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Abstract

The Poisson-Nernst Planck (PNP) system of equations is widely recognized as the
standard model for characterizing the electrodiffusion of ions in electrolytes, including
ionic dynamics in the cellular cytosol. This non-linear system presents challenges for both
modeling and simulations, due to the presence of a stiff boundary layer tightly related
to the choice of boundary conditions. In this article, we propose a numerical scheme
based on the Discrete Duality Finite Volumes method (DDFV) to solve the PNP system
of equations, while preserving the positivity of ionic concentrations. The DDFV method
presents the main characteristics of modern numerical methods, allowing for the use of
unstructured meshes in complex geometries and giving robust and precise approximate
solutions. It is particularly attractive for the PNP equations on neuronal geometries,
because of its local conservation property, and robustness with respect to mesh distortion.
Through several simulations, we illustrate the accuracy of our scheme, achieving second-
order accuracy in space. Furthermore, using a specific test case, we show that our method
can resolve steep gradients. Finally, we apply our scheme to investigate the propagation
and attenuation of an ionic influx in small neuronal compartments of the dendritic tree:
a branch bifurcation and a dendritic spine - the mushroom-like protrusion that receive
neuronal inputs. Considering the connection of our neuronal compartments to an ionic
reservoir, which could be the dendritic shaft, we observe that the distance to the closest
ionic reservoir deeply influences signal propagation. In particular, a spine close to a
reservoir acts as an isolated compartment, whereas a spine located farther away is subject
to signal invasion. Hence, our numerical results suggest that the local geometry of the
dendritic tree has a major influence on spine behavior, which would make plasticity not
only at the level of the spine but also at the level of the full dendritic tree.

Keywords: Poisson-Nernst Planck, Discrete Duality Finite Volumes, Dendritic integration,
Neuronal plasticity.
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1 Introduction

The Poisson-Nernst Planck (PNP) system of equations is a well-established framework for de-
scribing the movement of ions and the variations of the electric field in an electrolyte [Kirby,
2010]. It is employed in various fields such as semiconductor devices [Jüngel, 2001], elec-
trophoresis models [Khair and Squires, 2009], or biological systems [Bazant et al., 2004, Eisen-
berg and Liu, 2007]. Solving the PNP system analytically and numerically is challenging due
to the nonlinear coupling between the electrostatic potential and the concentrations of ionic
species. Also, the system can present, depending on the domain and boundary conditions, a
stiff boundary layer. A standard example is a binary electrolyte between parallel-plate elec-
trodes, a system showing a boundary layer near the electrodes, characterized by significant
ionic concentration gradients [Bazant et al., 2004].

In neuroscience, it is rather recent that models using the PNP system of equations are
developed. They follow the latest innovations in experimental techniques now reaching the
nano-scale, which create the need for modeling at the same precision [Savtchenko et al., 2017,
Holcman and Yuste, 2015]. Indeed, the classical model describing voltage propagation in neu-
rons is the Cable theory, a one-dimensional macroscopic model that makes an analogy between
the neuron and a wire, assuming voltage propagates as in an RC electrical circuit [Koch, 1984].
In particular, this model neglects the variations of ionic concentrations within the neuronal
cytoplasm. Such an assumption is valid while considering large axons, but is not relevant in
smaller neuronal structures [Savtchenko et al., 2017], where we expect the influence of the ionic
dynamics on the electric field to be important. In contrast to this one-dimensional approach,
the PNP system of equations describes the dynamics of ionic charges due to both diffusion
and electric field and is highly suitable to capture such dynamics in small neuronal compart-
ments. Computational models of ionic electrodiffusion in neurons usually combine the PNP
equations and Hodgkin-Huxley formalism that represent voltage-gated ionic channels [Hodgkin
and Huxley, 1952]. For example, [Lopreore et al., 2008] introduced such a model, to simulate
the electrodiffusion of ions within a node of Ranvier during an action potential. The numerical
study focused on an axon model with a diameter of 15 µm, utilizing classical finite volume
techniques with Delaunay-Voronoi dual meshes. The authors compared their simulations with
a one-dimensional model based on the Cable equations coupled to Hodgkin-Huxley dynamics.
Their simulation results showed remarkable similarities between the two models, emphasiz-
ing that action potential dynamics in axons are well described by a one-dimensional Cable
model. [Pods et al., 2013] extended this exploration by focusing on studying the boundary
layer (BL) formed near the membrane of neuronal axons. This two-dimensional investigation
explicitly addressed BL phenomena using finite element methods, with the Hodgkin-Huxley
model applied as a Neumann boundary condition on the membrane. They observed that the
dynamics are very similar to the Cable model, except for some deviations close to the mem-
brane, most probably caused by the influence of the intracellular potential on the extracellular
space. These works focused on action potential dynamics in axons but did not address the case
of low amplitude ionic influx in smaller neuronal compartments such as dendrites or dendritic
spines. As experimental investigations of voltage and ionic dynamics in these small neuronal
compartments remain challenging, mainly because of their microscopic scale, it is crucial to
develop models dedicated to their specific dynamics, which is the aim of the present paper.

Many numerical methods have been developed to simulate the PNP equations in the past
decades, focusing on various properties and applications: [Bessemoulin-Chatard et al., 2022,
Cao and Huang, 2019, Liu et al., 2021, Mathur and Murthy, 2009, Mirzadeh and Gibou, 2014,
Moatti, 2023, Shen et al., 2020, Song et al., 2018, Su and Tang, 2022, Zheng et al., 2011]. For
our specific problem of voltage and concentration dynamics in neurons, we develop in this study
a finite volume approach to solve the PNP system of equations, using the Discrete-Duality
Finite Volume (DDFV) framework, and preserving the positivity of ionic concentrations. The
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DDFV method, introduced by [Hermeline, 2000] and [Domelevo and Omnes, 2005], enables
the study of the Laplace equation on various 2D meshes, accommodating nonconformal and
deformed meshes. Indeed, DDFV schemes double the discrete unknowns, setting unknowns at
both the vertices and the centers of the initial mesh. This set of unknowns allows for the defi-
nition of a full discrete gradient on a new mesh called the diamond mesh. Hence, the method
can be used on general meshes that do not necessarily satisfy classical orthogonality conditions.
The DDFV methods construct two discrete operators, the gradient and the divergence, that
are in duality in a discrete sense as in the continuous setting [Andreianov et al., 2007]. Several
studies have demonstrated the numerical advantages of DDFV methods for PDEs, and these
methods have been developed for a large number of models. The DDFV method is particu-
larly attractive for numerically solving the PNP equations on a complex geometry, because
of its local conservation property, and robustness with respect to mesh distortion. A telling
example concerns a DDFV scheme discretizing the Peaceman model - that describes miscible
displacement in porous media - on which a convergence result is proved [Chainais-Hillairet
et al., 2015]. Numerical analysis of systems similar to PNP in the field of semiconductors was
carried out by the authors [Bessemoulin-Chatard et al., 2022]. Then, a positivity-preserving
scheme was introduced in [Cancès et al., 2018], to investigate the existence and large-time
behavior of solutions in Fokker-Planck equations. Positivity was ensured by using a non-linear
reformulation of the equation.

In this paper, we numerically solve the PNP system of equations using a DDFV approach,
with a scheme preserving the positivity of ionic concentrations, and a high level of mesh
refinement at the boundary layer when necessary. We challenge the accuracy of our DDFV
scheme through several test cases and obtain numerically a second-order accuracy in space.
We investigate the convergence and robustness of our method by comparing our results with a
test case proposed in [Liu et al., 2021] with a 2D finite difference scheme. We then compare our
results with the 1D finite difference scheme of [Song et al., 2018] in the case of the presence of a
boundary layer. Finally, we study voltage and ionic concentration dynamics within dendrites
and dendritic spines. We first consider the propagation of an influx of ions at a dendritic
bifurcation. We determine the distance between the bifurcation and an ionic reservoir such
that the latter has a small influence on the dynamics, which is around 20 microns for our
geometry. We then show that two signals arriving simultaneously at the bifurcation sum
linearly. In a second time, we consider dendritic spines and investigate the influence of spine
geometry on voltage and ionic concentration dynamics. We observe that if a 1D approximation
for both voltage and concentration is relevant in the neck, the dynamics in the head require
at least a 2D approach. We finally investigate the influence of two neighboring spines on each
other, when an influx of ions arrives in one spine. We observe that depending on the distance
to an ionic reservoir, a dendritic spine can either act as an autonomous compartment or be
subject to signal invasion from the neighboring spine.

The paper is organized as follows: Section 2 presents the formulation for the PNP system
of equations in the case of two ion species. Section 3 provides a detailed description of the
numerical scheme. Section 4 presents the numerical simulations and convergence results.
Section 5 focuses on applications in neuroscience. Finally, the discussion and conclusion are
presented in the last section.

2 Presentation of the Poisson-Nernst Planck system of equa-
tions

In this section, we present the PNP system of equations, which describes the movement of ions
in an electrolyte. The Nernst Planck equation links the distribution of the ionic concentrations
ci of species i to the electric potential V through the ion conservation equation, using a drift-
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diffusion flux Ji. Ji divides into a diffusion term that models the Brownian motion of ions
according to Fick’s law, as well as a convective term that describes the ion transport resulting
from the electric field. This set of equations is then combined with the Poisson equations for
voltage dynamics, creating the PNP system of equations. It is worth noting that the PNP
system consists of a combination of parabolic and elliptic equations.
We consider in this paper the case of two ionic species P and N , with respective valences +1
and −1, and concentration cP and cN - our method can be extended to any number of ions
without difficulties.
Let Ω ⊂ R2 be a connected open bounded domain and Tf > 0 a finite time. The PNP system
of equations on Ω× [0, Tf ] writes as:

∂tcP = −∇ · JcP + fcP ,

∂tcN = −∇ · JcN + fcN ,

−∇ · (εε0∇V ) = F (cP − cN ) + fV ,

(1)

with:
JcP = −DP∇cP − FDP

RTθ
cP∇V,

JcN = −DN∇cN +
FDN

RTθ
cN∇V.

(2)

In system (1), the first (resp. second) equation represents the dynamics of species P (resp.
N), with drift-diffusion flux JcP (resp. JcN ) and source term fcP (resp. fcN ). The third equa-
tion corresponds to the Poisson equation, where ε0 is the vacuum permittivity, ε the relative
permittivity of the solution, and fV a source term. Eqs. (2) describe the drift-diffusion fluxes,
with DP > 0 (resp. DN >0) the diffusion coefficient of species P (resp. species N), R the gas
constant, Tθ the absolute temperature, and F the Faraday constant. In the rest of the paper,
we will consider that the source terms fcP , fcN , fV are in L2(Ω× Tf ).

