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INTERVAL EXCHANGE TRANSFORMATIONS GROUPS

FREE ACTIONS AND DYNAMICS OF VIRTUALLY ABELIAN GROUPS

NANCY GUELMAN AND ISABELLE LIOUSSE

Abstract. In this paper, we study groups acting freely by IETs. We first note that a
finitely generated group admits a free IET action if and only if it is virtually abelian.
Then, we classify the free actions of non virtually cyclic groups showing that they are
“conjugate” to actions in some specific subgroups Gn, namely Gn ≃ (G2)

n ⋊ Sn where
G2 is the group of circular rotations seen as exchanges of 2 intervals and Sn is the group
of permutations of {1, ..., n} acting by permuting the copies of G2.

We also study non free actions of virtually abelian groups and we obtain the same
conclusion for any such group that contains a conjugate to a product of restricted rota-
tions with disjoint supports and without periodic points. As a consequence, we get that
the group generated by f ∈ Gn periodic point free and g /∈ Gn is not virtually nilpotent.
Moreover, we exhibit examples of finitely generated non virtually nilpotent subgroups of
IETs, some of them are metabelian and others are not virtually solvable.

1. Introduction.

Definition 1.1. An interval exchange transformation (IET) is a bijective map f :
[0, 1) → [0, 1) defined by a finite partition of the unit interval into half-open subintervals
and a reordering of these intervals by translations. If a partition has cardinality r, we say
that f is an r-IET. We denote by G the group consisting of all IETs.

Circular rotations identify with 2-IETs and an IET g whose support is a subinterval
I = [a, b) is a restricted rotation if the orientation preserving affine map from I to

[0, 1) conjugates g|I to a 2-IET. It is denoted by Rα,I where α ∈ [0,b−a)
b−a∼0

is represented by
g(a)− a.

An affine interval exchange transformation (AIET) is a bijective map f : [0, 1) →
[0, 1) defined by a finite partition of the unit interval into half-open subintervals such that
the restriction to each of these intervals is an orientation preserving affine map.

An AIET that is a homeomorphism of [0, 1) is called PL-homeomorphism.

A group is said to act freely if the only element acting with fixed points is the trivial
element, in particular a free action is faithful.

By the classification of finitely generated abelian groups, it is plain that any such group
G admits a free IET action by rotations. But, Hölder’s Theorem (see e.g. Theorem 2.2.32
of [Nav11]) stating that groups that act freely by circle homeomorphisms are abelian is
no longer true for free IET actions.

Indeed, it is easy to see that any finite group F has a free IET action by taking a
partition in #F subintervals of equal length labelled with the elements of F and the
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2 NANCY GUELMAN AND ISABELLE LIOUSSE

action by left multiplication in the group F . However, some infinite non abelian groups
can also admit free IET actions: we claim that the following IETs a and b generate a free
and minimal action of the Klein bottle group BS(1,−1) := ⟨ a, b | bab−1 = a−1 ⟩ provided
that 1, α, β1 and β2 are rationally linearly independent numbers.
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Note that this example is a subgroup of some very specific groups of G, namely the
groups Gn described in the following

Definition 1.2. Let n be a positive integer and Sn = [0, 1
n
]/0= 1

n
be the circle of length

1
n
. We define Gn as the set of IETs on [0, 1) that preserve the partition [0, 1) = [0, 1

n
) ∪

[ 1
n
, 2
n
)... ∪ [n−1

n
, 1) and whose restrictions to the intervals Ii = [ i−1

n
, i
n
), i ∈ {1, · · · , n}, are

IETs with only one interior discontinuity.

For g ∈ Gn, we define σg as the element of Sn given by σg(i) = j if g(Ii) = Ij.

It follows that, for x ∈ Ii, one has g(x) = Rαi,Ii(x) +
σg(i)− i

n
.

We define the rotation vector of g by αg = (α1, ..., αn) = (α1(g), ..., αn(g)) ∈ Sn
n and

we denote g = (αg, σg).

The group G1 is the group of circular rotations Rα (α ∈ S1), regarded as 2-IETs.

Examples 1. The IET a and b, represented above by their graphs, are expressed as:

a, b ∈ G2,

{
αa = (α,−α)
σa = Id

}
and

{
αb = (β1, β2)
σb is the transposition (1, 2)

}
.

Remark 1.3. A straightforward consequence of this definition is that Gn is a group and

composing two elements f and g of Gn, we get

{
αf◦g = σg(αf ) + αg

σf◦g = σf ◦ σg

}
, where σg acts on

the vector αf by permuting its coordinates. Therefore, the map (α, σ) : Gn → (Sn)
n⋊Sn

is an isomorphism. In particular, the group Gn is virtually abelian.
Note that Gn can be seen as the isometry group of the disjoint union of n circles of

the same length 1/n and adopting this point of view, it follows from Dahmani, Fujiwara
and Guirardel (Proposition 1.2 of [DFG20]) that any finitely generated virtually abelian
group is isomorphic to a subgroup of some Gn.

In Section 2, we will specify the related construction of [DFG20] in order to provide
free actions, this leads to

Proposition 1.4. (The Dahmani-Fujiwara-Guirardel Proposition 1.2 revisited) A finitely
generated group admits a free IET action if and only if it is virtually abelian.
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The main result of this paper establishes that this revisited construction is “basically”
the only one that provides free IET actions of non virtually cyclic groups. It is related
to the dynamical Hölder’s Theorem: “free actions on the circle are topologically semi-
conjugate to actions of rotations groups” (see e.g. comments following Theorem 2.2.32
in [Nav11]), which suggests that it makes sense to give a dynamical classification of free
actions by elements of G. We will do this classification up to conjugacy by maps that
are not required to be in G, however, as noted by the referees, our conclusion can be
reformulated in terms of G-conjugation (see Theorem 1’ and its preliminary comments).
Actually our conjugating maps are given by

Definition 1.5. An element f ∈ G is PL ◦ G-conjugate to F ∈ Gn, if f is conjugate
to F through a map P ◦ E, where E ∈ G and P is a PL-homeomorphism such that P−1

is affine on [k−1
n
, k
n
) for any k ∈ {1, ..., n}.

Theorem 1. The image in G of any free action of a finitely generated non virtually cyclic
group is PL ◦ G-conjugate to a subgroup of some Gn.

Roughly speaking, being PL◦G-conjugate to a subgroup of someGn can be reformulated
as being G-conjugate to a subgroup of products of restricted rotations on finitely many
disjoint sub-intervals modulo a permutation of them. More precisely,

Theorem 1’. Any free IET-action of a finitely generated non virtually cyclic group is
G-conjugate to a subgroup of the semi-direct product G(P ) := R(P )⋊S(P ) < G for some
partition P of [0, 1) in half-open intervals, where R(P ) denotes the group of all products
of restricted rotations supported in intervals of P and S(P ) the subgroup of the symmetric
group on P consisting of elements that only exchange intervals of the same size.

The first step in the proof of Theorem 1 is

Proposition 1.6. Any free action of Z2 in G consists of periodic point free maps having an
iterate that is conjugate in G to a product of restricted rotations with disjoint supports. In
particular its image contains a conjugate to a product of restricted rotations with disjoint
supports and without periodic points.

It is not plain that if all elements of a finitely generated subgroup of G have an iterate
that is conjugate in G to a product of restricted rotations with disjoint supports, then
they are simultaneously conjugate to their models. However, dealing with virtually abelian
groups, the situation turns out to be much more rigid and this conclusion can be proved
only requiring the existence of one conjugate in G to a product of restricted rotations with
disjoint supports and without periodic points.

