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Abstract

Among a variety of promising cathode materials for Na-ion batteries, polyanionic

Na-insertion compounds are among the preferred choice due to known fast sodium trans-

fer through the ion channels along their framework structures. The most interesting

representatives are Na3V2(PO4)3 (NVP) and Na3V2(PO4)2F3 (NVPF), which display

large Na+ diffusion coefficients (up to 10−9ms−2 in NVP) and high voltage plateaux
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(up to 4.2V for NVPF). While the diffusion in the solid material is well-known to be

the rate-limiting step during charging, already being thoroughly discussed in the liter-

ature, liquid-state transport of sodium ions towards the electrode was recently shown

to be important due to complex ion desolvation effects at the interface. In order to

fill the blanks in the description of the electrode/electrolyte interface in Na-ion batter-

ies, we performed a molecular dynamics study of the local nanostructure of a series of

carbonate-based sodium electrolytes at the NVP and the NVPF interfaces along with

the careful examination of the desolvation phenomenon. We show that the tightness of

solvent packing at the electrode surface is a major factor determining the height of the

free energy barrier associated with desolvation, which explains the differences between

the NVP and the NVPF structures. To rationalize and emphasize the remarkable prop-

erties of this family of cathode materials, a complementary comparative analysis of the

same electrolyte systems at the carbon electrode interface was also performed.

1 Introduction

Being commercialized for about 25 years, Li-ion batteries (LIBs) have performed a revolution

in energy-storage devices.1–3 However, due to a constantly increasing demand in the number

of devices and growth of the required performance, which is confronted by supply constraints,

the development of alternatives emerges as a state-of-the-art direction of battery research.

An appealing option is to use Na-ion batteries (SIBs) that possess similar characteristics as

Li-based analogs, being notably cheaper thanks to the high natural abundance of sodium.4–7

However, the transition from LIBs to SIBs brings new challenges in battery design requiring

developments of the cathode and anode materials as well as adjustments in the electrolyte

composition.8,9

NaSICON materials, which have a general formula of NaaMb(XO4)c (where X = Fe,

V, Ti, Zr, etc., X = S, P, Si, etc.),10,11 being a subclass of polyanionic Na-insertion com-

pounds,demonstrate fast Na+ diffusion in “skeleton” structures12 that make them powerful
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cathode materials for SIBs.13 Their advantages include high redox potential due to the

unique inductive effect of the polyanionic groups, high thermal stability, and robustness of

the structural framework during intercalation/deintercalation processes that guarantees long

life cycling, while as a main drawback, their low electrical conductivity is considered.4,5,14

The most common representative is Na3V2(PO4)3 (NVP), which has a theoretical capacity of

117mAhg−1 and a plateau at 3.4V corresponding to the V3+/V4+ redox reaction.15 Going

beyond the NaSICON family, a further increase of the redox potential in the Na-insertion

electrode compounds can be achieved by introducing electronegative anions, such as F–,

OH–, etc., into the NVP, which perturb the covalent bond between the transition metal and

oxygen atoms.14 Therefore, by replacing one phosphate group with fluorine anions, forming

Na3V2(PO4)2F3 (NVPF), one can attain a two high voltage plateau at 3.6V and 4.2V.16

The choice of the electrolyte remains crucial for the performance of SIBs.17–19 The most

common way is to use a solution of sodium salt in an organic solvent, following the strategy of

LIBs, though flammability and lack of safety stay an issue.20 A typical example is a NaPF6,

NaClO4, or NaBF4 salt dissolved in a carbonate solvent. Cyclic carbonates such as propylene

carbonate (PC) or ethylene carbonate (EC) have a relatively high dielectric constant that

favors the dissociation of a salt, while their linear analog such as dimethyl carbonate (DMC)

are often used as co-solvents to reduce the viscosity and ameliorate ionic conductivity of a

system.21 The carbonates remain the first choice also because of the formation of a highly

stable solid-electrolyte interphase (SEI) that protects anode from the direct interaction with

the solution.7,22 Alternatively, ionic liquids23 and aqueous24 electrolytes can be used, but they

do not lack disadvantages: the ILs usually possess high viscosities compared to conventional

organic solvents that tend to increase even further upon the addition of a salt,25 while the

aqueous electrolytes have a narrow voltage stability window.26

While the majority of studies focus on the Na+ diffusion in the Na-insertion materials and

the unit cell breathing upon intercalation,27–33 the cathode-electrolyte interfacial structure

