1 (a)) ... Df + (f -k (a)) Df -(f -1 (a)) ... Df -(f -k (a)) . As BP 1 (f ) ∩ O f (a) ⊂ S a , the third ratio R 3 is trivial. Since #BP 0 (f n ) is
σ f n (f -k (a)) = R 2 = Df + (f N + (a)) ... Df + (a) Df -(f N -(a)) ... Df -(a) =: Π a
Note that this formula also holds for n -1 -k = N , since the first ratio does not appear in σ f n (f -k (a)).

Therefore, the following alternative holds. 

• If Π a = 1 then for all k integer such that 0 ≤ k ≤ n -1 -N , f -k (a) ∈ BP 1 (f n ) and #(BP 1 (f n ) ∩ O f (a)) ≥ n -N . • If Π a = 1 then for all k integer such that 0 ≤ k ≤ n -1 -N , f -k (a) / ∈ BP 1 (f n ) and #(BP 1 (f n ) ∩ O f (a)) ≤ N + (n -(n -N )) = 2N .
4.2. If f is distorted in A then #BP (f n ) is bounded.
Proof. By contradiction, suppose that #BP (f n ) is unbounded and f is distorted in a subgroup G of A generated by S = {g 1 , ..., g s }. This means that f n can be written as f n = g i ln ...g i1 with lim n→+∞ l n n = 0. Therefore, by Property 1, we have:

BP (f n ) ⊂ BP (g i1 ) ∪ g -1 i1 BP (g i2 ).... ∪ (g i l n-1 ...g i1 ) -1 BP (g i ln ) then #BP (f n ) ≤ #BP (g i1 ) + ... + #BP (g i ln ) ≤ l n max{#BP (g i ), i = 1, ...s} and therefore l n n ≥ #BP (f n ) n (max{#BP (g i ), i = 1, ...s}) -1 .
Thus lim n→+∞ l n n > 0, since #BP (f n ) has linear growth according to Proposition 4.1, this is a contradiction.

5 Extended "alternative version of Li's Theorem".

The aim of this section is to prove an extended version of the "Alternate Version of Li's Theorem" given in [START_REF] Novak | Discontinuity growth of interval exchange maps[END_REF].

Theorem 2. Let f in A without periodic points and with bounded #BP (f n ) then there exists an integer q such that f q is conjugate in E to a product of restricted PL-homeomorphisms of disjoint supports that are minimal when restricted to their respective supports.

Definition 5.1. Let f ∈ A. We say that f satisfies the pair property if 1. f does not have periodic points, 2. BP 0 (f ) = {β 1 , ....β s , ω 1 , ...., ω s }, where any pair (β i , ω i ), for i = 1, ...s, verifies f (β i ) = ω i and β i / ∈ BP 0 (f 2 ) and 3. the f -orbits of the β i 's are disjoint.

Convention. Eventually re-indexing the ω i 's, we may suppose that 0 = ω 1 < ω 2 < ... < ω s .

We begin by giving some basic properties.

Property 6.

1. If f has the pair property then any associated pair (β i , ω i ), for i = 1, ...s, verifies (a)

β i ∈ BP 0 (f ) \ BP 0 (f 2 ), (b) ω i ∈ BP 0 (f ) ∩ BP 0 (f -1 ).
2. The pair property is invariant under C 0 -conjugation.

3. If f has the pair property with associated pairs (β i , ω i ),for i = 1, ...s, then for any n ∈ N, f n has the pair property with associated pairs (f -n (ω i ), ω i ), for i = 1, ...s.

Using these properties, we get

f -(β i ) ∈ BP 0 (f ) ∩ BP 0 (f -1 ) ∪ {1} so f -(β i
) is an ω j and we can give Definition 5.2. Let π be the permutation of {1, ...s} defined by either

• π(i) = j in the case that f -(β i ) = ω j or • π(i) = 1 when f -(β i ) = 1.
Hence, one has f (ω i ) = f -(ω π(i) ), for i = π -1 (1), otherwise f (ω i ) = f -(1), for i = π -1 (1). Definition 5.3. (see [START_REF] Li | A criterion for an Interval Exchange Map to be conjugate to an irrational rotation[END_REF]) Let f ∈ A with the pair property.