The proof of Theorem 1 does not strictly require actions to be free, but rather the
presence of specific elements that occur when considering sufficiently large free actions.
Moreover, the finite generation condition is involved only when applying Proposition 1.4.

More precisely, the second step is

Theorem 2. Let G be a virtually abelian subgroup of G. If G contains an element that
is conjugate in G to a product of restricted rotations with disjoint supports and without
periodic points, then G is PL ◦ G-conjugate to a subgroup of some Gn.

Some extra dynamical assumptions provide stronger rigidity results:
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Definition 1.7.
• An IET f is totally minimal if for all p ∈ Z∗, the map fp is minimal. More generally:
• An action by elements of G of a group G is totally minimal if any finite index

subgroup of G acts minimally on [0, 1).

Remark. According to [Kea75], an IET that satisfies the Keane I.D.O.C condition is
totally minimal.

Corollary 1. Let G be virtually abelian group containing a copy of Z2. Then any faithful
totally minimal action of G in G is conjugate in G to an action by rotations.

By Schreier Lemma and the classification of finitely generated abelian groups, any
finitely generated virtually abelian group is either virtually cyclic or it contains a copy of
Z2. Combining this with the theorem of [DFG20] stating that virtually polycyclic IET
subgroups are virtually abelian, we get

Corollary 2. Let G be a finitely generated subgroup of G that contains a totally minimal
IET non conjugate to a rotation then G is either virtually cyclic or not virtually polycyclic.

Using Theorem 2 and its ingredients of proof, we can exhibit explicit examples of non
virtually polycyclic subgroups of G. Other examples were known as the lamplighter groups
considered in [DFG20], however the situations, we present here, are easy to achieve.

Corollary 3. The group G generated by the following f and g is not virtually polycyclic.

(1) f is an irrational rotation and g is not a rotation.
(2) f ∈ Gn is periodic point free and g /∈ Gn.

As a consequence of Theorem 2 of [DFG20], for finitely generated IET subgroups,
the properties of being virtually abelian, virtually nilpotent or virtually polycyclic are
equivalent. This justifies why the groups involved in Corollaries 2 and 3 are described in
the abstract as non virtually nilpotent.

Item (1) is the particular case n = 1 of Item (2) and it is then a corollary of Gromov’s
polynomial growth theorem [Gro81] and Proposition 5.9 of [JMBMdlS18] that claims
that a finitely generated subgroup of IET that contains an irrational rotation is either a
subgroup of G1 or has exponential growth.

In addition, in the last section, we provide examples of finitely generated non virtually
polycyclic subgroups of G that have extra properties as being metabelian or non virtually
solvable. In particular, these subgroups are generated by rotations and torsion elements
as the groups considered by Boshernitzan in [Bos16].

This criterium applies to the group ⟨r, s⟩ constructed in Theorem 8.1 of [DFG13] by
taking s ∈ G3 (obviously r /∈ G3) and also to the lamplighter groups A ≀Z of Proposition
4.1 of [DFG20], since the infinite order generator belongs to Gn and the support of the
finite order elements can be chosen in such a way that these maps do not belong to Gn.

Another motivation for studying the dynamics of the virtually abelian subgroups of G
comes from the Klein bottle group BS(1,−1) and its connections with reversible maps:
O’Farrell and Short ([OS15]) have pointed out the importance of reversibility in dynamical
systems and group theory and they have raised the following question: given a group G,
are all reversible elements of G reversible by an involution? In [GL19], we study reversible
IETs and free actions of BS(1,−1) play a key role for O’Farrell and Short question. In
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particular, Theorem 1 applies to such actions (since the subgroup ⟨ a, b2 ⟩ is isomorphic
to Z2 and of index 2) leading to

Corollary 4. Any free action of BS(1,−1) by elements of G is PL ◦ G-conjugate to a
free action of BS(1,−1) by elements of some Gn.

Acknowledgements. We deeply thank the referees for their valuable comments and
very specific suggestions, in particular for an enlightening reformulation of Theorem 1
and an alternative proof of Corollary 2.

We acknowledge the support received from the I.F.U.M.I, the projects MathAmSud
(GDG 18-MATH-08), Project CSIC 883174, Labex CEMPI (ANR-11-LABX-0007-01),
ANR Gromeov (ANR-19-CE40-0007) and the Universities of Lille and de la República.

2. Algebraic description of finitely generated groups acting freely by
elements of G: Proof of Proposition 1.4

Proof. Since translations commute, the orbit of any point under a finitely generated sub-
group H of G has polynomial growth. Therefore, if H acts freely then it has polynomial
growth so it is virtually nilpotent by Gromov [Gro81]. According to Novak [Nov09], IET
groups do not contain distorted copy of Z so, by standard arguments, H is virtually
abelian (this can also be deduced from Theorem 2 of [DFG20] since finitely generated
nilpotent groups are polycyclic).

Let G be a finitely generated virtually abelian group. By the classification of finitely
generated abelian groups, there exists H�G isomorphic to some Zm such that F = G/H
is finite. In addition, H can be represented as a group of circle rotations A seen as 2-IETs
of [0, 1). Namely, A = ⟨Rα1 , ..., Rαm⟩ and 1, α1, · · · , αm are Q linearly independent.

According to Krasner-Kaloujnine (see [KK51]) G embeds in HF ⋊ F , where F acts
on HF by permuting coordinates. Thus, it suffices to show that AF ⋊ F acts freely by
elements of some Gn.

To any (as)s∈F ∈ AF and σ ∈ F , we associate a map

E((as), σ) :

{
[0, 1)× F → [0, 1)× F
(x, s) 7→ (as(x), σs)

Noticing that E((as), σ) ◦ E((a′s), σ
′) = E((aσ′s ◦ a′s), σσ

′), we get that E induces an
injective morphism from AF ⋊ F to the group MG2([0, 1) × F ) := {E((as), σ), (as) ∈
(G2)

F , σ ∈ F}.
In addition, its image acts freely on [0, 1) × F because 1, α1, ..., αm are Q linearly

independent. Finally, MG2([0, 1)×F ) embeds in G#F by subdividing [0, 1) in #F intervals
of same length. □

3. Dynamical properties of IETs and centralizers

3.1. Dynamical properties of IETs.

Definition 3.1.
• The break point set of an IET f is obtained by adding the initial point 0 to the

discontinuity set of f , it is denoted by BP(f). The set consisting of the f -orbits of points
in BP(f) is denoted by BP∞(f). The translation set of g is {g(x)− x, x ∈ [0, 1)}.
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• The break point set of a finitely generated subgroup G of G is BP(G) :=
⋃
g∈G

BP(g)

and its translation set is {g(x)− x, g ∈ G, x ∈ [0, 1)}.
We let the reader check the following

Properties 3.2. Let f , g in G and n ∈ N.
(a) BP(f ◦ g) ⊆ BP(g) ∪ g−1(BP(f)),
(b) BP(f−1) = f(BP(f)) and
(c) BP(fn) ⊆ BP(f) ∪ f−1(BP(f)) ∪ ... ∪ f−n+1(BP(f)).

Remark 3.3. By these properties, #BP(fn) is bounded above by #BP(f)×|n|. However,
it is possible for #BP(fn) to be bounded independently of n, for IETs of finite order but
also for minimal IETs as irrational rotations and then also for all elements of Gn, in this
case we say that f is of bounded break point type.