We define:
γ =

ϵϵ0RTθ

F 2
, β =

F

RTθ
, (3)

such that the system rewrites:

∂tcP = −∇ · (DP (∇cP + cPβ∇V )) + fcP ,

∂tcN = −∇ · (DN (∇cN − cNβ∇V )) + fcN ,

−∇ · (γβ∇V ) = cP − cN + fV .

(4)

We use a positivity-preserving DDFV scheme as presented in [Cancès et al., 2018] to ensure
the positivity of ionic concentrations. The method is based on the reformulation of the fluxes
JcP and JcN :

JcP = −DP cP∇ (log cP + βV ) ,

JcN = −DNcN∇ (log cN − βV ) .
(5)
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Finally, the system (1), defined on Ω× [0, Tf ], rewrites:

∂tcP = ∇ · (DP cP∇ (log cP + βV )) + fcP ,

∂tcN = ∇ · (DNcN∇ (log cN − βV )) + fcN ,

−∇ · (γβ∇V ) = cP − cN + fV .

(6)

2.1 Initial conditions and boundary values

The initial conditions of the PNP system (6), defined on Ω, are:

cP (t = 0,x) = c0P (x), cN (t = 0,x) = c0N (x), V (t = 0,x) = V 0(x) ∀x ∈ Ω, (7)

with c0P , c
0
N , V 0 ∈ L2(Ω).

We decompose the domain boundaries as ∂Ω = ΓDir∪ΓNeu, where ΓDir and ΓNeu represent
respectively the subsets of the boundary corresponding to Dirichlet and Neumann conditions.
The Dirichlet boundary conditions write as:

cP = cDir
P , cN = cDir

N , V = V Dir, (8)

with cDir
P , cDir

N , V Dir ∈ L2(ΓDir × [0, Tf ]).

Neumann boundary conditions write as:

JcP · n = g, JcN · n = h, ∇V · n = 0, (9)

where n is the unit outward normal to Ω, and g, h ∈ L2(ΓNeu × [0, Tf ]).

3 Presentation of the scheme

3.1 Meshes and notations

In this section, we present the DDFV scheme and introduce three distinct meshes: the primal
mesh, the dual mesh, and the diamond mesh (see Figure 1 and 2). The primal mesh, denoted
as M = M ∪ ∂M, is composed of the interior primal mesh M and the boundary primal mesh
∂M. The interior primal mesh M is a partition of Ω with polygonal cells. The boundary
primal mesh ∂M is the set of boundary edges of M. Note that these cells are treated as
degenerate cells.
For each element K ∈ M, we denote xK as the center of the cell K. The set of vertices of
the primal mesh is denoted as X∗. We differentiate between interior vertices and boundary
vertices: for a given xK∗ ∈ X∗ such that xK∗ is not on the boundary ∂Ω, we define a dual cell
K∗ by connecting the centers of all K that share xK∗ as a vertex. This set of polygons K∗

forms the interior dual mesh M∗.
For each xK∗ ∈ X∗ ∩ ∂Ω, i.e. xK∗ is on the boundary, we construct a dual cell K∗ by joining
xK∗ and the xK where K ∈ M∪ ∂M, that share xK∗ as a vertex. This set of polygons defines
the boundary dual mesh ∂M∗. We denote the dual mesh as M∗ = M∗∪∂M∗. Fig. 1 illustrates
two examples of a primal and a dual mesh. The measure of cell K (resp. K∗) is denoted as
|K| (resp. |K∗|).

For two neighboring primal cells, K and L, we consider the intersection of their boundaries,
denoted as ∂K ∩ ∂L, which corresponds to a line segment and is referred to as an edge of the
mesh M. We denote this edge as σ = K|L. The set of edges that lie within the interior of
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Figure 1: Left: Example of a primal mesh (grey). Black dots are the centers of each primal
cell K, denoted by xK . One cell is colored in light grey. Right: the corresponding dual mesh
(blue). Blue dots are the centers of each dual cell K∗ (resp. L∗) which are denoted by xK∗

(resp. xL∗). An example of a dual cell is colored in light blue.

the domain is denoted as Eint. The set of primal edges on the boundary is denoted Eext. The
total set of primal edges is E = Eint ∪ Eext. Similarly, the set of edges in the interior of the
dual mesh is denoted as E∗

int, the set of edges on the boundary of the dual mesh is E∗
ext, and

we define E∗ = E∗
int ∪ E∗

ext, the total set of dual edges. For each pair (σ, σ∗) ∈ E × E∗, where
σ = (xK∗ , xL∗) and σ∗ = (xK , xL), we define a quadrilateral diamond cell, denoted as D, with
σ and σ∗ as its diagonals. In the case where σ is a boundary edge, the diamond D degenerates
into a triangle. The entire set of diamond cells forms the diamond mesh, denoted as D, which
can be expressed as D = Dext ∪ Dint. Here, Dext represents the set of boundary diamonds,
where σ ⊂ ∂Ω, and Dint represents the set of interior diamonds, where σ ̸⊂ ∂Ω.

• •

••
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•

•
•

•

• • •

•
•

•
•

•• •

xK

xL

xK∗

xL∗
•

•

•

•
xL∗

xK∗

xL

xK

τK∗,L∗

σ nσK

σ∗
τK,L

nσ∗K∗

Figure 2: Left: Diamond mesh D (green). One cell is colored in light green. Right: A diamond
D (green) with direct basis (τK∗,L∗ ,nσK) and (nσ∗K∗ , τK,L). σ (resp. σ∗) is the primal (resp.
dual) edge.

In summary, the DDFV mesh T consists in the union of the primal mesh M and the
dual mesh M∗, along with the diamond mesh D (Fig. 1). For a diamond D with vertices
(xK∗ , xL, xL∗ , xK), we define xD as its center, |D| as its measure, |σ| as the length of the primal
edge σ, |σ∗| as the length of the dual edge σ∗, and αD as the angle between the vectors (xL, xK)
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and (xL∗ , xK∗). Additionally, we define two mutually orthogonal basis vectors, (τK∗,L∗ ,nσK),
and (nσ∗K∗ , τK,L), where nσK is the unit vector normal to σ oriented from K to L, nσ∗K∗ is
the unit vector normal to σ∗ oriented from K∗ to L∗, τK∗,L∗ is the unit tangent vector to σ
oriented from xK∗ to xL∗ , and τK,L is the unit tangent vector to σ∗ oriented from xK to xL

(Fig. 2). It is worth noting that the area of a diamond cell D is given by |D| = 1

2
|σ||σ∗| sin(αD).

Furthermore, we define two subsets for the diamond cells as follows:

DK = {D ∈ D, σ ∈ EK}, DK∗ = {D ∈ D, σ∗ ∈ EK∗}.

where:
- EK is the set of edges of K ∈ M ∪ ∂M. Note that for all K ∈ ∂M, EK is reduced to one
edge, i.e. σ = K.
- EK∗ is the set of edges of K∗ ∈ M∗ ∪ ∂M∗.

We consider mixed boundary conditions, and thus define four subsets of the boundary
mesh. The boundary primal and dual meshes for the Dirichlet boundary condition are:

∂MDir = {K ∈ ∂M : xK ∈ ΓDir}, ∂M∗
Dir = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓDir}.

The boundary dual mesh for the Neumann boundary condition is:

∂M∗
Neu = {K∗ ∈ ∂M∗ : xK∗ ∈ ΓNeu\ΓDir}.

Finally, the boundary diamond mesh for the Neumann boundary condition is:

Dext,Neu = {D ∈ Dext : σ ∈ D ∩ ΓNeu}.

Note that per definition, there is a one-to-one relationship between the edges of primal cells
and diamonds, and between the edges of dual cells and diamonds.
We finally denote Z∗

S the set of dual cells on a segment S defined as:

Z∗
S = {K∗ ∈ M∗, such that K∗ ∩ S ̸= ∅} (10)

and K∗
X the unique dual cell containing a point X:

K∗
X = {K∗ ∈ M∗, such that K∗ ∩X ̸= ∅} (11)

3.2 Discrete unknowns and operators

The DDFV method enables the construction of two-dimensional discrete gradient and diver-
gence operators that exhibit duality in a discrete sense. A description of the duality framework
can be found in [Domelevo and Omnes, 2005] and [Andreianov et al., 2007]. In this subsection,
we introduce the discrete unknowns, the discrete gradient and divergence operators, as well
as the reconstruction operator, that maps the unknowns on the primal and dual meshes on
the diamond mesh. We first describe the sets of discrete unknowns. We define RT the linear
space of scalar fields that are constant over the cells of M and M∗:

uT ∈ RT ⇐⇒ uT =
(
(uK)K∈M, (uK

∗
)K∗∈M∗

)
.

We set
(
R2
)D the linear space of vector fields constant on the diamonds:

ξD ∈
(
R2
)D ⇐⇒ ξD =

(
ξD
)
D∈D .

We also denote RD as the set of scalar fields that are constant over the diamonds. The discrete
gradient operator is defined as a mapping from RT to

(
R2
)D, denoted by ∇DuT = (∇DuT )D∈D

for all uT ∈ RT . For each diamond D ∈ D:
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∇DuT =
1

2|D| [|σ|(u
L − uK)nσK + |σ∗|(uL∗ − uK

∗
)nσ∗K∗ ]. (12)

The discrete divergence operator is a mapping from
(
R2
)D to RT given by, for all ξD ∈(

R2
)D:

divT ξD =
(
divMξD,div∂MξD, divM

∗
ξD,div∂M

∗
ξD
)
. (13)

The divergence on the primal mesh is divMξD = (divKξD)K∈M and div∂MξD = 0, with:

divKξD =
1

|K|
∑

D∈DK

|σ|ξD · nσK , ∀K ∈ M.

The divergence on the dual mesh is as well divM
∗
ξD = (divK

∗
ξD)K∗∈M∗ and div∂M

∗
ξD =

(divK
∗
ξD)K∗∈∂M∗ with:

divK
∗
ξD =

1

|K∗|
∑

D∈DK∗

|σ∗|ξD · nσ∗K∗ , ∀K∗ ∈ M∗,

divK
∗
ξD =

1

|K∗|

 ∑
D∈DK∗

|σ∗|ξD · nσ∗K∗ +
∑

D∈DK∗∩Dext

|σ|
2
ξD · nσK

 , ∀K∗ ∈ ∂M∗.