remains underinvestigated. Nevertheless, the arrangement of the solvent at the electrode sur-
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face affects ion desolvation and its migration from the bulk toward the interface, known to be

an important energy-consuming step.34,35 For example, the energy barrier of Li+ desolvation

in an interphase-free LiPF6/EC-DMC/Li4Ti5O12 measured by electrochemical impedance

spectroscopy reaches about 12 kcalmol−1.36 Of course, extensive experimental studies are

barely possible for scanning a vast range of electrolyte compositions combined with differ-

ent electrode types, and theoretical methods such as classical molecular dynamics (MD) are

indispensable for the rational design of electrode-electrolyte systems.37

In recent work, we combined electrochemical quartz crystal microbalance and operando

infrared fiber evanescent wave spectroscopy with MD to study the operation of Na-insertion

materials-based SIBs.38 We showed that upon insertion, a depletion of desolvated Na+ occurs

at the interface, which can impact the rate capability of the batteries, and may be generic

to other types of solvent/ionic species.39 Here we complement this work through the use of

extensive MD simulations. We shed light on the local structure of 1M NaPF6 electrolyte in

several organic carbonates (DMC, PC, and EC-DMC mixture (1:1 by molar fraction)) at the

NVP and NVPF electrode surfaces, which will be compared to that at a graphite electrode.

Note that although SIBs generally employ hard carbon as the anode, the local structure of

graphite provides a good model for the interface with the electrolyte. We demonstrate that

the packing of a solvent at an electrode surface due to solvent-electrode interactions appears

as one of the determining factors defining the activation barrier of the desolvation process.

2 Methods

Molecular dynamics simulations were performed using the LAMMPS program.40 Initial con-

figurations and input files were generated using Packmol,41 VESTA42 and fftool43 utilities.

The simulation box consisted of two electrodes, separated by a 1M solution of NaPF6 in

DMC, EC-DMC (1:1 molar fraction) or PC solvent. As electrode sets, graphite-graphite,

NVP-Au and NVPF-Au pairs were considered. In total, 9 different systems were modelled.
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An example of a simulation box is given in Figure 1.

Figure 1: Simulation snapshot of the 1M NaPF6/DMC electrolyte in contact with the NVP
(left) and gold (right) electrodes.

The graphite electrode (GR) was represented by a hexagonal P 6 3/m m c space group44

and consisted of 3 layers of 34.08×36.89 Å size each. The NVP electrode was represented by a

rhombohedral R -3 c space group, which is mostly always been reported in the literature,45–47

though Masquelier et al.27,33 mention several times the existence of a monoclinic distortion

at ambient temperature. The slab had a size of 34.92× 30.24× 21.65 Å. The [001] plane of

NVP was exposed toward the solution, following the recommendations from the literature.27

The crystal structure of the NVP comprised two types of Na+ ions, shown in Figure 2a,

the occupancy of which varied from one reference to another.27,45–47 In order to match the

experimental composition, we removed Na1 and Na2 ions only from the bulk of the electrode

and not from the surface, which allowed us to avoid the intercalation of Na+ ions from the

solution to the solid. The NVPF electrode was represented by a tetragonal P 42/m n m

space group,48 with the [001] plane exposed towards the solution, similarly to the NVP case.

The slab had a size of 36.19 × 36.19 × 19.96 Å. The crystal structure contained two types

of Na+ ions, with the occupancy of 1.0 for Na1 and 0.5 for Na2, respectively (Figure 2b

(left)). Since the distance of the closest Na2 sites is too short (1.865Å), two neighboring

Na2 sites cannot be simultaneously occupied due to the strong Coulomb repulsion between

Na+ ions.49 Therefore, we had to remove half of Na2 atoms from the NVPF surface, and the

resulting structure is given in Figure 2b (right). In all cases, a gold counter-electrode was
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used. It was represented by a cubic Fm-3m space group50 with the [100] plane exposed to

the solvent. The slab had a thickness of 12.22Å, while its x and y dimensions were adjusted

to fit those of NVP or NVPF.

Figure 2: Visualisation of the NVP (a) and NVPF (b) surfaces exposed to a solution. Grey
and purple spheres represent the Na+ ions with different occupation (denoted as Na1 and
Na2). In the case of NVP, no Na1 and Na2 ions were removed from the surface. Instead,
they were removed from the bulk electrode to match the corresponding occupation (not
shown). In the case of NVPF, all Na1 ions were kept, and one of Na2 in each pair (b, left)
was removed for the surface (b, right).