Definition 3.4. Let f ∈ G.
• Let p ∈ N∗, we denote by Perp(f) the set of points x such that, Of(x), the f -orbit

of x has cardinality p. The fix point set of f is Fix(f) = Per1(f).
• Let V be a subset of [0, 1), we say that V is of type M if it is a non empty finite

union of intervals each of the form [b, c), with b, c in BP∞(f). A type M and f -invariant
set that is minimal for the inclusion among non empty, type M and f -invariant subsets
of [0, 1) is called an f-component.

The well-known decomposition into minimal and periodic components of an IET was
first given for measured surface flows by Mayer in 1943 ([May43]) and restated for IETs by
Keane ([Kea75]) and Arnoux ([Arn81]). Here, we detail Arnoux formulation (see [Arn81]
Proposition p. 20):

Theorem. The interval [0, 1) can be decomposed as [0, 1) = P1∪ ...Pl∪M1...∪Mm, where

• Pi is an f -periodic component: Pi is the f -orbit of an interval [b, c) with b, c in
BP∞(f) and all iterates fk of f are continuous on [b, c). In particular points in
Pi are periodic of the same period.

• Mj is an f -minimal component: for any x ∈ Mj, the orbit Of (x) is dense in Mj.

For convenience, the f -component containing x ∈ [0, 1) will be denoted Mf(x).

According to Remark 3.3, it makes sense to give the following

Definition 3.5. We define the growth rate of the number of discontinuities for the
iterates of an IET f on the f -orbit through a given point x by

Nx(f) = lim
n→+∞

#{BP(fn) ∩ Of (x)}
n

.

Properties 3.6. Let f , g in G and x ∈ [0, 1).

(1) If BP (f) ∩ Of (x) = ∅ then Nx(f) = 0.
(2) Ng(x)(g ◦ f ◦ g−1) = Nx(f).

Proof.
Item (1) follows from Item (c) of Properties 3.2.

Item (2). Let N ∈ N, we write A⊂
N

B if A ⊂ B ∪ F where #F ≤ N .

Let C = 2#BP(g) and fg = g ◦ f ◦ g−1, we have Ofg(g(x)) = g(Of (x)).
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It follows from Item (a) of Properties 3.2 that:

• BP(fn
g ) ⊆ BP(g−1) ∪ g(BP(fn)) ∪ g ◦ f−n(BP(g))⊂

C
g(BP(fn)) and

• BP(fn) = BP(g−1 ◦ fn
g ◦ g) ⊆ BP(g)∪ g−1(BP(fn

g ))∪ g−1 ◦ f−n
g (BP(g−1))⊂

C
g−1(BP(fn

g )).

Therefore BP(fn
g ) ∩ Ofg(g(x))⊂

C
g
(
BP(fn) ∩ g−1(Ofg(g(x)))

)
= g

(
BP(fn) ∩ Of (x)

)
and BP(fn) ∩ Of (x)⊂

C
g−1(BP(fn

g ) ∩ g(Of (x)) = g−1(BP(fn
g ) ∩ Ofg(g(x))).

Finally, we get

# (BP(fn) ∩ Of (x))− C ≤ #
(
BP(fn

g ) ∩ Ofg(g(x))
)
≤ #(BP(fn) ∩ Of (x)) + C.

We conclude by dividing by n and taking the limit. □

In addition, Nx(f) provides a characterization of the bounded break point type. More
precisely, from [Nov09], we deduce

Theorem 3.7. Adapted version of Theorems 1.1 and 1.2 of [Nov09].
Let f ∈ G, the following assertions are equivalent

(1) For any x ∈ [0, 1), we have Nx(f) = 0.
(2) The map f is of bounded break point type.
(3) There exists a positive integer p such that fp is conjugate in G to a product of

restricted rotations of pairwise disjoint supports.
(4) There exist two positive integers p and n, an IET E and a PL-homeomorphism

P : [0, 1) → [0, 1) such that Φ = (P ◦ E) ◦ fp ◦ (P ◦ E)−1 ∈ Gn, σΦ = Id and the
map P−1 is affine on each Ii = [ i−1

n
, i
n
).

Proof.

Since BP(fn) =
⋃

a∈BP(f)

BP(fn) ∩ Of (a), the implication (1)=⇒(2) is a direct conse-

quence of Theorem 1.1 of [Nov09] stating that either #BP(fn) is bounded or #BP (fn)
has linear growth.

The implication (2)=⇒(3) is exactly Theorem 1.2 of [Nov09].

We prove (3)=⇒(4). Let E be an IET that conjugates fp to F , a product of restricted
rotations of pairwise disjoint supports. We decompose I as a disjoint union of consecutive
half open intervals Ji, i = 1, ..., n, where Ji is either the support of a restricted rotation
in F or a connected component of Fix(F ). We define P as the PL-homeomorphism such
that P (Ji) = Ii and P|Ji is affine. It is easily seen that Φ = P ◦F ◦P−1 ∈ Gn and σΦ = Id.

It remains to prove (4)=⇒(1). As Φ ∈ Gn, it holds that Nx(Φ) = 0 for any x ∈ [0, 1),
then Nx(P

−1 ◦Φ ◦P ) = 0 since P is a homeomorphism. Therefore Item (2) of Properties
3.6 implies that Nx(f

p) = 0 for any x ∈ [0, 1). It follows that Nx(f) = 0 for any x ∈ [0, 1).

Indeed, let x ∈ [0, 1) and n ∈ N∗, we have Of (x) =

p−1⋃
j=0

Ofp(f j(x)) and then

#
(
BP(fpn) ∩ Of (x)

)
pn

≤ 1

p

p−1∑
j=0

#
(
BP(fpn) ∩ Ofp(f j(x))

)
n
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Taking, the limit when n goes to infinity, we get that Nx(f) ≤
1

p

p−1∑
j=0

Nfj(x)(f
p).

Finally, by Item (2) of Properties 3.6, it holds that Nx(f
p) = Nfj(x)(f

p) for any integer
j and then Nx(f) ≤ Nx(f

p) = 0. □

3.2. Centralizers.

3.2.1. Generalities.
Let G be a group and f ∈ G. It is well-known that the centralizer of f in G,

C(f) := {h ∈ G : h ◦ f = f ◦ h}, is a subgroup of G.

Lemma 3.8. Let f, h be bijections of a set X and h ∈ C(f), then:

• For any x ∈ X, h(Of (x)) = Of (h(x)).
• For any p ∈ N∗, the set of f -periodic points with exact period p, Perp(f), is h-
invariant.

Proof.
• The first item is a direct consequence of the fact that for any x ∈ X, one has

h(fn(x)) = fn(h(x)).

• Let p ∈ N∗, x ∈ Perp(f) means that #Of (x) = p. By the first item, we get that
#Of (h(x)) = p and therefore h(x) ∈ Perp(f). □

Lemma 3.9. Let f, h ∈ G, h ∈ C(f) and x be a non f -periodic point.
Then h(x) is not f -periodic and h(Mf (x)) = Mf (h(x)). In addition, there exists a

positive integer r such that hr(Mf (x)) = Mf (x).

Proof. As x is not f -periodic, the orbit Of (x) is dense in Mf (x). By Lemma 3.8, the
point h(x) is not f -periodic and h(Of (x)) = Of (h(x)), taking closure we get h(Mf (x)) =
Mf (h(x)) even if h is not continuous.