We introduce rD, a reconstruction operator on diamonds that maps RT to RD. For any
uT ∈ RT , rD[uT ] is defined as (rD(uT ))D∈D, where D ∈ D and its vertices are denoted as
(xK , xK∗ , xL, xL∗):

rD(uT ) =
1

4

(
uK + uL + uK

∗
+ uL

∗
)
. (14)

3.3 Discrete notations

Let N be a positive integer. We denote dt = Tf/N and tn = n × dt for n ∈ 0, ..., N . We
define the discrete space RT ,dt :=

(
RT )N+1 and its associated discrete vector uT ,dt ∈ RT ,dt.

Furthermore, for n ∈ N and a given function u, we define the discrete projection PT ,n
m u =

(PM,n
m u,PM∗,n

m u,P∂Ω,n
m u) as follows:

PM,n
m u =

(
1

|K|

∫
K
u(tn,x)dx

)
K∈M

, PM∗,n
m u =

(
1

|K∗|

∫
K∗

u(tn,x)dx

)
K∗∈M∗

,

P∂Ω,n
m u =

((
1

|K|

∫
K
u(tn,x)dx

)
K∈∂M

,

(
1

|K∗|

∫
K∗

u(tn,x)dx
)

K∗∈∂M∗

)
.

Also, we give Dirichlet discrete projections:

P∂MDir,n
m u =

(
1

|K|

∫
K
u(tn,x)dx

)
K∈∂MDir

, P∂M∗
Dir,n

m u =

(
1

|K∗|

∫
K∗

u(tn,x)dx
)

K∗∈∂M∗
Dir

.
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Finally, we define PT ,dt
m , P∂MDir,dt

m and P∂M∗
Dir,dt

m such that:

PT ,dt
m u := (PT ,n

m u)n∈{0,...,N} ,

P∂MDir,dt
m u :=

(
P∂MDir,n
m u

)
n∈{0,...,N} , P∂M∗

Dir,dt

m u :=
(
P∂M∗

Dir,n

m u
)
n∈{0,...,N}

.

3.4 DDFV scheme for the PNP system

In this section, we present the DDFV scheme. We first discretize the source terms:

fT ,dt
cP

= PT ,dt
m fcP , fT ,dt

cN
= PT ,dt

m fcN , fT ,dt

V = PT ,dt
m fV ,

and the initial conditions:

cT ,0

P = PT ,0
m c0P , cT ,0

N = PT ,0
m c0N , V T ,0 = PT ,0

m V 0.

Next, we define the discretization for the Dirichlet boundary condition functions:

c
∂MDir,dt

P,Dir = P∂MDir,dt
m cDir

P , c
∂MDir,dt

N,Dir = P∂MDir,dt
m cDir

N , V
∂MDir,dt

Dir = P∂MDir,dt
m V Dir,

c
∂M∗

Dir,dt

P,Dir = P∂M∗
Dir,dt

m cDir
P , c

∂M∗
Dir,dt

N,Dir = P∂M∗
Dir,dt

m cDir
N , V

∂M∗
Dir,dt

Dir = P∂M∗
Dir,dt

m V Dir.

The same way, we define the discretization of the Neumann boundary condition functions g:

gDext,dt
Neu =

(
(gσ,n)σ∈Dext,Neu

)
n∈{0,...,N}

with gσ,n =

∫
σ
g(tn,x)dx.

We now present the numerical scheme for the PNP system (6)-(9). In order to ensure
stability, we adopt an implicit Euler scheme for time discretization. At each time step, we em-
ploy the Newton method to solve the nonlinear system of equations. By integrating equations
(6)-(9) over M and M∗ ∪ ∂M∗

Neu, we find the solutions (cT ,dt

P , cT ,dt

N , V T ,dt) ∈ RT ,dt that satisfy
the following nonlinear problem for all n ≥ 0:
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cK,n+1

P − cK,n

P

dt
+ divK

(
JD,n+1
cP

)
= fK,n+1

cP
, ∀K ∈ M, (15)

cK
∗,n+1

P − cK
∗,n

P

dt
+ divK

∗
(
JD,n+1
cP

)
= fK∗,n+1

cP
, ∀K∗ ∈ M∗ ∪ ∂M∗

Neu, (16)

cK,n+1

N − cK,n

N

dt
+ divK

(
JD,n+1
cN

)
= fK,n+1

cN
, ∀K ∈ M, (17)

cK
∗,n+1

N − cK
∗,n

N

dt
+ divK

∗
(
JD,n+1
cN

)
= fK∗,n+1

cN
, ∀K∗ ∈ M∗ ∪ ∂M∗

Neu, (18)

− divK(γβ∇DV K,n+1) + cK,n+1

N − cK,n+1

P = fK,n+1

V , ∀K ∈ M, (19)

− divK
∗
(γβ∇DV K∗,n+1) + cK

∗,n+1

N − cK
∗,n+1

P = fK∗,n+1

V , ∀K∗ ∈ M∗ ∪ ∂M∗
Neu, (20)

JD,n+1
cP

= −DP r
D(cT ,n+1

P )∇D
(
log cT ,n+1

P + βV T ,n+1
)
, (21)

JD,n+1
cN

= −DNrD(cT ,n+1

N )∇D
(
log cT ,n+1

N − βV T ,n+1
)
. (22)

The discrete mixed boundary conditions can be expressed as:

V K,n+1 = V K,n+1

Dir , cK,n+1

P = cK,n+1

P,Dir , cK,n+1

N = cK,n+1

N,Dir, ∀K ∈ ∂MDir

(23)

V K∗,n+1 = V K∗,n+1

Dir , cK
∗,n+1

P = cK
∗,n+1

P,Dir , cK
∗,n+1

N = cK
∗,n+1

N,Dir , ∀K∗ ∈ ∂M∗
Dir

(24)

|σ|∇DV T ,n+1 · nσK = 0, |σ|JD,n+1
cP

· nσK = gσ,n+1, |σ|JD,n+1
cN

· nσK = 0, ∀D ∈ Dext,Neu.
(25)

The existence of the discrete solution of (15)-(25) is an oncoming work, that is not the
focus of the current paper. It requires a paper in itself, dedicated to the study of existence,
positivity of solution and convergence, that will be inspired by [Moatti, 2023].

4 Performance of the DDFV scheme

In this section, we present numerical simulations to test the performance of our DDFV scheme
(15)-(25). In subsection 4.1, we evaluate the accuracy of the DDFV scheme by considering
two test cases with known exact solutions of the PNP system (6)-(9). In the first test case, we
compare our numerical results with an analytical solution of the PNP equations. In the second
one, we compare our numerical results with existing analytical and numerical results coming
from [Liu et al., 2021]. In subsection 4.2, we show the numerical behavior of our DDFV results
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in the presence of boundary layer, using a test case inspired by the one-dimensional one in
[Song et al., 2018]. The coefficients β, DP and DN are set to 1 in all the section.

4.1 Convergence results

To evaluate the accuracy of our DDFV scheme (15)-(25), we compare it with exact solutions
at various mesh resolutions, using the discrete norm L∞((0, Tf );L

2(Ω)), ∀uT ,dt ∈ RT ,dt:

∥uT ,dt∥T ,∞ = max
n∈{0,...,N}

1

2

∑
K∈M

|K||uK,n|2 + 1

2

∑
K∗∈M∗

|K∗||uK∗,n|2

1

2
.

The computational domain Ω is set to ]0, 1[2 and the final time Tf = 1. We consider only
Dirichlet boundary conditions on ∂Ω, i.e., ΓNeu = ∅, and we set γ = 1. For the first test case,
we consider cP,ex, cN,ex and Vex, the exact solution of (15)-(25), defined as follows:

cP,ex(t, x, y) = 7x+ 5 + 3t2,

cN,ex(t, x, y) = x+ 1 + t2,

Vex(t, x, y) = −x3 − 2y2 − t2x2.

(26)

with boundary conditions, initial conditions, and source terms being:
fcP (t, x, y) = 6t4 + (46x+ 22)t2 + 6t+ 63x2 + 58x+ 20,

fcN (t, x, y) = −2t4 + (−10x− 6)t2 + 2t− 9x2 − 10x− 4,

fV (t, x, y) = 0.

The projection on RT ,dt of these exact solutions, {cT ,dt

P,ex, c
T ,dt

N,ex, V
T ,dt
ex } are defined by:

cT ,dt

P,ex = PT ,dt
m cP,ex, cT ,dt

N,ex = PT ,dt
m cN,ex, V T ,dt

ex = PT ,dt
m Vex.

We simulate the system (15)-(25) on several increasingly refined meshes generated by the
quadrangle mesh family. One example mesh is depicted in Figure 3, with a mesh size h =
2.341×10−1. The respective mesh size h for each mesh ranges from 4.692×10−1 to 6.253×10−2.
The time step dt is initially set to 10−2 for the mesh with the largest h = 4.692 × 10−1. For
subsequent meshes, the time step is divided by 4. Recall that at each time step, we run a
Newton algorithm to solve our non-linear problem. This Newton algorithm converges, with on
average 2 to 1 iterations depending on the mesh refinement. The maximal number of iterations
for all the time steps over all the meshes is 3.

Figure 3: Example of a quadrangle mesh with h = 2.341× 10−1.
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h dt ecP Order ecN Order eV Order
4.692E−1 1.0E − 2 2.593E−3 · 1.443E−3 · 2.070E−2 ·
2.341E−1 2.5E − 3 8.109E−4 1.67 4.713E−4 1.61 5.137E−3 2.00
1.212E−1 6.25E − 4 2.066E−4 2.08 1.220E−4 2.05 1.312E−3 2.07
6.253E−2 1.56E − 4 4.897E−5 2.18 2.843E−5 2.20 3.182E−4 2.14

Table 1: The errors ecP , ecN and eV , as well as the convergence order for the first test case
(26) on the quadrangle mesh family.

To illustrate the convergence of our method, we define the error according to the norm
L∞((0, Tf );L

2(Ω)), between a numerical vector y and the corresponding exact solution yex:

ey = ∥yT ,dt − yT ,dt
ex ∥T ,∞. (27)

The errors ecP , ecN , and eV , for the different meshes, as well as the convergence order obtained
numerically are given in Table 1. For both the concentrations cP and cN and the electrostatic
potential V , we observe a convergence of order two.