A pair (β i , ω i ) is said removable if either:

• ω π(i) < ω i or

• ω π(i) > ω i and there exists ω j ∈ (ω i , ω π(i) ).

Lemma 5.1. Let f ∈ A without periodic points and with bounded #BP 0 (f n ) then there exists an iterate of f that satisfies the pair property.

Proof. Let IBP (f ) be the set of all initial break points of f . According to Section 4, one has BP 0 (f ) ⊂

a∈IBP (f ) {a, ...., f Na (a)}, ∆ f Na +1 (a) = 0 and ∆ f n (f -k (a)) = 0, for all k ≥ 0, n -k > N a . (1) 
Let N be the maximum of the {N a } over all a ∈ IBP (f ) and F = f N +1 . It holds that BP 0 (F ) ∩ O f (a) ⊂ {f -N (a), ..., a, ..., f Na (a)}.

After noting that ∆ F (f -(N +1)+Na+l (a)) = 0, (for l = 1, ..., N -N a + 1) by

formula (1), BP 0 (F ) ∩ O f (a) ⊂ Na l=1 {f -(N +1)+l (a), f l (a)}.
We claim that any pair (β, ω) = (f -(N +1)+l (a), f l (a)) for l = 1, ..., N a satisfies F (β) = ω and β / ∈ BP 0 (F 2 ). Indeed, obviously F (β) = ω, we now compute ∆ F 2 (β): Obviously, F satisfies Conditions ( 1) and ( 3) of the pair property.

∆ F 2 (β) = ∆ f 2N +2 (f -(N +1)+l
Lemma 5.2. Let F ∈ A with the pair property and (β i , ω i ) be a removable pair of F , then there exists E ∈ E such that #BP 0 (EF E -1 ) ≤ #BP 0 (F ) -2 and EF E -1 has also the pair property. Moreover, BP 0 (E) ⊂ BP 0 (F ) ∩ BP 0 (F -1 ).

Proof.

We begin by considering the case where ω π(i) < ω i . Let E be in E given by BP 0 (E) = {0, ω π(i) , ω i } and with associated permutation (1, 2, 3) → (1, 3, 2).

According to Property 6(1b), BP 0 (E) ⊂ BP 0 (F ) ∩ BP 0 (F -1 ). One has that

BP 0 (EF E -1 ) ⊂ EF -1 (BP 0 (E)) ∪ E(BP 0 (F )) ∪ BP 0 (E -1 ).
As F -1 (BP 0 (E)) ⊂ BP 0 (F ) and BP 0 (E -1 ) = E(BP 0 (E)) ⊂ E(BP 0 (F )), it holds that BP 0 (EF E -1 ) ⊂ E(BP 0 (F )).

We prove that E(β i ) and E(ω i ) do not belong to BP 0 (EF E -1 ) by computing the right and left values at these points:

• EF E -1 (E(β i )) = EF (β i ) = E(ω i ) = ω π(i) and since β i / ∈ BP 0 (E), • (EF E -1 ) -(E(β i )) = E -F -(β i ) = E -(ω π(i) ) = ω π(i) .
This proves that E(β i ) / ∈ BP 0 (EF E -1 ).