Indeed, the dynamics of the group G generated by f and h can be lifted, by a

Denjoy blow-up, to that of a homeomorphisms group of X = [0, 1) ⊔ BP−
∞(G),

where BP−
∞(G) is an abstract copy of BP∞(G). To any x ∈ BP∞(G) correspond

two points of X: x+ ∈ [0, 1) and x− ∈ BP−
∞(G). The topology on X is given

by the total order defined on X by taking the usual order on BP−
∞(G) and [0, 1)

and setting that for x− ∈ BP−
∞(G) and y ∈ [0, 1): x− < y⇐⇒x+ ≤ y. For more

details see e.g [Arn81] or [Cor20] §3.2.
In addition, the finiteness of the number of f -minimal components implies that there ex-

ist two distinct integers s and t such that hs(Mf (x)) = ht(Mf (x)) therefore h
t−s(Mf (x)) =

Mf (x). □

3.2.2. Centralizer for IETs of bounded break point type.
We begin by recalling

Properties 3.10. ([Nov09], Lemma 5.1 and its proof.)

(1) Two irrational rotations Rα and Rβ, with α ̸= β mod 1, are not conjugate in G.
(2) The centralizer in G of an irrational rotation is the rotation group G2.

This extends to

Lemma 3.11. Let F ∈ Gn without periodic points then C(F ) ⊂ Gn.
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Proof. Let F ∈ Gn without periodic points, noting that C(F ) ⊂ C(F n) holds for all
n ∈ Z and after replacing F by some iterate F p, it may be assumed that σF = Id and
then the intervals Ii = [ i−1

n
, i
n
) are the minimal components of F , since F has no periodic

points.

LetH ∈ C(F ). By Lemma 3.9, there exists a permutation γ ∈ Sn such thatH(Ii) = Iγ(i)
and H conjugates the irrational rotation F|Ii to the irrational rotation F|Iγ(i) . Thus, Item

(1) of Properties 3.10 implies that αγ(i)(F ) = αi(F ).

Next, we consider the map K of Gn defined by α(K) = 0 and σK = γ. It is easily
seen that K ∈ C(F ), therefore K−1 ◦H is an IET that commutes with F and fixes each
Ii. By Item (2) of Properties 3.10, one has (K−1 ◦ H)|Ii = Rβi

for any i meaning that
K−1 ◦H ∈ Gn, so does H. □

More generally, we have

Proposition 3.12. Let f be a periodic-point free IET that is conjugate to F ∈ Gn by a
PL-homeomorphism P such that P−1

|Ii is an orientation preserving affine map. Then the

map P conjugates C(f) to a subgroup of Gn.

Proof. As in the proof of Lemma 3.11, the map f has no periodic points then after replac-
ing f by some iterate, we can suppose that the intervals Ji := P−1(Ii) are the minimal
components of f . Let g ∈ C(f), according to Lemma 3.9, there exists a permutation
γ ∈ Sn such that g(Ji) = Jγ(i). In particular Ji and Jγ(i) have same lengths and then the
restrictions of P to Ji and to Jγ(i) are affine with same slopes.

This implies that the a priori AIET G = P ◦ g ◦ P−1, which sends P (Ji) = Ii to
P (Jγ(i)) = Iγ(i) for any i, is actually an IET. Finally G is an IET that commutes with F
(i.e. G ∈ C(F )), therefore, by Lemma 3.11, G belongs to Gn. □

4. Free actions of Z2 by IET

The aim of this section is to prove Proposition 1.6. By Theorem 3.7, it can be refor-
mulated as: “Any free action of Z2 in G consists of IETs of bounded break point type.”

This proof, inspired by the description given by Minakawa for the free actions of Z2 by
circle PL-homeomorphisms (see [Min97]), uses the properties of the rates Nx(f).

As the action ⟨f, h⟩ of Z2 is free, for every x ∈ I and k, q distinct integers, one has:

Of (h
k(x)) ∩ Of (h

q(x)) = ∅.

Therefore, as #BP (f) is finite, there exists a positive integer N0 such that:

∀n ≥ N0, Of (h
n(x)) ∩BP (f) = ∅.

Using Item (1) of Properties 3.6, one get Nhn(x)(f) = 0 for n ≥ N0 and, by Item (2) of
Properties 3.6,

Nhn(x)(h
n ◦ f ◦ h−n) = Nx(f).

By commutativity, it holds that Nhn(x)(h
n ◦ f ◦ h−n) = Nhn(x)(f).

Combining these properties, we get Nx(f) = 0 for any x ∈ I. Finally, by Theorem 3.7,
f has bounded break point type.
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5. Proof of Theorem 2.

After a possible conjugation by an IET, it suffices to prove

Proposition 5.1. Let G be a non trivial virtually abelian subgroup of G. Suppose that
there exists f1 ∈ G which is a product of restricted rotations with disjoint supports and
without periodic points then G is conjugate to a subgroup of some Gn by the canonical
PL-homeomorphism that conjugates f1 to an element of Gn.

5.1. Proof of Proposition 5.1.

Let G < G and H �G be an abelian subgroup of G with finite index, p.

Claim 5.2. To any f ∈ G we can associate a positive integer pf in order that the maps
fpf are pairwise commuting.

Indeed, let f ∈ G, since the set G/H is finite, there exist integers 0 ≤ s < t
such that f s and f t belong to a same class modulo H, that is f t−s ∈ H.
So taking pf = t− s leads to the required conclusion.

Consider P the PL-homeomorphism associated to f1 as involved for proving (3)=⇒(4)
of Theorem 3.7. In particular, the f1-components are the intervals Ji = P−1(Ii) for
i = 1, ..., n ; they are minimal and P|Ji has constant slope for any i ∈ {1, · · · , n}.

Let f ∈ G and ϕ = f ◦ f1 ◦ f−1. By Claim 5.2, there exist pf1 , pϕ ∈ N∗ such that f
pf1
1

and ϕpϕ commute. Thus, Proposition 3.12 applies to ϕpϕ ∈ C(f
pf1
1 ) and implies that ϕpϕ

is conjugate by P to an element of Gn, namely P ◦ ϕpϕ ◦ P−1 ∈ Gn.
Moreover, as ϕpϕ is periodic points free, eventually replacing pϕ by a multiple, we may

assume that the components of ϕpϕ are the intervals Ji and they are minimal.

Therefore, as f conjugates ϕpϕ and f
pϕ
1 , the map f permutes the Ji. This implies that

the a priori AIET P ◦ f ◦ P−1 is an IET. Indeed, for any i = 1, ..., n, it holds that

• the map P−1 sends Ii to Ji with constant slope |Ji|
|Ii| ,

• the IET f sends Ji to some Jk of same length, with constant slope 1 and

• the map P sends Jk to Ik with constant slope |Ik|
|Jk|

= |Ii|
|Ji| .

Now, it remains to prove that P ◦ f ◦ P−1 ∈ Gn.

Lemma 5.3. Let n be a positive integer and T ∈ Gn be a periodic point free IET. If
S ∈ G is such that T ′ = STS−1 ∈ Gn then S ∈ Gn.

Proof.
• If n = 1 then T and T ′ are irrational rotations and T ′S = ST . Identifying [0, 1) with

S1, the maps T and T ′ become continuous and computing break point sets, we get

BP(S) = BP(T ′S) = BP(ST ) = T−1(BP(S)).

Thus BP(S) is a finite T -invariant set so the minimality of T implies that it is empty and
then S is a rotation.

• If n ≥ 2 then eventually changing T for some iterate, we can suppose that σT and
σSTS−1 are trivial.

• If S preserves each Ij, we apply the case n = 1 to the restrictions to Ij of T and
S. We conclude that S|Ij is a rotation and then S ∈ Gn.
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• If S does not preserve each Ij. As S conjugates two periodic point free maps in
Gn there exists a permutation γ such that S(Ij) = Iγ(j). We consider the element
K ∈ Gn defined by σK = γ and αK = 0. We have K−1S ◦ T ◦ S−1K ∈ Gn

and K−1S preserves each Ij. According to the previous case, K−1S ∈ Gn and
therefore S ∈ Gn. □

We conclude by applying Lemma 5.3 to T = P ◦ fpϕ
1 ◦ P−1 ∈ Gn and S = P ◦ f ◦ P−1.