We then investigate the convergence and robustness of our method by comparing our results
with a test case proposed in [Liu et al., 2021]. In this paper, the authors introduced a finite
difference scheme for approximating the PNP solutions in 2D while preserving the positivity
of the ionic concentrations. The computational domain Ω is set to ] − 1, 1[2, the final time
Tf = 0.1 and γ = 1. The boundary conditions are all Dirichlet (i.e., ΓNeu = ∅). The exact
solutions of the second test case are defined as follows:

cP,ex(t, x, y) = e−t cos(2πx) sin(2πy) + 2,

cN,ex(t, x, y) = e−t sin(2πx) cos(2πy) + 2,

Vex(t, x, y) = e−t sin(2πx) sin(2πy).

(28)

The boundary and the initial conditions, as well as the source terms are:

fcP (t, x, y) = −16 cos(2πx)e−t

(
e−tπ2

(
cos(2πy)2 − 3

4

)
sin(2πx) + sin(2πy)

(
−π2

2
+

1

16

))
,

fcN (t, x, y) = cos(2πy)(8π2 − 1)e−t sin(2πx) + 16

(
cos(2πx)2 − 3

4

)
π2e−2t sin(2πy) cos(2πy),

fV (t, x, y) = e−t
(
8π2 sin(2πy) + cos(2πy)

)
sin(2πx)− e−t cos(2πx) sin(2πy).

We run simulations using the same family of Cartesian meshes and the same time step dt = h2

as in [Liu et al., 2021]. At each time step, our Newton algorithm converges with a maximum
of 3 iterations. The average number of iterations is between 1 and 2, depending on the mesh
refinement.

h dt ecP Order ecN Order eV Order
1E−1 1.0E−2 4.086E−3 · 4.077E−3 · 5.453E−3 ·
5E−2 2.5E−3 1.038E−3 1.98 1.036E−3 1.98 1.372E−3 1.99
2.5E−2 6.25E−4 2.606E−4 1.99 2.600E−4 1.99 3.436E−4 2.00
1.25E−2 1.56E−4 6.519E−5 2.00 6.504E−5 2.00 8.593E−5 2.00

Table 2: The errors ecP , ecN and eV , as well as the convergence order for the second test case
(28), using Cartesian meshes.
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In Table 2, we give the value of the errors ecP , ecN , eV (eq. (27)). We obtain again a
convergence of order 2 for cP , cN and V . For each mesh size, the L∞((0, Tf );L

2(Ω)) errors -
between the numerical solutions of (15)-(25) and the exact solution - obtained from our DDFV
scheme is nearly 10 times smaller than the one obtained in [Liu et al., 2021]. As an example,
we obtain a value for ecP of 6.519×10−5 to compare with a value of 3.093×10−4 in [Liu et al.,
2021] (h = 1.25× 10−2). Put differently, to obtain an error with the same order of magnitude,
our DDFV scheme requires a mesh with half the number of cells than the finite difference
scheme proposed in [Liu et al., 2021], which significantly reduces computation costs.

4.2 Comparative analysis of the DDFV scheme at the boundary layer

We consider in this part a test case with a boundary layer initially presented in [Song et al.,
2018]. This test case is defined on the one-dimensional domain ]0, 1[, with the following
boundary conditions:

cP (t, 0) = 1 + t, cN (t, 0) = 1, V (t, 0) = 0,

cP (t, 1) = 1, cN (t, 1) = 1 + t, V (t, 1) = 0.

This system has two boundary layer regions, ]0, 0.01[ and ]0.99, 1[. In [Song et al., 2018], the
authors propose a finite difference scheme preserving the positivity of the concentration. They
adopt a mesh size ∆x = 8×10−4 in the boundary layer region, and a larger one ∆x = 3×10−3

in the bulk region ]0.01, 0.99[.
We build our third test case by adapting this 1D test case to our 2D framework. Our

computational domain Ω is ]0, 1[2, and we adapt the Dirichlet boundary conditions so that
they also depend on the space variable:

cDir
P (t, x, y) = 1 + (1− x)t, cDir

N (t, x, y) = 1 + xt, V Dir(t, x, y) = 0. (29)

We set the source terms of the system (6) to zero. The initial conditions are computed using
eq. (29) at t = 0. The final time Tf = 1, with a time step dt = 10−2 and γ = 0.01. We use
a fixed non-uniform mesh with a mesh size in the x-direction of ∆x = 10−3 in the boundary
layer region, namely ]0, 0.01[×]0, 1[ and ]0.99, 1[×]0, 1[, gradually increasing to ∆x = 10−2 in
the bulk region ]0.01, 0.99[×]0, 1[. For all cells, we set the mesh size in the y-direction equal
to ∆y = 10−2. The mesh has 11800 quadrilateral cells (rectangles). At each time step, the
Newton algorithm converges with a maximum of 2 iterations.

In Figure 4, we plot on the left (A-C-E) the dual values of the concentrations cP and cN
and the electrostatic potential V at final time Tf = 1, that is (cK

∗,100
P )K∗∈M∗ , (cK

∗,100
N )K∗∈M∗

and (V K∗,100)K∗∈M∗ . On the right (B-D-F), we plot a zoom of cP , cN and V at final time
Tf = 1, on the boundary layer region [0, 0.05] × [0.47, 0.52], where we observe significant
gradients.
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A B

C D

E F

Figure 4: Simulation results of the third test case adapted from [Song et al., 2018] at Tf = 1.
A: (cK

∗,100
P )K∗∈M∗ . C: (cK

∗,100
N )K∗∈M∗ . E: (V K∗,100)K∗∈M∗ . Zoom on the boundary layer

region [0, 0.05]× [0.47, 0.52] for cP in B, cN in D and V in F.

We plot in Figure 5 the dual discrete concentrations of cP and cN on the line y = 0.5:
(cK

∗,50
P )K∗∈Z∗

y=0.5
(resp. (cK

∗,100
P )K∗∈Z∗

y=0.5
) and (cK

∗,50
N )K∗∈Z∗

y=0.5
(resp. (cK

∗,100
N )K∗∈Z∗

y=0.5
),

as well as the dual discrete electrostatic potential (V K∗,50)K∗∈Z∗
y=0.5

(resp. (V K∗,100)K∗∈Z∗
y=0.5

)
at t = 0.5 (resp. t = 1) with a linear trend of the potential. We recall that the definition
of Z∗

y=0.5 is given by eq. (10). This figure can be compared to Fig. 2 in [Song et al., 2018].
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We obtain similar behavior and significant gradients near the walls. Additionally, our DDFV
scheme takes approximately 30 minutes to solve on a laptop (CPU: Intel(R) Xeon(R) Gold
6254 CPU @ 3.10GHz; MEMORY: DIMM DDR4 Synchronous Registered (Buffered) 2933
MHz (0.3 ns)), compared to 1 hour in [Song et al., 2018].

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

A B

Figure 5: A: Dual discrete values of cP and cN on line y = 0.5 at time t = 0.5, (cK
∗,50

P )K∗∈Z∗
y=0.5

and (cK
∗,50

N )K∗∈Z∗
y=0.5

(pink and light blue), and at time t = 1, (cK
∗,100

P )K∗∈Z∗
y=0.5

and

(cK
∗,100

N )K∗∈Z∗
y=0.5

(magenta and green). B: Dual discrete values of the potential on line
y = 0.5 at time t = 0.5, (V K∗,50)K∗∈Z∗

y=0.5
(yellow) and at time t = 1, (V K∗,100)K∗∈Z∗

y=0.5

(red). Black curves represent linear trends of the potential V in the bulk.

We observe that outside of the boundary layer, the ionic concentration cP and cN are very
close, which corresponds to an electroneutral bulk. We compute the absolute value of this
difference at time t = 0.5: qK∗∈M∗ := (|cK∗,50

P − cK
∗,50

N |)K∗∈M∗ . In [Song et al., 2018], the
authors reported a maximum value for this difference of 3.6× 10−6 in the interval [0.25, 0.75]
at t = 0.5. We plot the values for qK∗∈M∗ cut at 3.6 × 10−6, and color the regions where
q > 3.6 × 10−6 in black (Fig. 6A). We observe that in our simulations, the x-boundary of
the region such that qK∗∈M∗ ≤ 3.6 × 10−6 is [0.075, 0.925], which is a larger region than the
segment [0.25, 0.75] in [Song et al., 2018]. Note that the maximum for qK∗∈Z∗

[0.25,0.75]×{0.5}
on

[0.25, 0.75] × {0.5} is 1.5 × 10−6, which is half the value 3.6 × 10−6 observed in [Song et al.,
2018]. In Fig. 6B, we plot the values of qK∗∈Z∗

[0.075,0.925]×{0.5}
(see (10)). The error is decreasing

from the boundaries (x = 0 and x = 1) to the center x = 0.5. At x = 0.5, the error is reaching
the machine error 10−14.
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Figure 6: A: Absolute difference between cP and cN at time t = 0.5, qK∗∈M∗ = (|cK∗,50
P −

cK
∗,50

N |)K∗∈M∗ . qK∗∈M∗ goes from 10−14 to 3.6 × 10−6. Regions where qK∗∈M∗ > 3.6 × 10−6

are colored in black. B: Plot of qK∗∈Z∗
[0.25,0.75]×{0.5}

on the segment [0.075, 0.925] × {0.5}, in
logarithmic scale.

We show with this test case that our DDFV scheme can capture well the boundary layer
dynamics. Compared to [Song et al., 2018], our electroneutral zone is larger, suggesting that
the perturbation of the numerical results due to the high gradients inside the boundary layer,
is less pronounced with our scheme.

5 Applications to neuroscience

In the last section, we apply our DDFV scheme to investigate the dynamics of voltage and
ionic concentration in different neuronal geometries. We consider two specific geometries in
2D: a bifurcation in the dendritic tree, and a dendritic spine. The dendritic tree has a tree-
like geometry, and a bifurcation corresponds to the location where one branch divides into
two branches (Fig. 7). Dendritic spines are mushroom-like protrusions of a few micrometers,
found on the dendritic tree.
In section 5.1, we consider a dendrite bifurcation with two thin branches connecting to a
larger one and simulate the propagation of an influx of ions arriving at the edge of one of the
thin branches. We investigate three scenarios: the influence of an ionic reservoir on voltage
and ionic concentration dynamics, the summation of two simultaneous influx of ions and the
propagation of a single influx in the rest of the domain.
Section 5.2 focuses on dendritic spines. We first investigate the influence of the spine head
geometry on voltage and ionic concentration dynamics. We then consider two neighboring
spines and investigate the invasion of an influx of ions arriving in one spine on the other.