• EF E -1 (E(ω i )) = EF (ω i ) and

• (EF E -1 ) -(E(ω i )) = (EF E -1 ) -(ω π(i) )) = (EF ) -(ω π(i) ). In addition, since F (ω i ) = F -(ω π(i) ) does not belong to BP 0 (E), we have (EF ) -(ω π(i) ) = E(F (ω i )). We thus get EF E -1 (E(ω i )) = (EF E -1 ) -(E(ω i )) which proves that E(ω i ) / ∈ BP 0 (EF E -1 ). Finally, #BP 0 (EF E -1 ) ≤ #BP 0 (F ) -2.
We claim that EF E -1 has the pair property with associated pairs of the form (E(β j ), E(ω j )). Indeed, as (F -2 (ω i ), ω i ) is a pair for F 2 , it holds that BP 0 (E) ⊂ BP 0 (F 2 ) ∩ BP 0 (F -2 ) and the same arguments as in the beginning of this proof show that BP 0 (EF 2 E -1 ) ⊂ E(BP 0 (F 2 )).

Obviously EF E -1 (E(β j )) = E(ω j ). Now we argue by contradiction assuming that E(β j ) ∈ BP 0 (EF 2 E -1 ) then β j ∈ E -1 (BP 0 (EF 2 E -1 )) ⊂ BP 0 (F 2 ), a contradiction.

Clearly EF E -1 also satisfies Conditions ( 1) and ( 3) of the pair property. Now, we consider the case where (β i , ω i ) is a removable pair with the following properties: ω π(i) > ω i and there exists ω j ∈ (ω i , ω π(i) ).

We identify 0 to 1 to get a circle and then we cut this circle at the point ω j . We are in the previous case. This ends the proof of Lemma 5.2.

Proof of Theorem 2.

Let f ∈ A without periodic points and with bounded #BP 0 (f n ). By Lemma 5.1, there exists some integer N such that f N has the pair property.

Starting from f N and applying Lemma 5.2 a finite number of times, we get that

G = E r .....E 1 f N E -1 1 ...E -1
r has the pair property and no removable pair. Since the associated pairs (β i , ω i ) of G are not removable, it holds that ω π(i) > ω i , for any i and that the intervals (ω i , ω π(i) ) are pairwise disjoint and disjoint from the last interval (ω s , 1).

Note that s = π -1 (1), indeed if not then ω s < ω π(s) < 1, a contradiction.

We claim that for any 1 ≤ i < s, there exists a unique discontinuity point of G in (ω i , ω π(i) ) and this still holds for (ω s , 1). Indeed as G + (ω i) ) = G -(ω π(i) ), the interval (ω i , ω π(i) ) contains at least one point of BP 0 (G) and a similar argument shows that the same holds for (ω s , 1).

As the associated pairs are unremovable, this discontinuity point is a β j . Moreover, since the number of β i 's is exactly the number of intervals of the form (ω i , ω π(i) ) or (ω s , 1), then β j is unique.

Therefore G([ω i , ω π(i) )) = [ω j , ω π(j) ), since G -(β j ) = ω π(j) and G + (β j ) = ω j , if j = π -1 (1) = s. If j = s, then G([ω i , ω π(i) ) = [ω s , 1). This implies that R = s-1 i=1 [ω i , ω π(i) ) [ω s , 1) is G-invariant. We claim that it is [0, 1[.
Indeed, if not, the complementary of R is a finite union of half open intervals that is G-invariant and G is continuous on each interval (since such intervals do not contain β's and ω's the discontinuity points of G). Thus, these intervals are periodic which contradicts that G (f ) does not have periodic points.

Moreover, there exists an iterate of

G such that G l ([ω i , ω π(i) )) = [ω i , ω π(i) ), G l ([ω s , 1) = [ω s , ω 1
) and the restriction of G l to any [ω i , ω π(i) ),i = 1, ..., s -1 and to [ω s , 1) has just one interior discontinuity point.

Finally, G l is a product of restricted PL-homeomorphisms Γ i with disjoint supports and it is conjugated by E = E r .....E 1 to f lN .

As f and then G l has no periodic points, by Denjoy's Theorem for Class P circle homeomorphisms (see [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF]), each Γ i is minimal when restricted to its support.

This ends the proof of Theorem 2.