6. Proofs of Theorem 1 and corollaries 1 and 2.

Proof of Theorem 1. Let G be a finitely generated group acting freely by IET and
Γ < G be the image of a copy of Z2 contained in G. According to Proposition 1.4, G
is virtually abelian. It is plain that Γ also acts freely, then Proposition 1.6 implies that
Γ contains IETs that are conjugate in G to products of restricted rotations with disjoint
supports and without periodic points. Therefore, G satisfies the hypothesis of Theorem
2 and then its conclusion.

Proof of Corollary 1. Let G be a virtually abelian subgroup of G containing a copy
⟨a, b⟩ of Z2 and whose action is totally minimal.

Let K be a finite index abelian normal subgroup of G. Claim 5.2 implies that there
exist integers p and q such that ap and bq generate a copy Z of Z2 in K. We claim that
that Z acts freely.

Indeed, we argue by contradiction supposing that there exist h ∈ Z \ {Id}
and x ∈ I such that x ∈ Fix(h). As K is abelian, Lemma 3.8 implies that
Fix(h) is a non empty K-invariant set. By totally minimality of G, all

K-orbits are dense, hence Fix(h) = [0, 1) and then h = Id, a contradiction.

Therefore, by Proposition 1.6, G contains maps which are conjugate in G to products of
restricted rotations with disjoint supports and without periodic points. Let f1 be such an
element of G, Theorem 2 applies to G and we conclude that there exists a map H = P ◦E
that conjugates G to a subgroup of some Gn, with P a PL-homeomorphisms, E ∈ G and
H of constant slope on each minimal component of f1.
Moreover, as the conjugation by H preserves the totally minimality (according to classi-

cal arguments for topological conjugacy and extra arguments given in the proof of Lemma
3.9 and its footnote), this subgroup is also totally minimal.

We claim that no subgroup of Gn, n ≥ 2, is totally minimal.

Indeed, if G < Gn then G0 = {g ∈ G | σg = Id} is a finite index subgroup
of G that preserves any Ii, i = 1, ..., n. Thus, for G0 to be minimal it is
necessary that n = 1.

Finally n = 1, so the map f1 is minimal and then H has constant slope 1. In conclusion,
G is conjugate in G to a subgroup of G1.

Proof of Corollary 2. Let G be a finitely generated subgroup of G and f ∈ G be a
totally minimal IET that is not conjugate to a rotation.

We first note that the action of G is also totally minimal, since any finite index subgroup
of G contains some non trivial power of f .
We next argue by contradiction, supposing that G is virtually polycyclic and not virtu-

ally cyclic. By [DFG20], G is virtually abelian and not virtually cyclic then it contains a
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copy of Z2. Therefore, applying Corollary 1, we get that f is conjugate in G to a rotation,
a contradiction.

Corollary 2 can also be proven more directly: arguing by contradiction and using
[DFG20], we may assume that up to a finite index subgroup, G is abelian and it con-
tains a totally minimal IET f non conjugate to a rotation. By [Nov09], the centraliser of
f is cyclic and then G is cyclic, a contradiction.

7. Non virtually abelian subgroups of G.

7.1. Proof of Corollary 3.
Item (1) is the special case n = 1 in Item (2), so we only prove Item (2): We argue by

contradiction supposing that G is virtually abelian. Hence, according to Claim 5.2, there
exist integers p and q such that fp ∈ Gn and gf qg−1 commute. Therefore gf qg−1 ∈ Gn

by Lemma 3.11 and then Lemma 5.3 leads to g ∈ Gn, a contradiction.

7.2. Related examples involving arithmetic conditions.

Notations. Let s ∈ N∗ and α1, ..., αs be s Q-independent irrational numbers. We denote
by ⟨1, α1, ..., αs⟩Q the Q-vector space generated by 1 and the αi’s. We set

• GQ = {g ∈ G | g(x)− x ∈ Q, ∀x ∈ I} and
• Gα1,...,αs = {g ∈ G | g(x)− x ∈ ⟨1, α1, ..., αs⟩Q, ∀x ∈ I}.

Corollary 5. Let p, r ∈ N∗, r < p and α1, ..., αp be p Q-independent irrational numbers.
If f ∈ Gα1,...,αr is totally minimal not conjugate to a rotation and g ∈ Gαr+1,...,αp then the
group generated by f and g is not virtually polycyclic.

Proof. According to Corollary 2, G is either virtually cyclic or not virtually polycyclic.
Suppose, contrary to our claim that G is virtually cyclic. Hence, there exists h ∈ G such
that Z = ⟨h⟩ has finite index in G and then fm = hn and gq = ht for some positive
integers m, n, q and t. Therefore fmt = hnt = gqn ∈ Gα1,,...,αr ∩ Gαr+1,...,αp = GQ that
only contains finite order maps 1, in particular f is not totally minimal, a contradiction.
Finally, G is not virtually polycyclic. □

In the following two subsections, we exhibit examples of finitely generated non virtu-
ally polycyclic subgroups of G that have extra properties. In the first one, we provide
metabelian examples and in the second one, non virtually solvable groups.

7.3. Metabelian examples.

Let α ∈ [0, 1
3
) \ Q and G be the subgroup of G generated by Rα and the map g ∈ G3

described by Figure 2.

Proposition 7.1. The group G is metabelian and non virtually polycyclic. More precisely
its commutators subgroup [G,G] is a non finitely generated abelian group whose non trivial
elements have order 3.

Remark. This metabelian group shares many properties with lamplighter groups A ≀ Z,
but its abelianization G

[G,G]
= Z× Z

2Z whereas the one of a lamplighter group is Z.

1Let f ∈ GQ and q be the least common multiple of the denominators of the translations of f , then
Of (x) ⊂ {x+ p

q , p ∈ Z} ∩ [0, 1) is finite.



INTERVAL EXCHANGE TRANSFORMATIONS GROUPS 13

0 1
3

2
3

1

1
3

2
3

1

�
�

�
�

�+2
3

�
�

�
�
�

+0

�
�

�
�
�

−2
3

g

0 1− α 1

α

1

�
�
�

�
�
�

�
�
�

�
�
�

�

+α

�
�

+α−1

Rα

0 1
3
−α

1
3

2
3

α

1
3

1
3
+α

2
3

2
3
+α

1

�
�
�
+2

3
+α

�
�
+α− 1

3

�
�
�

�
�

+α

�
�

�
�

�

−2
3
+α

Rα ◦ g

0 α 1
3

2
3

1

�
�

�
�
�

�
�

�
�
�

�
�

�
�

�

[Rα, g]

Figure 2

Note that, since g has order 2, any f ∈ G can be written as

f = Rps
α g Rps−1

α g · · · Rp1
α g Rp0

α , where pj ∈ Z.

Lemma 7.2. For any f ∈ G, there exists a unique ℓ(f) ∈ Z such that for all x ∈ [0, 1),

f(x) = x+ ℓ(f) α +
pf (x)

3
, where pf (x) ∈ Z.

Proof. We argue by induction on the length LS(f) of f ∈ G as a word in S = {g,Rα}.
Indeed, if LS(f) = 1 then either f = g or f = R±α and the property holds.