We recall here the definitions of the initial and boundary conditions given in section 2
(values are given in Table 3):

cP (t = 0,x) = c0P , cN (t = 0,x) = c0N , V (t = 0,x) = V 0 ∀x ∈ Ω. (30)

We impose constant Dirichlet boundary condition on ΓDir:

cP = c0P , cN = c0N , V = V 0, on ΓDir × (0, Tf ).

We consider ∂Ωr for homogenous and ∂Ωi for non homogeneous Neumann boundary condi-
tions, such that ΓNeu = ∂Ωr ∪ ∂Ωi. The homogeneous Neumann boundary condition on ∂Ωr
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models the impermeability of the neuronal membrane to ions. The non-homogeneous bound-
ary condition on ∂Ωi models the influx of ions I received by the dendrite, at specific locations
called synapses:

∇V · n = 0, on ∂Ωi ∪ ∂Ωr ×(0, Tf ),
∇cN · n = 0, on ∂Ωi ∪ ∂Ωr ×(0, Tf ),
∇cP · n = 0, on ∂Ωr ×(0, Tf ),
∇cP · n = I, on ∂Ωi ×(0, Tf ).

(31)

I(t) =
Istim(t)

πr2i FDP
, where

Istim(t) = Imax
t

τ
exp

(
− t

τ
+ 1

)
(32)

represents the injected synaptic current, inspired by [Cartailler et al., 2018].

Note that in this section, the source terms fcp , fcn and fV are set to zero. We define a time
t0 for each simulation, corresponding to the time at which the concentration cP is maximal on
Ω. Note that it corresponds to a maximum in both space and time. We precise the value of
t0 in each case. We use electrodiffusion parameters as defined in Table 3. Finally, we present
in this section the numerical results for cP , as the results for cN are qualitatively similar.

F 96485 A.s.mol−1 Faraday constant
ε 80 Dielectric permittivity [Cartailler et al., 2018]
ε0 8, 8.10−12 F.m−1 Permittivity of vacuum
Tθ 293,15 K Absolute temperature
R 8,314 J.K−1.mol−1 Gas constant
DP 200 µm.m2.s−1 Diffusion coefficient for anion [Cartailler et al., 2018]
DN 200 µm.m2.s−1 Diffusion coefficient for cation [Cartailler et al., 2018]
γ 1.8431× 10−4 Eq. (3)
β 39.5877 Eq. (3)
c0P 163 mM Initial concentration for species P [Cartailler et al., 2018]
c0N 163 mM Initial concentration for species N [Cartailler et al., 2018]
V 0 0 mV Initial electric potential [Cartailler et al., 2018]
Imax 300 pA Maximum of the injected current, eq. (32) [Cartailler et al., 2018]
τ 0.055 s Decay time constant of the injected current [Cartailler et al., 2018]

Table 3: Electrodiffusion parameters.

5.1 Propagation of an influx of ions at a dendritic tree bifurcation

In this part, we model signal propagation at a bifurcation in the dendritic tree. We consider
a domain ΩB representing the bifurcation, where a large branch divides into two thinner ones
(Fig. 7). We model the influx of ions as a current I(t) (eq. (32)) injected at the end of
the two thin branches (∂Ωup

i for the upper branch, and ∂Ωdown
i for the lower branch, Fig. 7,

∂Ωi = ∂Ωup
i ∪∂Ωdown

i ). We impose Dirichlet boundary conditions at the end of the large branch
(ΓDir on Fig. 7), to represent the connection with a larger dendrite. This large dendrite is
considered an ionic reservoir due to its large size, i.e. it has fixed ionic concentrations. The
different lengths and nodes defining the domain ΩB are described in Fig. 7, with the length
values and node coordinates given in Table 4.

We define two positions near the end of each branch, namely (I) and (J), to compare the
voltage and concentration dynamics in the branches. We use a triangular mesh with 6655 cells
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and a mesh size h = 0.36. The simulations are performed with a final time of Tf = 1.5 sec,
and a time step of dt = 5× 10−3 sec.

Figure 7: Geometry of the bifurcation domain ΩB, in the configuration L5 = 11 µm. The
specific line y1 = [0, 11] × {1}, where we monitor concentration and voltage dynamics is
plotted in dashed red. The coordinates of each node are given in Table 4.

L5 11 µm Lengths for the sample of the dendrite
L6 4 µm Length for both branches
D3 2 µm Diameter for the dendrite trunk
D4 1 µm Diameter neck for both branches at the junction
ri 0.12 µm Radius of ∂Ωi in Figure 7 for ΩB

(D) (0,2) Position (x,y) of node D
(E) (11,2) Position (x,y) of node E
(F) (15,5) Position (x,y) of node F
(G) (15,4.4) Position (x,y) of node G
(H) (11,1) Position (x,y) of node H
(I) (14.8,4.6) Position (x,y) of node I
(J) (14.8,-2.6) Position (x,y) of node J
(K) (15,-2.4) Position (x,y) of node K
(L) (15,-3) Position (x,y) of node L
(M) (11,0) Position (x,y) of node M
(N) (0,0) Position (x,y) of node N

Table 4: Geometric parameters for domain ΩB, representing a dendritic bifurcation.

5.1.1 Effect of the distance to an ionic reservoir on voltage and concentration
dynamics

Our model considers that the end of the large branch is connected with a wider one, called an
ionic reservoir, such that the ionic concentrations at ΓDir are constant. The distance between
this ionic reservoir and the bifurcation influences the dynamics of voltage and ionic concen-
trations everywhere on the domain ΩB. We expect that the longer the large branch (i.e. the
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longer L5, Fig. 7), the smaller the influence on the dynamics close to the bifurcation point. To
measure this influence, we apply a current at the end of the two thin branches (∂Ωi on Fig. 7).
We then realize simulations for different values of L5 ranging from 11 µm to 33 µm (see Fig. 8
for the case L5 = 33 µm). We finally compute the difference between each numerical solution,
and consider this difference relative to the peak amplitude. We consider that the influence
of the Dirichlet boundary condition on ionic and voltage dynamics is small when this relative
difference is below 3.6%.
We realize numerical simulations in domain ΩB for three different values of L5: 11 µm,
22 µm and 33 µm. Note that for each value of L5, the domain is modified, and so is the
mesh. We indicate the different coordinates and parameter values that are modified in the
three configurations of domain ΩB in Table 5. To account for the mesh modifications in
the discrete solution for the different configurations, we note cT ,n

P,q the discrete value of the
concentration cP in the case L5 = q µm.

Value of L5 11 µm 22 µm 33 µm
Number of triangular cells 6655 7279 7863

h 3.6× 10−1 3.9× 10−1 4× 10−1

Position (x,y) of node (D) (0,2) (-11,2) (-22,2)
Position (x,y) of node (N) (0,0) (-11,0) (-22,0)

Table 5: Different coordinates and parameter values that are modified in the three configura-
tions of domain ΩB: L5 = 11 µm, L5 = 22 µm and L5 = 33 µm.

In Figure 8, we plot the dual values
(
cK

∗,21
P,33 − c0P

)
K∗∈M∗

, corresponding to the concentra-

tion cP − c0P at time t0 = 0.105 sec, in the case L5 = 33 µm. We observe that the maximum of
the solution, A = max

K∗∈M∗

(
cK

∗,21
P,33 − c0P

)
= 93.8 mM, is reached at the injection boundary ∂Ωi.

Along x, the solution decreases to reach the value c0P at the Dirichlet boundary ΓDir.

Figure 8: Dual values
(
cK

∗,21
P,33 − c0P

)
K∗∈M∗

of the concentration cP − c0P at time t0 = 0.105

sec, in the case L5 = 33 µm.

We compare the numerical solutions obtained on different domains, by evaluating their
difference on two straight lines y1 : [0, 11] × {1} (see Fig. 7), and y2 : [−11, 11] × {1}. Note
that the line y2 extends the line y1 for the configurations L5 = 22 µm and L5 = 33 µm.
We note

(
eK

∗,n
p,q

)
K∗∈Z∗

yi

the absolute value of the difference of the dual values for cP , on line

yi (see (10)), for the domains with L5 = p and L5 = q, at time iteration n, for i = 1, 2:(
eK

∗,n
p,q

)
K∗∈Z∗

yi

=

∣∣∣∣(cK∗,n
P,p

)
K∗∈Z∗

yi

−
(
cK

∗,n
P,q

)
K∗∈Z∗

yi

∣∣∣∣ . (33)

Finally, we compute the percentage difference relative to A, between the simulation re-
sults on line yi for t = 0 to t = 0.5 sec (time steps n = 0, .., 100), and plot the result in
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Fig. 9: e1 :=

((
eK

∗,n
11,22

A

)
K∗∈Z∗

y1

)
n=0,...,100

(A), e2 :=

((
eK

∗,n
11,33

A

)
K∗∈Z∗

y1

)
n=0,...,100

(B) and

e3 :=

((
eK

∗,n
22,33

A

)
K∗∈Z∗

y2

)
n=0,...,100

(C).

We observe that the difference between the solutions is always maximal at the Dirichlet bound-
ary condition, at time t = 0, (Fig. 9). The maximal percentage difference between the con-
centration values cP for L5 = 11 µm and L5 = 22 µm is 9.1 % (A). For L5 = 11 µm and L5 =
33 µm, the maximum percentage difference is 10.4 % (B), and finally, for L5 = 22 µm and L5

= 33 µm, to 3.6 % (C). Finally, we conclude that as expected, the influence of the Dirichlet
boundary condition ΓDir (i.e. the ionic reservoir) on concentration dynamics cP , decreases
when the length L5 of the large branch increases. Specifically, for our geometry, the influence
is small if the reservoir is at a distance larger than 22 microns.

A B

C

Figure 9: Comparison of the numerical solution between the three domains with L5 = 11 µm,
L5 = 22 µm and L5 = 33 µm. A (resp. B, resp. C): Plots of e1 (resp. e2, resp. e3) the
absolute values of the differences of the dual values for cP , on line y1 (resp. y1, resp. y2), for
the domains with L5 = 11 µm and L5 = 22 µm, (resp. L5 = 11 µm and L5 = 33 µm, resp. L5

= 22 µm and L5 = 33 µm). Note that line y2 ranges in [−11, 11], so as the x-axis in panel C.