Remark 5. Note that the discontinuities of the E i 's belong the f -orbit of BP 0 (f ) and the restricted PL-homeomorphisms Γ i are supported by intervals whose endpoints also are points of the f -orbit of BP 0 (f ). In particular, if f ∈ A Q then the Γ i 's are supported by intervals whose endpoints are rational and E ∈ A Q .

PL conjugation.

Next proposition is due to Minakawa [START_REF] Minakawa | Classification of exotic circles in P L(S 1 )[END_REF].

Proposition 6.1. Let f ∈ A be a PL-homeomorphism having bounded #BP (f n ).
Then there exists a PL-homeomorphism

H ∈ A such that B := H • f • H -1 is an AIET of 2 intervals.
Remark 6. An AIET of 2 intervals B is a PL-homeomorphisms and it is uniquely determined by its slope pair (λ 1 , λ 2 ), so it is denoted by B λ1,λ2 . It verifies that

BP (B) = {0, B -1 (0)}, DB(x) = λ 1 on [0, B -1 (0)) and DB(x) = λ 2 on [B -1 (0), 1
). These maps B λ1,λ2 were studied in [START_REF] Boshernitzan | Dense orbits over rationals[END_REF]. There it was proven that either:

• λ 1 = λ 2 and B λ1,λ2 is a rotation or

• λ 1 = λ 2 and B λ1,λ2 is C 0 -conjugate to a rotation R ρ by a map of the form

x → (ω x -1) (ω -1)
for some positive ω distinct from 1.

Remark 7. We shall give a refinement of Minakawa's proof which will enable us to preserve the arithmetic properties of f , this will be explained in Remark 8. An alternative proof using a "PL pair property" can be found in [START_REF] Liousse | PL Homeomorphisms of the circle which are piecewise C 1 conjugate to irrational rotations[END_REF].

Proof. As #BP (f n ) is bounded, Lemma 4.2 indicates that there exists a sub-

set {a i , i ∈ I} of BP 1 (f ) such that BP 1 (f ) is contained in i∈I S i with S i = {f k (a i ), k = 0, ..., N i } and Π ai = Df + (f Ni + (a i ))....Df + (a i ) Df -(f Ni -(a i ))....Df -(a i ) = 1, ∀i ∈ I.

Note that

Df+(f k + (ai)) Df-(f k -(ai)) = σ f (f k (a i )), since f k + (a i ) = f k -(a i ) or f k + (a i ) = 0 and f k -(a i ) = 1. Then Π ai = c∈Si σ f (c) = 1, for all i ∈ I.
We let H f = H be a PL-homeomorphism of [0, 1) with the following properties:

• The break points of H are the points f (a i ), . . . , f Ni (a i ), for i ∈ I.

• The associated jumps are σ

H (f k (a i )) = σ f N +1 (f k (a i )) for k = 1, . . . , N i , where N = max{N i , i ∈ I}. Note that σ H (a i ) = σ f N +1 (a i ) = N n=0 σ f (f n (a i )) = 1.
At the end of this proof, we will indicate a general lemma (Lemma 6.1) about the existence of PL-homeomorphisms with prescribed break points and slopes. It implies that a necessary and sufficient condition for the existence of such a homeomorphism H is that the product of the H-jumps is trivial, that is

Π(f ) := i∈I,0≤k≤Ni σ f N +1 (f k (a i )) = 1.
• If Π(f ) = 1, then we can define a map H as above and normalize it by setting H(0) = 0.