Let n ∈ N∗, suppose that G-elements of length less or equal than n have the required
property. Consider f ∈ G with LS(f) = n+ 1, then either f = R±αf0 or f = gf0, where
LS(f0) = n. So, for any x ∈ [0, 1), we have either

f(x) = f0(x)± α + ϵ or f(x) = f0(x) + ϵ
2

3
, where ϵ ∈ {−1, 0, 1}.

Therefore, either

f(x) = x+ (ℓ(f0)± 1) α +
pf0(x) + 3ϵ

3
or f(x) = x+ ℓ(f0) α +

pf0(x) + 2ϵ

3
.

In both cases, f has the required form and ℓ(f) is unique since α is irrational. □

Lemma 7.3.

(1) The map ℓ : G → Z is a morphism.

(2) Any f ∈ G can be written as f = Pf R
ℓ(f)
α = R

ℓ(f)
α Qf with Pf , Qf ∈ ker ℓ.

(3) The ker ℓ-orbit of any x ∈ [0, 1) consists in at most 3 points.
(4) The group ker ℓ contains [G,G] and ker ℓ = Gper = {f ∈ G : ∃m ∈ N∗, fm = Id}.
(5) For any β ∈ [0, 1), the map [Rβ, g] has order 3. 2

Proof.

(1) We obviously have ℓ(Id) = 0 and ℓ(Rα) = 1. Given f, h ∈ G and x ∈ [0, 1), the
computation of hf(x) leads to

hf(x) = x+ (ℓ(f) + ℓ(h)) α +
pf (x) + ph(f(x))

3
Therefore

ℓ(hf) = ℓ(f) + ℓ(h) and phf (x) = pf (x) + ph(f(x))

2This will be used for maps in G, that is for β = nα mod 1.
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In particular, ℓ is a morphism from G to (Z,+).

(2) Let f ∈ G, one has ℓ
(
fR−ℓ(f)

α

)
= ℓ(f) + ℓ(R−ℓ(f)

α ) = ℓ(f) − ℓ(f) = 0. Then

Pf = f R
−ℓ(f)
α ∈ ker ℓ and f = Pf R

ℓ(f)
α .

Similarly, we get Qf = R
−ℓ(f)
α f ∈ ker ℓ and f = R

ℓ(f)
α Qf .

(3) Let x ∈ [0, 1), the ker ℓ-orbit of x is the set {f(x) | f ∈ ker ℓ} and it is included
in S =

{
x+ p

3
, p ∈ Z

}
∩ [0, 1) which has cardinality 3 since S ⊂ [0, 1) and the

distance between two distinct elements of S is 1
3
or 2

3
.

(4) Since ℓ is a morphism to an abelian group, its kernel contains [G,G]. In addition,
let f ∈ Gper of order m ∈ N∗ and x ∈ [0, 1). One has

fm(x) = x+ mℓ(f) α +
pfm(x)

3
= x

By irrationality of α, we get ℓ(f) = 0 that is f ∈ ker ℓ.

(5) Let β ∈ [0, 1
3
), we compute the map [Rβ, g] = Rβ g R−β g.

[0, β)
g−→

+ 2
3

[
2

3
,
2

3
+ β)

R−β−→
−β

[
2

3
− β,

2

3
)

g−→
+0

[
2

3
− β,

2

3
)

Rβ−→
β

[
2

3
,
2

3
+ β)

[β,
1

3
)

g−→
+ 2

3

[
2

3
+ β, 1)

R−β−→
−β

[
2

3
, 1− β)

g−→
− 2

3

[0,
1

3
− β)

Rβ−→
β

[β,
1

3
)

[
1

3
,
1

3
+ β)

g−→
0

[
1

3
,
1

3
+ β)

R−β−→
−β

[
1

3
− β,

1

3
)

g−→
+ 2

3

[1− β, 1)
Rβ−→
β−1

[0, β)

[
1

3
+ β,

2

3
)

g−→
0

[
1

3
+ β,

2

3
)

R−β−→
−β

[
1

3
,
2

3
− β)

g−→
0

[
1

3
,
2

3
− β)

Rβ−→
β

[
1

3
+ β,

2

3
)

[
2

3
,
2

3
+ β)

g−→
− 2

3

[0, β)
R−β−→
1−β

[1− β, 1)
g−→

− 2
3

[
1

3
− β,

1

3
)

Rβ−→
β

[
1

3
,
1

3
+ β)

[
2

3
+ β, 1)

g−→
− 2

3

[β,
1

3
)

R−β−→
−β

[0,
1

3
− β)

g−→
+ 2

3

[
2

3
, 1− β)

Rβ−→
β

[
2

3
+ β, 1)

In conclusion, [Rβ, g] has support [0, β) ⊔ [1
3
, 1
3
+ β) ⊔ [2

3
, 2
3
+ β) and its restriction is

periodic of exact period 3. Therefore, [Rβ, g] has order 3.

The case β ∈ (2
3
, 1) can be deduced from the previous case by noting that β′ = 1− β ∈

(0, 1
3
) and Rβ = R−1

β′ .

Finally, for the case β ∈ [1
3
, 2
3
], let us write β = 1

3
+ β0 with β0 ∈ [0, 1

3
]. A direct

computation similar to that in the case β ∈ [0, 1
3
) shows that [Rβ, g] is continuous on the

intervals J1 = [0, β0), J
′
1 = [β0,

1
3
), J2 = [1

3
, 1
3
+ β0), J

′
2 = [1

3
+ β0,

2
3
), J3 = [2

3
, 2
3
+ β0)

and J ′
3 = [2

3
+ β0, 1). In addition, [Rβ, g](J1) = J2, [Rβ, g](J2) = J3, [Rβ, g](J3) = J1

and [Rβ, g](J
′
1) = J ′

3, [Rβ, g](J
′
3) = J ′

2, [Rβ, g](J
′
2) = J ′

1. This proves that [Rβ, g] has
order 3. □

Lemma 7.4.

(1) The group ker ℓ is generated by {Rn
αgR

−n
α , n ∈ Z}.

(2) The group [G,G] is generated by {[Rn
α, g], n ∈ Z}.
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(3) The group [G,G] coincides with [ker ℓ, ker ℓ].

Proof.

(1) It is plain that the maps Rn
αgR

−n
α , n ∈ Z belong to ker ℓ. We previously noted

that any f ∈ G can be decomposed as

f = Rps
α gRps−1

α g · · ·Rp1
α gRp0

α , where pj ∈ Z,
and then we can write:

f = Rps
α gR−ps

α Rα
ps+ps−1gRps−2

α · · ·Rp1
α gRp0

α

Iterating this process, we get:

f = Rps
α gR−ps

α Rps+ps−1
α gR−(ps+ps−1)

α · · · Rps+ps−1+···p1
α gR−(ps+ps−1+···p1)

α R
∑s

j=0 pj
α

Moreover, f ∈ ker ℓ if and only if
∑s

j=0 pj = 0, thus any f ∈ ker ℓ is the product

of elements of the form Rp
αgR

−p
α .

(2) We first note that for all p, q ∈ Z, we have

(∗) Rp
αgR

−p
α Rq

αgR
−q
α = Rp

αgR
−p
α g gRq

αgR
−q
α = [Rp

α, g] [Rq
α, g]

−1.

Next, we claim that any element of [G,G] can be written as a product of an
even number of Rn

αgR
−n
α so as a product of [Rp

α, g] and [Rq
α, g]

−1 by (∗).
Indeed, it suffices to prove this property for a commutator f = [a, b] with

a, b ∈ G. By Lemma 7.3 (2), f can be written as

f = PaR
ℓ(ab)
α QbQ

−1
a R−ℓ(ab)

α P−1
b = Pa Rℓ(ab)

α QbR
−ℓ(ab)
α Rℓ(ab)

α Q−1
a R−ℓ(ab)

α P−1
b

According to Item (1), Pa, Pb, Qa and Qb can be written as a product of Rn
αgR

−n
α .