5.1.2 Signal summation

We now study signal summation at a bifurcation in the dendritic tree, when the ionic reservoir
is far from the bifurcation. We compare ionic concentration and voltage dynamics in two
different scenarios: when only the upper branch receives the influx (∂Ωup

i in Fig. 7, scenario
1, ∂Ωdown

i is turned into a homogeneous Neumann boundary condition) and when there is an
influx of ions at both ends of the two thin branches (∂Ωup

i and ∂Ωdown
i in Fig. 7, scenario 2).

We will call a branch ’active’ if it receives an influx of ions, and ’inactive’ if it does not. We
run simulations in the domain with L5 = 33 µm (Fig. 7 and Table 5). We consider the line
y3 = [−22, 11] × {1}, and the set of dual cells Z∗

y3 (see (10)). In Fig. 10, we compare the
concentration (cK

∗,21
P − c0P )

i
K∗∈Z∗

y3
and voltage (V K∗,21)iK∗∈Z∗

y3
at time t0 = 0.105 sec, for the

two scenarios 1 and 2. In both graphs, the brown curve represents scenario 1 with one active
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branch, while the blue curve corresponds to scenario 2 where the two branches are active. We
observe that, on line y3, the concentration and potential values in scenario 2 (blue) are twice
the values in scenario 1 (brown).
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A B

Figure 10: Evolution of the concentration and voltage dynamics on line y3 for the two scenarios
1 and (resp. 2), with one (resp. two) active branch(es). A: Dual values (cK

∗,21
P − c0P )

i
K∗∈Z∗

y3
,

at peak time t0 = 0.105 sec, for i = 1 in brown and i = 2 in blue. In dashed red, we plot
2(cK

∗,21
P − c0P )

1
K∗∈Z∗

y3
. B: Dual values (V K∗,21)iK∗∈Z∗

y3
, at peak time t0 = 0.105 s, for i = 1 in

brown and i = 2 in blue. In dashed red, we plot 2(V K∗,21)1K∗∈Z∗
y3

.

In Fig. 11, we plot the time evolution of the concentration cP − c0P and the potential V at
position (H), i.e. (c

K∗
H ,n

P − c0P )
i
n=0,··· ,N and (V K∗

H ,n)in=0,··· ,N for the two scenarios. We recall
that the definition of K∗

H is given by (11). As in Fig. 10, we observe that the potential and
concentration dynamics in scenario 2 are twice the dynamics in scenario 1.
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Figure 11: Evolution of the concentration and voltage dynamics at point (H) for the two
scenarios 1 and 2. A: Dual values (c

K∗
H ,n

P − c0P )
i
n=0,··· ,N for i = 1 in brown and i = 2 in blue.

In dashed red, we plot 2(c
K∗

H ,n
P − c0P )

1
n=0,··· ,N

(
max

n=0,··· ,N

∣∣∣(cK∗
H ,n

P )2 − 2(c
K∗

H ,n
P )1

∣∣∣ = 5× 10−3

)
.

B: Dual values (V K∗
H ,n)in=0,··· ,N for i = 1 in brown and i = 2 in blue. In dashed red, we plot

2(V K∗
H ,n)1n=0,··· ,N . We have

(
max

n=0,··· ,N

∣∣(V K∗
H ,n)2 − 2(V K∗

H ,n)1
∣∣ = 0.3

)
.

We finally compute the absolute difference between the concentration
(
(cK

∗,n
P − c0P )

2
K∗∈Z∗

y3

)
n=0,··· ,N

and twice the concentration
(
(cK

∗,n
P − c0P )

1
K∗∈Z∗

y3

)
n=0,··· ,N

on line y3 and for t ∈ [0, Tf ]. This

difference is zero at the Dirichlet boundary condition (x = - 22 µm, for all t), and stays below
10−2 mM up to x = 8 µm (resp. 10−1 mV up to x = 8 µm) for the concentration (resp.
the potential). It then steeply increases to 0.33 mM (resp. 0.35 mV) for the concentration
(resp. the potential) close to x = 11 µm (bifurcation point (H)). In summary, the signal in
the large branch is doubled when two branches are active compared to only one active branch.
This result is coherent with a linear summation of the signal in passive dendrites observed
experimentally [Cash and Yuste, 1999].

5.1.3 Branch invasion

We now investigate the invasion of a signal in an inactive branch, by plotting the evolution of
the concentration and potential dynamics in the small branches in scenario 1 (only the upper
branch is active). We consider the nodes (I) and (J) toward the end of the upper and lower
branches respectively, far from the bifurcation point (See Fig. 7 and Table 5). In Fig. 12, we
plot the time evolution of the concentrations (cK

∗
I ,n

P −c0P )
1
n=0,··· ,N and (c

K∗
J ,n

P −c0P )
1
n=0,··· ,N and

the potential (V K∗
I ,n)1n=0,··· ,N and (V K∗

J ,n)1n=0,··· ,N at the points (I) and (J) (see eq. (11)).
We observe that the influx of ions arriving at the upper branch creates a transient rise in

the concentration and in the potential that invades the lower branch. We compare the time
and amplitude of cP and the potential at the two positions (I) and (J) and observe that the
maximum of the signal arrives in (J) with a delay of 0.21 sec, and an amplitude reduced by
82 %, decreasing from 81.43 mM in node (I) to 14.57 mM in node (J) (A). Interestingly, the
concentration curves overlap at (I) and (J), for t > 0.5 sec. We hypothesize that this is due
to the vanishing of the potential at t > 0.5 sec, highlighting the role of the convective term
in ionic dynamics (ion transport resulting from the electric field). Concerning the potential
dynamics, the maximum of the signal arrives in (J) with no delay and a decrease in amplitude
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of 31 %, decreasing from 44.81 mV to 30.91 mV. In summary, we observe a discrepancy between
a rapid and strong invasion of the electrical signal in the inactive branch, and a low invasion
of the ionic concentration signal, with a delay of a few hundred ms.
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Figure 12: Time evolution of the dynamics of cP and V in the small branches for scenario 1.
A: (cK

∗
J ,n

P − c0P )
1
n=0,..,N , at position (J) in red and (c

K∗
I ,n

P − c0P )
1
n=0,..,N , at position (I) in blue.

B: (V K∗
J ,n)1n=0,..,N , at position (J) in red and (V K∗

I ,n)1n=0,..,N , at position (I) in blue.

5.2 Modeling and simulation of ionic and voltage dynamics in dendritic
spines

In this section, we investigate the effect of the specific geometry of dendritic spines on voltage
and ionic dynamics. Dendritic spines are located on the dendritic tree and serve as sites for
receiving synaptic input in the form of an influx of ions. Their variations in size and shape are
usually associated with the neuronal coding of learning and memory. Extensive efforts have
been made to develop experimental techniques for visualizing and analyzing ionic and electric
field dynamics in dendritic spines. However, due to their microscopic scale, such experimental
investigations remain challenging.

5.2.1 Influence of the spine head geometry on ionic and voltage dynamics

Dendritic spines have a bulbous head connected to a thin neck, that we model in 2D by a
domain ΩS composed of a circle with radius r (the head) connected to a rectangle of length
L1 and width D1 (the neck) (Fig. 13). All parameters related to domain ΩS are defined in
Table 6. The influx of ions is modeled, as in the previous section, with a non-homogeneous
Neumann boundary condition on ∂Ωi. We set, as previously described, homogeneous boundary
conditions on ∂Ωr, as well as Dirichlet boundary conditions on ΓDir (see Fig. 13).

The mesh used in our simulations is gradually refined along the boundary ∂ΩS of domain
ΩS and consists of 6589 triangular cells with a mesh size of h = 7.33× 10−2. As an example,
Figure 13 shows a zoomed-in view of the mesh at the junction between the head and the neck.
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Figure 13: A: Domain ΩS representing a dendritic spine. B: Mesh for domain ΩS zoomed-
in at the head-neck junction where it is refined close to the boundaries. The mesh size is
h = 7.33× 10−2.

r 0.5 µm Radius of the head
L1 1 µm Length of the neck
D1 0.2 µm Diameter of the neck
ri 0.04 µm Length of ∂Ωi (Fig. 13)

Table 6: Geometric parameters for domain ΩS , representing a dendritic spine

In the following, we present the numerical simulations of the scheme (15)-(25) on domain
ΩS , with boundary conditions (31). The simulation is performed with a final time of Tf =
0.5 sec and a time step of dt = 5× 10−3 sec.
In Fig. 14, we plot the ionic concentration and voltage dynamics at time t0 = 0.075 sec in
domain ΩS . Panel A (resp. panel B) shows the dual concentration values (cK

∗,15
P − c0P )K∗∈M∗

(resp. (V K∗,15)K∗∈M∗ of the potential V ), at time t0 = 0.075 sec.
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A B

Figure 14: A: Dual values
(
cK

∗,15
P − c0P

)
K∗∈M∗

of cP − c0P in domain ΩS at t0 = 0.075 sec. B:

Dual values
(
V K∗,15

)
K∗∈M∗ of the potential V at t0 = 0.075 sec.

We now investigate the effects of the specific geometry of the spine on ionic concentration
and voltage dynamics, and in particular the spatial variations of voltage and ionic concen-
tration in the spine head. We then compare our 2D-simulation results with the 1D results
presented in [Cartailler et al., 2018]. In [Cartailler et al., 2018], the authors introduced a
temporal deconvolution procedure (STAR method) to recover voltage dynamics in dendritic
spines, from fluorescence images of a genetically-encoded voltage sensor. This procedure is
based on the PNP system of equations. From a domain similar to ΩS , the authors derived
a 1D equivalent model reducing the spine head as a point and simulated the PNP system of
equations using COMSOL. Note that we use the same input current at ∂Ωi as in [Cartailler
et al., 2018].

We consider several lines on the domain ΩS : {x = 0} and the lines {y = k} for k ∈
{0.5, 1, 1.3, 1.5, 1.7, 1.9, 2} (Fig. 15). We finally define the points Pk, at the intersection between
{x = 0} and {y = k}, i.e. the points (0, k).
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Figure 15: Schematic representation of a dendritic spine, illustrating the lines {x = 0} (dashed
black) and {y = k} (dashed red) for k ∈ {0.5, 1, 1.1, 1.3, 1.5, 1.7, 1.9, 2}. The points Pk are the
intersections between the lines {x = 0} and {y = k} (red star).