• If Π(f ) = 1, then we add a break point c / ∈ {a i , ..., f Ni (a i )} and require that σ H (c) = (Π(f )) -1 ; we normalize H by setting H(c) = 0. Now, since f and H are PL-homeomorphisms, Property 3 implies that

• the set BP 1 (H • f • H -1 ) satisfies BP 1 (H • f • H -1 ) ⊂ BP 1 (H -1 ) ∪ H(BP 1 (f )) ∪ H • f -1 (BP 1 (H)) ⊂ {H(a i ), ..., H(f Ni (a i )), i ∈ I} ∪ {H(c), H(f -1 (c))}, • for i ∈ I, 0 ≤ k ≤ N i , the jump of H • f • H -1 at H(f k (a i )) is equal to σ H•f •H -1 H(f k (a i )) = σ H (f k+1 (a i )) × σ f (f k (a i )) σ H (f k (a i )) = σ f N +1 (f k+1 (a i )) × σ f (f k (a i )) σ f N +1 (f k (a i )) = 1, • σ H•f •H -1 (H(c)) = Π(f ) and • σ H•f •H -1 H(f -1 (c)) = Π(f ) -1 .
In conclusion.

• If Π(f ) = 1, the AIET B = H • f • H -1 has no break of slopes, it is a rotation. • If Π(f ) = 1, the AIET B = H • f • H -1
has exactly two breaks of slopes at 0 = H(c) and

B -1 (0) = H(f -1 (c)), that is Λ(B) = {λ 1 , λ 2 }.
Lemma 6.1. Given 0 = c 0 < c 1 < ... < c p < 1 points in [0, 1) and σ 0 , ..., σ p positive real numbers such that p i=0 σ i = 1, there exists a PL-homemorphism H such that :

• BP 0 (H) = {c 0 , c 1 , ..., c p } and

• σ H (c i ) = σ i , for i = 0, ..., p.
Moreover, given d ∈ [0, 1) the map H is unique provided that H(d) = 0.

The proof is left to readers, however we indicate some elements of the construction of H. Setting Λ(H) = {λ 1 , ..., λ p+1 }, one has

λ i = σ 0 ...σ i-1 λ 1 and λ 1 = (|I 1 | + σ 1 |I 2 | + ... + σ 1 ...σ p |I p+1 |) -1 by computation of the total length of H([0, 1)).
In particular, if c i and σ i are rational numbers then λ i ∈ Q. Moreover, we can choose H such that H(c j ) ∈ Q, for some c j and then H ∈ A Q . Remark 8. We have described explicitly the conjugating PL-homeomorphism H, we can deduce that if f ∈ A Q then the break points of H and the jumps of H belong to Q, provided that the point c is chosen in Q. Therefore, if f ∈ A Q then the conclusions of Proposition 6.1 hold with H and B belonging to A Q .

Note that if

7 The case Λ(B) = {λ 1 , λ 2 }.

Let α 1 , ..., α s generating a rank s free abelian multiplicative subgroup Λ of R + * . Therefore, given λ ∈ Λ, there exists a unique (n 1 , ..., n s ) ∈ Z s , such that λ = α n1 1 ... α ns s and we define N j (λ) = n j , for all j ∈ {1, ..., s}.

Proposition 7.1. Let B = B λ1,λ2 ∈ A with (λ 1 , λ 2 ) ∈ Λ 2 \ {(1, 1)}.
There exist j ∈ {1, ..., s} and x ∈ [0, 1) such that

Nj (D+B n (x)) n → ν = 0.
Proof. Noting that B satisfies that DB(x) = λ 1 on [0, a) and DB(x) = λ 2 on [a, 1), with a = B -1 (0), one has

D + B n (x) = λ N1(x,n) 1 λ N2(x,n) 2
, where

N 1 (x, n) = #{x, f (x), ..., f n-1 (x)} ∩ [0, a) = n-1 k=0 I [0,a) (f k (x))
and

N 2 (x, n) = #{x, f (x), ..., f n-1 (x)} ∩ [a, 1) = n-1 k=0 I [a,1) (f k (x)).
The map B has a unique invariant probability measure µ, since it is C 0conjugate to an irrational rotation R ρ , by [START_REF] Boshernitzan | Dense orbits over rationals[END_REF] (see Remark 6). More precisely, consider h such that h