Moreover, for any c ∈ G, Qc = R
−ℓ(c)
α PcR

−ℓ(c)
α so the maps Pc, P

−1
c , Qc, Q

−1
c and

their conjugates by Rm
α (m ∈ Z) can be decomposed as products of the same

number of Rn
αgR

−n
α . Finally, f can be written as a product of an even number of

Rn
αgR

−n
α .

(3) By the previous point, showing that [G,G] ⊂ [ker ℓ, ker ℓ] reduces to prove that
[Rn

α, g] ∈ [ker ℓ, ker ℓ] for any n ∈ Z and we claim that [Rn
α, g] = [g,Rn

αgR
−n
α ].

Indeed, noting that if a2 = b2 = Id then [a, b] = (ab)2 and that g and Rn
αgR

−n
α

have order 2, we get [g,Rn
αgR

−n
α ] = (gRn

αgR
−n
α )2 = [g,Rn

α]
2 = [Rn

α, g]
−2.

In addition, by Lemma 7.3 (5), the map [Rn
α, g] = [Rnα, g] has order 3 then

[g,Rn
αgR

−n
α ] = [Rn

α, g]. □

Lemma 7.5.

(1) Let f ∈ ker ℓ and J ⊂ [0, 1
3
) such that J , J + 1

3
and J + 2

3
are continuity intervals

of f then there exists σ = σf,J ∈ S3, the group of permutations of the set {0, 1, 2}
such that f(J + i

3
) = J + σ(i)

3
.

(2) Let f, h ∈ ker ℓ and J ⊂ [0, 1
3
) such that J , J+ 1

3
and J+ 2

3
are continuity intervals

of f and h then J , J + 1
3
and J + 2

3
are continuity intervals of fh and

σfh,J = σf,J ◦ σh,J
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Proof.

(1) Let f ∈ ker ℓ, since J ⊂ [0, 1
3
) is a continuity interval of f , the map pf is constant

on J equal to some p ∈ Z and f(J) = {x + p
3
, x ∈ J} = J + p

3
is contained in

[p
3
, p+1

3
) ∩ [0, 1). Therefore p ∈ {0, 1, 2} and f(J) is either J , J + 1

3
or J + 2

3
.

Analogously, for i = 1, 2, we get that f(J + i
3
) is either J , J + 1

3
or J + 2

3
. This

defines the required σ ∈ S3.

(2) Let f, h ∈ ker ℓ and J ⊂ [0, 1
3
) such that f and h are continuous on J , J+ 1

3
, J+ 2

3
.

For any i ∈ {0, 1, 2}, we have that h is continuous on J + i
3
and

fh(J +
i

3
) = f

(
J +

σh,J(i)

3

)
= J +

σf,J (σh,J(i))

3

since f is continuous on the intervals J + j
3
. □

Proof of Proposition 7.1.

By Item (1) of Corollary 3, the group G is not virtually polycyclic.

We claim that all maps in [G,G] \ {Id} commute and have order 3.

Indeed, let C = [f, h] ∈ [G,G] \ {Id} be a non trivial commutator. By
Lemma 7.4 (3), we can suppose that f, h ∈ ker ℓ. Let us decompose [0, 1)
as a union of triples of intervals J , J + 1

3
, J + 2

3
with J ⊂ [0, 1

3
) such that

f, h, f−1, h−1 are continuous on J , J + 1
3
, J + 2

3
.

Let J be such an interval, it follows from Item (2) of Lemma 7.5 that

σ[f,h],J = [σf,J , σh,J ] ∈ [S3,S3] = A3

Noting that the non trivial elements of A3 are 3-cycles, we get that σ[f,h],J

is either trivial or has order 3 and the same holds for C|J by its continuity.
As C ̸= Id, there is some J such that C|J ̸= Id and then C has order 3.
As A3 is abelian, two commutators in [G,G] have commuting associate

permutations on their common continuity intervals, so they commute.
Finally, we get the claim since [G,G] is generated by the commutators

and the product of two elements of order 3 that commute is either of order
3 or trivial.

In addition, [G,G] is not finitely generated. This is due to the fact that any finitely
generated abelian torsion group has to be finite but the [G,G]-elements [Rn

α, g], n ∈ Z
are pairwise distinct, since the proof of Item (5) of Lemma 7.3 indicates that they have
pairwise distinct break point sets.

7.4. Non virtually solvable examples.
Let n ∈ N∗, n ≥ 5, we make the alternating group An act on [0, 1) as a subgroup

of Gn so that the IET associated to a ∈ An, ta, sends the interval Jp = [p−1
n
, p
n
) to

Ja(p) = [a(p)−1
n

, a(p)
n
) and has a trivial rotation vector. In particular, for any x ∈ [0, 1) there

exists an integer pa(x) such that ta(x) = x+ pa(x)
n

. Let G be the subgroup of G generated

by An and Rα, α ∈ [0, 1
n
) \Q.

Note that any f ∈ G can be written as

f = Rps
α asR

ps−1
α as−1 · · ·Rp1

α a1R
p0
α , where aj ∈ An and pj ∈ Z.
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Proposition 7.6. The group G is elementary amenable, non virtually solvable and its
commutator subgroup [G,G] is a locally finite torsion group 3, moreover [G,G] is perfect
but it is not simple.

This proposition will be proved after Lemma 7.13.

Lemma 7.7. Let f ∈ G. Then there exists a unique ℓ(f) ∈ Z such that for all x ∈ [0, 1)
one has

f(x) = x+ ℓ(f)α +
pf (x)

n
, where pf (x) ∈ Z.

Proof. As in Lemma 7.2, we argue by induction on the length LS(f) of f ∈ G as a word
in S = {An, Rα}. The change being in the case f = gf0 of the induction step. Here, we

have f = af0 with a ∈ An and the involved translation ϵ2
3
is replaced by pa(x)

n
. □

Lemma 7.8.

(1) The map ℓ : G → Z is a morphism.

(2) Any f ∈ G can be written as f = PfR
ℓ(f)
α = R

ℓ(f)
α Qf where Pf , Qf ∈ ker ℓ.

The proof is analogous to that of Lemma 7.4.

Lemma 7.9.

(1) The group ker ℓ is generated by {Rk
αaR

−k
α , k ∈ Z, a ∈ An}.

(2) The group ker ℓ is perfect and [G,G] = ker ℓ.

(3) The ker ℓ-orbit of x ∈ [0, p
n
) is {x+

p

n
, p = 0, · · · , n− 1} and ker ℓ = Gper.

Proof.

(1) We previously noted that any f ∈ G can be written as

f = Rps
α asR

ps−1
α as−1 · · ·Rp1

α a1R
p0
α , where pj ∈ Z,

and as in the proof of Lemma 7.4 we get:

f = Rps
α asR

−ps
α Rps+ps−1

α as−1R
−(ps+ps−1)
α · · · Rps+ps−1+···p1

α a1R
−(ps+ps−1+···p1)
α R

∑s
j=0 pj

α

Moreover, as ℓ is a morphism f ∈ ker ℓ if and only if
∑s

j=0 pj = 0, thus any

f ∈ ker ℓ is the product of elements of the form Rk
αaR

−k
α .