We plot in Fig. 16 the time evolution of the dual concentration value (c
K∗

Pk
,n

P − c0P )n=0,..,N

(A) and the dual potential value (V
K∗

Pk
,n
)n=0,..,N (B) at points Pk (eq. (11)). We observe that

the peak amplitude for cP − c0P (resp. V ) is equal to 38.59 mM (resp. 6.37 mV) at (P2) and
decreases to 26.16 mM (resp. 4.36 mV) at (P1), i.e. a decrease of more than 30 % for both
the concentration and voltage. We also observe that the decrease is faster in the neck, with
the peak amplitude reaching 13.35 mM (resp. 2.31 mV) at P0.5 for the concentration (resp.
voltage).
In [Cartailler et al., 2018] the peak amplitude of cP −c0P (resp. V ) at the point representing the
head, reaches around 33 mM (resp. around 5 mV) (see Fig. 4C, resp. Fig. 2D-E in [Cartailler
et al., 2018]), which is very close to our 2D results at point P2. Nevertheless, our results
indicate that almost a third of the signal is lost within the head, highlighting the necessity to
simulate the dynamics inside the head.
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Figure 16: Time evolution of the ionic concentration cP − c0P and voltage V in the den-

dritic spine, at position Pk, for k ∈ {0.5, 1, 1.3, 1.5, 1.7, 1.9, 2}. A: (c
K∗

Pk
,n

P − c0P )n=0,..,N . B:
(V

K∗
Pk

,n
)n=0,..,N .

We finally investigate the spatial variation of cP − c0P within the spine, at peak time
t0=0.075 sec. In Fig. 17A, we plot the dual concentration values (cK

∗,15
P − c0P )K∗∈Z∗

x=0
(see

eq. (10)). We observe that the concentration decreases linearly within the neck, reaching the
Dirichlet boundary condition at (x, y) = (0, 0), which suggests that a 1D approximation is
relevant in the neck. Nevertheless, in the head, the variation of the concentration profile is
more complex, with a higher gradient at the top of the head, near the influx of ions (∂Ωi),
followed by a lower gradient down to the neck. In Fig. 17B, we plot (cK

∗,15
P − c0P )K∗∈Z∗

y=k
for

k ∈ {0.5, 1, 1.3, 1.5, 1.7, 1.9, 2.0} (eq. (10)). The variations along the lines Y0.5 and Y1, located
inside the neck, are very small. In contrast, the geometry of the head creates concentration
gradients, that are more pronounced close to the boundary receiving the influx of ions, and
close to the head-neck junction. On line Y1.9, the concentration decreases from 35.46 mM at
position x = 0, to 33.33 mM at the boundary (black curve on Fig. 17D), which corresponds

to a decrease of 6% relative to the reference value c
KP∗

1.9
,15

P − c0P = 35.46 mM. Note that the
voltage has qualitatively the same behavior.
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Figure 17: A: Spatial evolution of (cK
∗,15

P − c0P )K∗∈Z∗
x=0

on line x = 0 at time t0 = 0.075

sec. B: Spatial evolution of (cK
∗,15

P − c0P )K∗∈Z∗
y=k

for k ∈ {0.5, 1, 1.3, 1.5, 1.7, 1.9, 2.0} at time
t0 = 0.075 sec.

In summary, we observe that the ionic and voltage dynamics in the neck of dendritic spines
are well captured by a 1D model. In contrast, to capture the specific dynamics of voltage
and concentration inside the head, one needs to take into account its bulbous geometry. In
particular, in our 2D simulations, we observe that the peak amplitude is decreased by almost
30 % between the top of the head and the head-neck junction, and the decrease is non-linear.
This justifies the need for at least a 2D approach to obtain accurate simulations of ionic
concentration dynamics in a spine.

5.2.2 Influence of the distance between an ionic reservoir and a dendritic spine
on the ionic and voltage dynamics.

In this part, we consider two neighboring dendritic spines and investigate the influence of a
signal arriving in one spine, on the ionic and voltage dynamics of the other (Fig. 18). We test
the hypothesis that dendritic spines act as autonomous compartments, isolating the material
located at their head from the rest of the dendritic tree [Hering and Sheng, 2001], versus the
hypothesis of signal invasion, when the voltage and concentration in a spine is substantially
increased by an ionic influx arriving in a neighboring one.

28



Figure 18: Domain Ω2S , representing two neighboring dendritic spines. Each spine has a head
(circle with centers (A) and (E)) and a neck (thin vertical rectangle). They are both connected
to a dendrite (large horizontal rectangle, with points (B), (C) and (D)).

We consider the domain Ω2S (Fig. 18), with parameters given in Table 7. Within one of
the spines, which we call the active spine, we model an influx of ions at boundary ∂Ωi, using a
non-homogeneous Neumann boundary condition, similar to the previous subsections, eq. (32).
The spine that does not receive an influx of ions is called the inactive spine. We address the
questions of the distance at which the influx of ions propagates from the active spine, and to
what extent the inactive spine perceives this influx. We use a triangular mesh with 2385 cells
and a mesh size h = 0.16. The simulations are performed with a final time of Tf = 5 sec, and
a time step of dt = 5× 10−3 sec.
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Two Spines parameters
r 0.5 µm Radius head for both spines
L1 1 µmm Length neck for both spines
L2 1.8 µm Distance between the two spines
L3 0.9 µm Distance between the spine neck and the ionic reservoir.
L4 4 µm Total dendrite length
D1 0.2 µm Spine neck width.
D2 0.5 µm Dendrite width.
ri 0.1 µm Length of ∂Ωi

(A) (0,1.5) Coordinates of point (A)

(B) (0,0) Coordinates of point (B)

(C) (1,-0.25) Coordinates of point (C)

(D) (2,0) Coordinates of point (D)

(E) (2,1.5) Coordinates of point (E)

Table 7: Parameters for the domain Ω2S , representing two neighboring dendritic spines
(Fig. 18).

We investigate the effect of the distance L3, between a spine and the Dirichlet boundary
condition ΓDir, on voltage and ionic dynamics. We consider several domains with L3 ranging
from 0.9 µm to 23.9 µm. In each configuration, the length L4 is modified such that L4 =
2L3 + 2D1 + L2, and L2 is set to 1.8 µm (Fig. 18). The different mesh information are given
in Table 8.

Value for L3 0.9 µm 2.9 µm 5.9 µm 11.9 µm 23.9 µm
Value for L4 4 µm 8 µm 14 µm 26 µm 50 µm

Number of triangular cells 2385 3365 4840 7773 17548
h 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1

Table 8: Parameter values that are modified in the five configurations of domain Ω2S .

Fig. 19 illustrates the influence of the length L3 on the dynamics of cP − c0. We plot
the dual values (cK

∗,20
P − c0)K∗∈M∗ , (cK

∗,20
P − c0)K∗∈M∗ and (cK

∗,20
P − c0)K∗∈M∗ at times t0 =

0.1 sec, for three domains Ω2S with L3 = 0.9 µm, 2.9 µm and 5.9 µm. Note that the minimum
value for cP − c0 is imposed by the Dirichlet boundary condition at ΓDir (cP − c0 = 0 mM,
with c0 = 163 mM, Table 3). We observe that the size of the domain influences the values of
the concentration within the two heads, with a larger L3 leading to a higher concentration in
the active spine, and a lower concentration value in the inactive one. We also observe a slight
increase in cP − c0 peak time when L3 increases. Hence, the results suggest that the farther
the spine is from a large ionic reservoir, the farther the signal propagates.
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Figure 19: Spatial variations of the concentration cP in three domains with increasing L3.
We plot the dual values (cK

∗,20
P − c0)K∗∈M∗ in domain Ω2S , with L3 = 0.9 µm (A), L3 =

2.9 µm (B) and L3 = 5.9 µm (C) at t0 = 0.1 sec. The range of the colorbar is fixed between
plots, with a maximum value cP − c0 = 180.2 mM, corresponding to the maximum of cP − c0
in the configuration with L3 = 5.9 µm.
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Figure 20: Time evolution of (cK
∗
X ,n

P − c0P )n=0,..,N , for different values of L3 ranging from 0.9
to 23.9 µm, at positions (A)-(B)-(C)-(D)-(E). A: (cK

∗
A,n

P − c0P )n=0,..,N . B: (cK
∗
B ,n

P − c0P )n=0,..,N .
C: (cK

∗
C ,n

P − c0P )n=0,..,N . D: (cK
∗
D,n

P − c0P )n=0,..,N . E: (cK
∗
E ,n

P − c0P )n=0,..,N .

We then investigate the propagation of the concentration within the dendrite and inactive
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spine at several specific points (A) - (E) (Fig. 18, Table 7) in the five different configurations (L3

ranging from 0.9 µm to 23.9 µm). We plot in Fig. 20 the time evolution of the concentrations
(c

K∗
X ,n

P − c0P )n=0,..,N (see (11)). Note that the curves plotted in D and E almost superimpose,
with a difference between them lower than 1 mM. We observe the effect of the Dirichlet
boundary condition on the time evolution of the concentration. As expected, the shorter L3,
the bigger the impact on signal propagation. Indeed, for L3 = 0.9 µm (red), we observe that
the max of cP − c0 goes from 109.62 mM in (A) to 6.60 mM in (B), and is below 10−5 mM
at (C), (D) and (E), i.e. the signal does not propagate inside the dendrite and the inactive
spine. This means that for short L3 the active spine behaves as an autonomous compartment,
isolating its material from the rest of the dendritic tree.
For L3 = 2.9 µm, the max of cP − c0 goes from 145.95 mM in (A) to 55.92 mM in (B), and

24.90 mM in (E). Hence, the ratio of signal reaching (E), defined as rcA−E =
max

n=0,..,N

(
c
K∗

E,n

P −c0P

)
max

n=0,..,N

(
c
K∗

A
,n

P −c0P

) ,

is 17 %. For L3 = 11.9 µm and 23.9 µm, a threshold seems to emerge, with 32 % of the peak
concentration in (A) transmitted to (E). We also observe a shift in the peak time between
position (A) and (E), denoted by ∆c

A−E , going from 0.03 sec for L3 = 0.9 µm, to 0.09 sec
for L3 = 2.9 µm and 0.16 sec for L3 = 23.9 µm. We observe similar behavior for the voltage,

where the ratio of the signal reaching (E), rVA−E =
max

n=0,..,N

(
V K∗

E,n
)

max
n=0,..,N

(
V

K∗
A

,n
) , is 8% (resp. 63%, resp.