• B • h -1 = R ρ , one has µ(A) = λ(h(A), for all measur- able set A. In particular, µ([0, a]) = µ([0, B -1 (0))) = λ([h(0), h • B -1 (0))) = λ([h(0), R -1 ρ (h(0)))) = (1 -ρ) and µ([a, 1 
)) = ρ. The Birkhoff Ergodic Theorem implies that for µ-almost every point x ∈ [0, 1), one has

lim n→+∞ N 1 (x, n) n = µ([0, a]) and lim n→+∞ N 2 (x, n) n = µ([a, 1]).
Now, let us write λ 1 and λ 2 in the basis α 1 , ..., α s of Λ that is λ 1 = α β1 1 ...α βs s and λ 2 = α δ1 1 ...α δs s . We now compute the coordinates N j (D + B n (x)) of D + B n (x) in this basis.

As

D + B n (x) = λ N1(x,n) 1 λ N2(x,n) 2 = α β1.N1(x,n)+δ1.N2(x,n) 1 ... α βs.N1(x,n)+δs.N2(x,n) s , one has N j (D + B n (x)) = β j .N 1 (x, n) + δ j .N 2 (x, n).
It follows that

N j (D + B n (x)) n = β j . N 1 (x, n) n + δ j . N 2 (x, n) n → β j .(1 -ρ) + δ j ρ = ρ(δ j -β j ) + β j .
Finally, suppose that (λ 1 , λ 2 ) = (1, 1) then necessary λ 1 = λ 2 and there exists j such that δ j = β j . Therefore, ν = ρ(δ j -β j ) + β j = 0, as ρ / ∈ Q.

8 Proof of Theorem 1.

Let f be distorted in A, as f has no a semi-hyperbolic periodic point, its periodic points are not isolated. Using in addition that BP 0 (f ) is finite, we get that the set P er(f ) of f -periodic points is the union of a finite collection of half open intervals with endpoints in the orbits of BP 0 (f ). Thereby, there exists some positive integer p such that P er(f ) = P er(f p ) = F ix(f p ). It is easy to check that there exists S ∈ E whose discontinuities are endpoints of connected components of P er(f ) and such that F ix(Sf p S -1 ) is an interval P = [0, a) and the restriction of Sf p S -1 to M = [a, 1) has no periodic points.

Applying Theorem 2 to the restriction of Sf p S -1 to M , there exist q ∈ N *

and

E ∈ E such that ES • f pq • (ES) -1 = p i=1 f i , where f i are restricted PL- homeomorphisms with pairwise disjoint supports I i = [a i , b i ), f i | Ii is minimal and #BP (f n i ) is bounded (since f is distorted). Let i ∈ {1 ... p}, applying Proposition 6.1 to f i | Ii , we get that f i | Ii is conjugate by a PL-homeomorphism H i of I i to B i with Λ(B i ) = {λ i,1 , λ i,2 } and BP (B i ) = {a i , B -1 i (a i )}. Since f i | Ii is minimal, B i also is minimal and according to Remark 6, B i is C 0 -conjugate to an infinite order rotation R ρ of I i . Let H ∈ A defined by H(x) = H i (x), if x ∈ I i and H(x) = x, if x / ∈ ∪I i and let B = (HES) • f pq • (HES) -1 .
It is easy to check that B| Ii = B i and B is distorted in a subgroup G =< g 1 , ..., g q > of A, since f is distorted in A.

Let Λ G be the free abelian multiplicative subgroup Λ of R + * generated by { Dg k (x), x ∈ [0, 1), k ∈ {1 ... q} }. It has finite rank s, we consider a basis α 1 , ..., α s of it.

Let i ∈ {1 ... p}, note that N j (D + B n (y)) = N j (D + B n i (y)), ∀y ∈ I i . We suppose that (λ i,1 , λ i,2 ) = (1, 1).