The liquid phase contained 75 ion pairs of NaPF6 salt and 845 molecules of DMC, 830

molecules of PC or [465 molecules of DMC plus 465 molecules of EC], matching the 1M salt

concentration. The box size in z direction was adjusted based on the electrode type used,

resulting in a 100–120Å solution thickness. The total system size was approximately 15 000

atoms.

The Na+ cation was represented by Aqvist force field,51 while the parameters of the

PF –
6 anion were taken from the CL&P model.52,53 The net charge of the ions was kept

integer. The intermolecular interaction parameters of the electrode atoms, given in Table 1,

were considered from several sources.19,51,54–57 The bonded and non-bonded parameters of

solvent atoms were taken from the OPLS-AA,58 except for the partial charges, which were

computed using the CHelpG procedure59 on electron densities obtained at the MP2/cc-

pVTZ level of theory at previously optimized geometries with the Gaussian16 program.60
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The solvent models were validated by computing the densities and viscosities of bulk 1M

NaPF6 solutions in the DMC, EC-DMC, and PC systems, which were compared to the

experimental values.

Table 1: Non-bonded interaction parameters of electrodes

Electrode Atom type q / e− σ / Å ϵ / kJmol−1 Ref.

Graphite C 0 3.330 0.2300 54

NVP, NVPF Na +1 3.330 0.0120 51

V +3 2.673 0.0602 55

P +5 3.740 0.1400 56

O −2 3.150 0.1700 56

F −1 3.440 0.4600 57

Gold Au 0 2.951 22.1334 19

The simulation box was periodic in the x and y directions and a slab of 3× Lz was con-

sidered along the z direction. A cutoff of 12Å was applied for non-bonded interactions. The

particle-particle particle-mash (PPPM) method was used to evaluate electrostatic energies

(the accuracy of 10−5), with the slab correction taken into account. Both electrodes were

considered immobile. Bonds terminating with hydrogen atoms were constrained using the

SHAKE algorithm. The time step was set to 1 fs. The Nosé-Hoover thermostat was used

to keep the temperature of the electrolyte solution at 298K. Each system was equilibrated

for 5 ns in the NVT ensemble and then a 50 ns production run was performed. The data

analysis was performed using TRAVIS61,62 and our self-written tools. The visualization of

the simulation box was done in VMD.63

The potentials of mean force (PMF) were calculated from separate runs, during which

a single Na+ ion was pulled from the solution towards the electrode surface. For this, a

harmonic biasing potential varying between 25 kcalmol−1 Å−2 and 150 kcalmol−1 Å−2 was

applied to this Na+ ion. The z distance between the ion and the top surface atoms (C for

graphite and Na for NVP and NVPF) was considered as the biasing collective variable. It was

sampled between 12Å and −2Å with a step of 0.25Å with 100 ps equilibration and 400 ps

acquisition at each separation. The PMFs were calculated using the umbrella sampling and
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the weighed-histogram analysis method (WHAM).64,65

From the PMF trajectories, the coordination numbers of Na+ as a function of its distance

to an electrode were calculated. The coordination number cutoff was set to 4.55Å for P of

PF –
6 and 3.20Å for O atoms of the carbonyl group of carbonate molecules, being defined as

the position of the first minimum of the corresponding radial distribution functions of bulk

systems. The coordination number curves were averaged over 3–6 replicas.

3 Results and discussion

Figure 3: Density profiles of O atoms (of the C O carbonyl group) of solvents in 1M solution
of NaPF6 in the EC-DMC mixture (a,c,e) and DMC, PC solvents (b,d,f), as a function of
their distance from the graphite (a,b), NVP (c,d), and NVPF (e,f) electrodes. As a reference
(z = 0), the top carbon layer of graphite and the top sodium ions of the NVP and NVPF
are considered, as illustrated by the inset.

We first analyze the structure adopted by the solvent molecules at the various interfaces.