(2) Let f ∈ ker ℓ, by the previous point, f can be written as

f =
∏
j

Rnj
α ajR

−nj
α where nj ∈ Z and aj ∈ An

AsAn is perfect andAn < ker ℓ, any aj belongs to [ker ℓ, ker ℓ]. Finally, [ker ℓ, ker ℓ]

being normal in G, any R
nj
α ajR

−nj
α belongs to [ker ℓ, ker ℓ] and then f belongs to

[ker ℓ, ker ℓ], which establishes that ker ℓ is perfect.
In addition, as ℓ is a morphism to an abelian group, [G,G] < ker ℓ and the other

inclusion holds since ker ℓ is perfect.

3i.e its finitely generated subgroups are finite
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(3) Let x ∈ [0, p
n
) and f ∈ ker ℓ. Lemma 7.7 gives f(x) = x+

pf (x)

n
for some pf (x) ∈ Z

and f(x) ∈ [0, 1) forces pf (x) ∈ {0, 1, · · · , n − 1}. Moreover, by choosing a ∈
An with a(1) = p, we obtain ta(x) = x + p−1

n
. Therefore the An-orbit of x is{

x+
p

n
, p = 0, · · · , n − 1

}
. Finally, ker ℓ is contained in GQ so in Gper and the

other inclusion is a consequence of α /∈ Q. □

Definition 7.10. Let f ∈ ker ℓ, x ∈ [0, 1
n
) and β ∈ (0, 1

n
) such that f is continuous on

the intervals Jp(x, β) = [x+ p−1
n
, x+ p−1

n
+ β) for all p = 1, · · · , n.

As the translations of f belong to { p
n
, p ∈ Z}, the map f permutes the Jp(x, β) and

then there exists ω ∈ Sn such that

f(Jp(x, β)) = Jω(p)(x, β) = [x+
ω(p)− 1

n
, x+

ω(p)− 1

n
+ β)

It is easy to see that ω does not depend on the choice of suitable β and it is denoted by
ω(f, x) and called the local permutation of f at x.

Proposition 7.11. Let x ∈ [0, 1
n
).

The map ωx :

{
ker ℓ → Sn

f 7→ ω(f, x)
is a morphism and its image is An.

Proof. Let x ∈ [0, 1
n
), it is obvious that ω(Id, x) = Id. Let f, h ∈ ker ℓ and β ∈ (0, 1

n
)

small enough so that f and h are continuous on the intervals Jp(x, β). Hence, for any
p ∈ {1, · · · , n}, we have

h ◦ f(Jp(x, β)) = h
(
Jω(f,x)(p)(x, β)

)
= Jω(h,x)ω(f,x)(p)(x, β),

therefore ω(h ◦ f, x) = ω(h, x) ω(f, x).

Since ker ℓ is perfect the image of ωx is contained in [Sn,Sn] = An. In addition, it is
easy to check that the IET t associated to τ ∈ An satisfies ω(t, x) = τ and then we get
ωx(ker ℓ) = An. □

Proposition 7.12. For any β ∈ (0, 1
n
), the set Sβ of maps in ker ℓ having support in

n⋃
p=1

[p− 1

n
,
p− 1

n
+ β

)
is a normal subgroup of ker ℓ and its image by ω0 is An.

Proof. The normality of Sβ is direct consequence of the facts that the translation set
of ker ℓ is { p

n
, p ∈ Z ∩ [−(n − 1), n − 1]} and the support of h ◦ f ◦ h−1 is the image

by h of the support of f . Consequently, the image by ω0 of Sβ is a normal subgroup of
An which is simple, therefore ω0(Sβ) is either trivial or equal to An. Hence, the proof
of Proposition 7.12 reduces to prove that ω0(Sβ) is not trivial. This is provided, taking
β ∈ (0, 1

n
) ∩ { p

n
+ kα, p, k ∈ Z} so that Rβ ∈ G, by the following

Lemma 7.13. Let β ∈ (0, 1
n
), τ ∈ An and t ∈ ker ℓ be its associated IET.

Then the map Cβ,t = [Rβ, t] = RβtR−βt
−1 has support in

n⋃
p=1

[p− 1

n
,
p− 1

n
+β

)
and its

local permutation at 0 is ω(Cβ,t, 0) = [σ, τ ], where σ is the n-cycle (1, 2, · · · , n) ∈ Sn.
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Proof. We explicitely compute the map Cβ,t = [Rβ, t] = RβtR−βt
−1. We first note that

the break point set of Cβ,t is contained in {p−1
n
, p−1

n
+ β; p ∈ {1, ..., n}} and we have[p − 1

n
,
p − 1

n
+ β

) t−1

−→
[τ−1(p)− 1

n
,
τ−1(p)− 1

n
+β

) R−β−→
[τ−1(p)− 1

n
−β,

τ−1(p)− 1

n

)
t−→

[τ(τ−1(p)− 1)

n
− β,

τ(τ−1(p)− 1)

n

) Rβ−→
[τ (τ−1(p) − 1)

n
,
τ (τ−1(p) − 1)

n
+ β

)
and[p − 1

n
+ β,

p

n

) t−1

−→
[τ−1(p)− 1

n
+ β,

τ−1(p)

n

) R−β−→
[τ−1(p)− 1

n
,
τ−1(p)

n
− β

)
t−→

[p− 1

n
,
p

n
− β

) Rβ−→
[p − 1

n
+ β,

p

n

)
This proves that Cβ,t has support in

n⋃
p=1

[p− 1

n
,
p− 1

n
+ β

)
. In addition, its local permu-

tation at 0 is given by ω(p)− 1 = τ(τ−1(p)− 1) that is

ω(p) = τ(τ−1(p)− 1) + 1 = στσ−1τ−1 = [σ, τ ]. □

Note that, if τ /∈ C(σ) then Rβ and t are not commuting and Cβ,t is not trivial.

Proof of Proposition 7.6. We first prove the properties related to [G,G]. Lemma 7.9
implies that [G,G] = ker ℓ is a perfect torsion group and, by Proposition 7.12, it is not
simple because of its non trivial normal subgroups Sβ.

We claim that the finitely generated subgroups of [G,G] = ker ℓ are finite.

Indeed, let H = ⟨mi⟩ < ker ℓ be a finitely generated subgroup of ker ℓ. By
Properties 3.2, the set BP(H) is contained in the H-orbit of the finite set
∪BP(mi) so it is finite since all ker ℓ-orbits are finite.

The group G is elementary amenable since G/[G,G] ≃ Z is abelian and [G,G] = ker ℓ is
the direct union of its finitely generated subgroups that are finite.

By Item (1) of Corollary 3, G is not virtually polycyclic. Moreover, we are going to
prove that no finite index subgroup of ker ℓ is solvable. Indeed, let R be a finite index
subgroup of ker ℓ. Since a subgroup of finite index always contains a normal subgroup
also of finite index, we may suppose that R is normal in G. Therefore for any x ∈ [0, 1

n
),

the group ωx(R) is either trivial or equal to An. As ker ℓ is infinite, R is not trivial and
so there exists x ∈ [0, 1

n
) such that ωx(R) is not trivial and then equal to An.

Finally, since An is simple, ωx maps any iterated commutators subgroup of R surjec-
tively to An. In particular, R is not solvable and therefore ker ℓ and then G are not
virtually solvable.

Remark 7.14. Due to the SAF-invariant (see [Bos16]), the groups constructed in Sec-
tions 7.3 and 7.4, with rationally independent α are not conjugated in G.

Moreover, similar arguments show that Proposition 7.6 holds for the groups generated
by Rα1 , ..., Rαm and An for n ≥ 5. In particular, these groups are not linear since by
Schur Theorem ([Sch11]) any linear torsion group is virtually abelian.
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