On one hand, by Proposition 7.1, there exist j ∈ {1, ..., s} and x ∈ I i such that

Nj (D+B n (x)) n → ν = 0.
On the other hand, since B is distorted in G, its iterates B n can be written

B n = g i ln ... g i1 with lim n→+∞ l n n = 0. Hence D + B n (x) = D + g i ln (x ln ) ... D + g i1 (x 1 )
, where x m = g im-1 ... g i1 (x). Then

|N j (D + B n (x))| ≤ ln m=1 |N j (D + g im (x m ))| ≤ l n S, where S = max{ |N j (D + g k (y))|, y ∈ [0, 1), 1 ≤ k ≤ q }. Finally, l n n ≥ |N j (D + B n (x))| nS → |ν| S > 0 
, this is a contradiction.

Consequently, for any i ∈ {1 ... p}, (λ i,1 , λ i,2 ) = (1, 1) and thereby B i is an infinite order rotation of I i . Thus B is a product of infinite order restricted rotations with pairwise disjoint supports.

In conclusion, we have proved that when restricted to M , there exists an iterate of f that is conjugate in A to a product of infinite order restricted rotations with pairwise disjoint supports. We conclude by noting that f |M c = Id |M c . 9 Proof of Corollaries 1, 2 and 3.

Proof of Corollary 1.

Let a, b in A such that ba m b -1 = a n with m, n integers and |m| = |n|. We will prove that a has finite order. By absurd, since a is distorted, eventually passing to a power of a and conjugating a and b by an element of A we can suppose that a is a product of infinite order restricted rotations R αi of disjoint supports I i , according to Theorem 1. We denote a = p i=1 (R αi , I i ).

The main tool of the proof is the following Let X = ∪I i . In what follows we identify a with its restriction to X. By unique ergodicity of irrational rotations, one has that the ergodic a pinvariant probabilities on X are Leb|I i , for all p ∈ Z.

As Supp(ba m b -1 ) = b(Supp(a m )) and Supp(a n ) = Supp(a m ), then b(X) = X and b is identified to its restriction to X.

The image by b of an ergodic a m -invariant measure is an ergodic a n -invariant measure. Hence, for some permutation σ, b (Leb|I i ) = Leb|I σ(i) .

Thus there exists an integer s such that b s (Leb|I i ) = Leb|I i .

The spectrum of an irrational rotation R α viewed as an IET of I is Sp(R α , I, Leb|I) =< e 2iπ α l > where l = |I|.

A consequence of the identity b s a m s b -s = a n s and Lemma 9.1 is that b s |I i sends the generator of Sp(a m s , I i , Leb|I i ) into a generator of Sp(a n s , I i , Leb|I i ). Then e .

Finally, αi li m s = ± αi li n s (mod Z). This is a contradiction since αi li / ∈ Q and |m| = |n|.

Therefore a has finite order, hence any action of BS(m, n) with |m| = |n| by elements of A is not faithful.

Proof of Corollary 2.

Let G be a nilpotent subgroup of A. Suppose by absurd that G is either non abelian torsion free or finitely generated and not virtually abelian.

Since G is nilpotent there exist u, v ∈ G such that c = [u, v] commutes with u and v. Furthermore, we can choose c of infinite order because G is either non abelian torsion free or finitely generated and not virtually abelian. This implies Claim 9.1. For any integers p and q, it holds that [u p , v q ] = c pq .

In particular c n 2 = [u n , v n ], so c is distorted. Hence, by Theorem 1, eventually passing to a power of c and conjugating by an element of A we can suppose that c is a product of infinite order restricted rotations R αi of disjoint supports I i . We denote c = Therefore u su |I i and v sv |I i are IET which commute with the rotation R αi . Finally, by Lemma 5.1 of [START_REF] Novak | Discontinuity growth of interval exchange maps[END_REF], u su |I i and v sv |I i are rotations so they commute.

According to Claim 9.1, [u su , v sv ] = c susv , so c susv = Id on I i for any i = 1, ..., p. It follows that c susv = Id. This contradicts that c has infinite order.