81%) for L3 = 0.9 µm (resp. L3 =11.9 µm, resp. L3 =23.9 µm). The shift in the peak time
between the electrical signal in (A) and the electrical signal in (E), denoted by ∆V

A−E , is
below 0.02 sec in all curves. Table 9 gives, for each configuration, the time shift ∆c

A−E , the

peak amplitude max
n=0,..,N

(
c
K∗

E ,n
P − c0P

)
at position (E) and the ratio rcA−E of signal reaching

(E), for the concentration dynamics, as well as the time shift ∆V
A−E , the peak amplitude

max
n=0,..,N

(
V K∗

E ,n
)

at position (E) and the ratio rVA−E of signal reaching (E) for the potential

dynamics. This indicates that in this condition, a signal arriving in a spine is influencing the
ionic concentration and voltage in its inactive neighbors, which we call a signal invasion. The
voltage invasion is more important than the ionic concentration invasion. To summarize, our
simulations suggest that depending on the distance to the closest ionic reservoir, a spine can
either act as an autonomous compartment isolated from its neighbors or be subject to signal
invasion.

L3 ∆c
A−E max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
rcA−E ∆V

A−E max
n=0,..,N

(
V K∗

E ,n
)

rVA−E

0.9 µm 0.03 sec 10−5 mM 0 % 0.01 sec 1.65 mV 8 %
2.9 µm 0.09 sec 24.9 mM 17 % 0.01 sec 7.62 mV 26 %
5.9 µm 0.09 sec 40.94 mM 27 % 0.02 sec 17.58 mV 44 %
11.9 µm 0.16 sec 52.44 mM 32 % 0.02 sec 38.41 mV 63 %
23.9 µm 0.16 sec 53.45 mM 32 % 0.02 sec 103.46 mV 81 %

Table 9: Time shift ∆c
A−E in the concentration signal, peak amplitude max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
of

the concentration at position (E), ratio rcA−E of the concentration signal in (A) reaching the
inactive spine (E), time shift ∆V

A−E of the electrical signal, peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at

position (E) and ratio rVA−E of the electrical signal from (A) reaching (E), for the five different
configurations with L3 going from 0.9 µm to 23.9 µm.
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5.2.3 Influence of the distance between two spines on signal invasion

This part focuses on varying the distance L2 between two spines (Fig. 18). We consider five
different values of L2, ranging from 0.9 to 10.8 µm, and set L3 to 23.9 µm, to ensure that
we reach the plateau in signal invasion observed in subsection 5.2.2, for all the configurations.
The mesh information are given in Table 10.

Value for L2 0.9 µm 1.8 µm 3.6 µm 7.2 µm 10.8 µm
Value for L4 49.1 µm 50 µm 51.8 µm 55.4 µm 59 µm

Number of triangle cells 17598 17548 17548 17546 17548
h 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1 1.6× 10−1

Position (x, y) of the node (D) (1.1,0) (2,0) (3.8,0) (7.4,0) (11,0)
Position (x, y) of the node (E) (1.1,1.5) (2,1.5) (3.8,1.5) (7.4,1.5) (11,1.5)

Table 10: Parameter values that are modified in the five configurations of domain Ω2S .

Fig. 21 illustrates the time evolution of the concentration cP −c0, at position (E) (Fig. 18),
corresponding to the center of the head of the inactive spine. We plot the dual values (cK

∗
E ,n

P −
c0P )n=0,..,N at each time step, for the five configurations of domain Ω2S .
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Figure 21: A: Time evolution of (cK
∗
E ,n

P − c0P )n=0,..,N , for different values of L2 ranging from
0.8 to 10.8 µm, at position (E). B: Example of the mesh employed for the simulations, in the
case L2 = 0.9 µm, zoomed on the spines.

We observe, as expected, that concerning the variation of concentration, the closer the two
spines, the larger the signal received by the inactive one. The shift in the peak time between
position (A) and (E), ∆c

A−E , increases when the distance between the spines L2 increases.
We observe a significant shift in the peak concentration time in the inactive spine compared
to the active one, going from ∆c

A−E = 0.145 sec in the case of close spines (L2 = 0.9 µm) to
∆c

A−E = 0.535 sec for spines that are farther away (L2 = 10.8 µm). The ratio rcA−E of signal
reaching (E) decreases while increasing L2, going from 37 % when L2 = 0.9 µm, to 14 % for
L2 = 10.8 µm.
Concerning the potential dynamics, the shift in the peak time ∆V

A−E is one order of magnitude
smaller, going from 0.02 sec for L2 = 0.9 µm to 0.03 sec for L2 = 10.8 µm. The ratio rVA−E of
the electrical signal reaching (E) goes from 84% for L2 = 0.9 µm, to 62% for L2 = 10.8 µm.
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In Table 11 we give, for each configuration, the time shift ∆c
A−E , the peak amplitude max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
at position (E), and the ratio rcA−E of signal reaching (E) for the concentration dynamics, as
well as the time shift ∆V

A−E , the peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at position (E) and ratio

rVA−E of signal reaching (E) for the potential dynamics. These results suggest that spines re-
ceive electrical signals from other spines far away, as a spine at a 10.8 µm distance still receives
63 % of the signal, with tens of ms of delay. The variation in concentration is sensed to a lesser
extent, as a spine at a 10.8 µm distance only perceives 14% of the variation of concentration,
with a delay superior to 0.5 sec.

L2 ∆c
A−E max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
rcA−E ∆V

A−E max
n=0,..,N

(
V K∗

E ,n
)

rVA−E

0.9 µm 0.145 sec 59.26 mM 37 % 0.02 sec 107.33 mV 84 %
1.8 µm 0.165 sec 53.45 mM 32 % 0.02 sec 103.46 mV 81 %
3.6 µm 0.215 sec 44.01 mM 27 % 0.03 sec 97.06 mV 77 %
7.2 µm 0.355 sec 31.35 mM 19 % 0.03 sec 87.24 mV 69 %
10.8 µm 0.535 sec 23.68 mM 14 % 0.03 sec 77.12 mV 62 %

Table 11: Time shift ∆c
A−E in the concentration signal, peak amplitude max

n=0,..,N

(
c
K∗

E ,n
P − c0P

)
of the concentration at position (E), ratio rcA−E of the concentration signal in (A) reaching the
inactive spine (E), time shift ∆V

A−E of the electrical signal, peak amplitude max
n=0,..,N

(
V K∗

E ,n
)

at

position (E) and ratio rVA−E of the electrical signal from (A) reaching (E), for the five different
configurations with L2 going from 0.9 to 10.8 µm.

6 Discussion and conclusion

In this paper, we present an algorithm for simulating the Poisson-Nernst Planck system of
equations in two dimensions using the DDFV method, while preserving the positivity of ionic
concentration. We challenge our algorithm using different test cases and achieve a second-
order accuracy in space, which is consistent with existing results coming from literature. We
also show that our system can capture a boundary layer when present. The proof of the ex-
istence of the discrete solution of (15)-(25) is both too long and not the goal of the present
paper. Hence, a following paper will detail the existence of a solution, as well as positivity
and convergence, most probably using similar techniques as in [Moatti, 2023].
Using our DDFV framework, we then investigate the ionic and voltage dynamics in two-
dimensional specific geometries of the neuronal dendritic tree: a branch bifurcation and a
dendritic spine. First, our two-dimensional results show that the voltage and ionic dynam-
ics in a dendritic spine are not well approximated by one-dimensional models. Indeed, if a
one-dimensional approximation for both voltage and concentration is relevant in the neck,
the bulbous geometry of the head requires at least a two-dimensional approach, as the space
dynamics is highly non-linear, with steep gradients at the top of the head and around the
head-neck junction.
Our numerical results also highlight that dendritic spines can sense electrical signals far away
on a thin branch, whereas it is not the case for ionic concentration transients, that reach only
close spines. In our configuration, a spine at a distance 10.8 µm of a spine receiving a signal
will get 62% of the electrical signal and only 14% of the concentration signal. One direct
consequence of this, is that calcium imaging cannot be used as a tool to observe sub-threshold
electrical signal propagation in neuronal compartments, especially when voltage-gated calcium
channels are not opening. The actual development of voltage sensors could resolve this diffi-
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culty.
Our final result concerns the influence of an ionic reservoir on voltage and calcium dynamics.
This reservoir can represent any large branch that the neuronal compartment is connected to.
The rationale behind this is that the large branch being so large compared to the thin branch,
we can consider the ionic concentrations and voltage to be constant at the connection. In the
equations, the reservoir is modeled using a Dirichlet boundary condition and behaves as a sink.
Our simulations show that the close proximity of an ionic reservoir such as the dendritic shaft
or any large compartment, is killing the signal, preventing it from propagating and invading
close neuronal structures such as thin branches at a bifurcation or dendritic spines. On the
opposite, a signal arriving at the leading edge of the dendritic tree, far from an ionic reservoir
and where only small branches are present, will propagate at a larger distance and invade
neighboring dendritic spines.
From the spine point of view, these results show that the same spine at different positions in
the tree would behave differently: a spine close to the dendritic shaft would more likely act
as an autonomous compartment, compared to a collection of spines located in small dendritic
protrusions, that would be keener to signal invasion and to influence each other. Hence, in
addition to the geometry of the spine, the local geometry of the dendritic tree is shaping spine
behavior, in that the same spine at different positions in the tree would behave differently.
Hence, the position of a dendritic spine relative to the entire tree (i.e. close to the soma versus
at the distal edge of the tree) shapes its function, making plasticity not at the level of the
spine, but at the level of the full dendritic geometry.
These results are in line with several experimental observations showing that synaptic de-
velopment is spatially regulated inside the dendritic tree [Druckmann et al., 2014, London
and Häusser, 2005]. In particular, the electrical compartmentalization of dendritic spines is
nowadays a leading question in developmental neuroscience, with various experimental studies
showing a variety of results depending on the types of cells or on their developmental stages,
and going from signals spreading locally and invading neighboring spines to compartmental-
ization [Cornejo et al., 2022, Yuste, 2023, Lee et al., 2016, Yuste, 2011]. Our study would
suggest considering these differences in relation to the actual size of the dendritic tree, and
especially the presence of large dendrites. In the same way, the distance to the nearest large
dendritic compartment should be considered while investigating cooperative, homosynaptic
and heterosynaptic plasticity [Chater and Goda, 2021, Sjöström and Häusser, 2006].
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