Corollary 1 .

 1 The Baumslag-Solitar groups BS(n, m) =< a, b | ba n b -1 = a m > with m, n integers and |m| = |n| do not act faithfully via elements of A.

Lemma 4 .

 4 1 follows immediately from this and Property 4.

  bounded, by Sublemmas 4.1 and 4.2, for all m ≥ N + 1 the point f m (a) = f m + (a) = f m -(a) and does not belong to BP 1 (f ) (by Property 5 (2)

Lemma 4 .

 4 2 follows immediately from this and Property 4.

4. 2

 2 Characterization of distortion.

Proposition

  

  (a)) = 0 by formula (1) with n = 2N +2, k = N +1-l. It follows that either f -(N +1)+l (a) ∈ BP 0 (F ) and f l (a) ∈ BP 0 (F ) or f -(N +1)+l (a) / ∈ BP 0 (F ) and f l (a) / ∈ BP 0 (F ). So BP 0 (F ) is a finite union of pairs of the form (f -(N +1)+l (a), f l (a)).

σ

  i = 1 such a H does not exist since it should satisfy that λ p+1 = σ 0 ...σ p λ 1 and σ p+1 = λp+1 λ1 .

Lemma 9 . 1 .

 91 Let a, b ∈ A with a = p i=1 (R αi , I i ) and ba m b -1 = a n then there exists an integer s such that b s maps I i to itself preserving the Lebesgue measure on I i , denoted by Leb|I i .

(

  R αi , I i ). Applying Lemma 9.1 with m = n, a = c and b = u [resp. b = v], there exists s u [resp. s v ] such that u su (Leb|I i ) = Leb|I i and v sv (Leb|I i ) = Leb|I i .

Introduction.In the recent years, notions of distortion have attracted the interest of many people working on geometric group theory as well as rigidity theory (see[START_REF] Franks | Distortion in groups of circle and surface diffeomorphisms. Dynamique des difféomorphismes conservatifs des surfaces : un point de vue topologique[END_REF] for a survey).On one hand, some results established the existence of distorted elements in transformations groups. For instance, D. Calegari and M. Freedman, in[START_REF] Calegary | Distortion in transformation groups. With an appendix by Yves Du Cornulier[END_REF], showed that all homeomorphisms of spheres are distorted. Moreover, in the case of the unit circle, they proved that every irrational Euclidean rotation is distorted inside the group of C

2-ε -diffeomorphisms for any ε > 0. Requiring smoothness, Avila proved in[START_REF] Avila | Distortion elements in Diff ∞ (R/Z)[END_REF] that irrational rotations are distorted in Diff ∞ (S 1 ). In higher dimensions, Militon (see[START_REF] Militon | Éléments de distorsion de Dif f ∞ 0 (M )[END_REF], Theorem 1) showed that irrational translations of the d-dimensional torus are distorted in Diff ∞ (T d ).On the other hand, a significant consequence of the non existence of distortion is the proof of Zimmer's conjecture in dimension 2: "any action of SL(3, Z) by area preserving diffeomorphisms on a surface has finite image". For instance,

Liousse, I. & Navas, A. Distortion elements in P L + (S 1 ) (2008).

We first check that the conjugating maps H, E and S are in A Q . By the definition of S, the break points of S are endpoints of connected components of P er(f ) so they belong to the f -orbit of BP 0 (f ) which is contained in Q. Therefore S ∈ A Q According to Remark 5, E ∈ A Q and the endpoints of the I i 's are rational. Hence, by Remark 8, H ∈ A Q .

Therefore (HES)f pq (HES) -1 ∈ A Q and then R i ∈ A Q . This is a contradiction.

Proof of Corollary 3.

In this section we prove that there is no distortion element in A Q .

Let f ∈ A Q distorted in A Q , by Theorem 1, there exist a positive integer s and

of infinite order restricted rotations of disjoint supports I i .