Density profiles (Figure 3), which provide information on the probability of finding species as
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Figure 4: Probability contours revealing the orientation of the DMC and EC components
in the 1M NaPF6/EC-DMC solution with respect to the electrode surface. The x-axes
represent the distances between the electrode (top C for the graphite, top Na for the NVP
and NVPF considered as a reference) and the O atoms of the carbonyl group of a solvent.
The y-axis represents the angles formed by the normal vector to an electrode plane and the
C O vector of a solvent, as illustrated by the inset.

a function of their distance from an electrode, show that the local arrangement of a solvent at

the graphite, NVP, and NVPF surfaces is considerably different. Being a non-polar material

with a flat homogeneous surface, graphite seems not to have strong interactions with any of

the solvents. Oxygen atoms of both DMC and EC of the EC-DMC mixture can be found at

about 3.2Å and 6.6Å from the graphite surface, as shown in Figure 3a, that is consistent

with neat DMC and PC (Figure 3b). The behavior of a carbonate solvent at a given interface

seems to be determined by its flexibility (linear DMC or cyclic EC and PC) and is almost

not affected by the presence of a co-solvent. The orientation of the molecules with respect to

the surface is analyzed by computing the angle α formed by the C O vector of a solvent and

the normal vector to the electrode plane as a function of the O distance from the electrode

surface. In the solvent mixture, DMC tends to expose its methyl groups to the graphite
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surface (Figure S1a), so that the C O vector points away from the surface, marked by a

greenish spot at about 4.8Å O-surface separation (Figure 4a). This peak can be attributed

to the solvent-electrolyte interactions as has been proposed by Borodin et al.66 in their study

of LiPF6/EC-DMC/graphite by the surface-sensitive Ångstrom resolution X-ray reflectivity

and molecular dynamics simulations. A lower probability but wide spot is observed at

about 3.2Å, which corresponds to the parallel orientation of the C O vector with respect

to the surface plane. The ratio between these two peaks should depend on the electrolyte

concentration in the solution.66 The second and further solvent layers are not clearly marked

due to the conformation flexibility of DMC, which results in a variety of possible orientations.

The behavior of neat DMC solvent appears to be quite similar (Figure S2a). On the contrary,

the EC molecules of the mixture are mainly oriented parallelly to the surface (corresponding

to α = 90◦, shown in Figure 4b), at the O...surface separation of 3.2Å. In addition to this,

a low probably perpendicular orientation is observed at 6.6Å distance. In the case of neat

PC (Figures S2b), this perpendicular orientation does not emerge, being replaced by two

peaks at 6.5–7.5Å with a tilted orientation of the C O vector. The second solvent layer of

parallelly oriented carbonate molecules is well-defined both for EC in the mixture and the

neat PC.

The arrangement of solvent molecules at the NVP surface is strikingly different from that

at graphite. The NVP slab, used for simulations, was cut in a way so that the PO 3–
4 and

the Na+ ions are exposed to a solution. We considered it the most likely case because the

direction of the highest Na+ diffusion in the solid27 is now aligned with the z axis of our

simulation box. The top sodium ions of the NVP is then considered as a reference (z = 0) for

the corresponding density profiles. A prominent peak between the top Na+ ions of the surface

and O atoms of the carbonyl groups is observed at about 2.15Å in all solvents (Figures 3c-d).

The high intensity of this peak points to a tight packing of the solvent molecules near the

electrode. The orientation of the C O vector with respect to the surface plane is strictly

perpendicular (Figures 4c-d and Figures S3c-d). For DMC in the EC-DMC mixture, several
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Figure 5: Density profiles of Na+ ions (a-c) and P atoms (d-f) of the 1M NaPF6 salt in
DMC, PC solvents (a-c), and the EC-DMC mixture (d-f) as a function of their distance
from the graphite (a,d), NVP (b,e), and NVPF (c,f) electrodes. As a reference (z = 0), the
top carbon layer of graphite and the top sodium ions of the NVP and NVPF are considered.

low-intense spots occur at 4.8Å, 6.2Å and 7.15Å O...surface separations with different α

values. On the contrary, in neat DMC, among these low-intensity contributions only that

at 7.15Å with C O vector pointing away from the NVP plane is present. The probability

of this peak increases when a cyclic carbonate is considered instead of a linear one: the

intensity ratio between the peaks at 2.15Å and 7.15Å decreases from 17 for DMC to 2

for EC in the mixture. A similar effect was observed by Smith et al.67 when modeling

the LiPF6/EC-DMC/LiPO4 system: DMC molecules showed a slightly higher probability of

interacting with alkali metal cations of the electrode, while EC molecules directed some of

their hydrogen atoms towards O atoms at the surface.

Due to the presence of F atoms at the interface, the NVPF electrode appears to be

more solvophobic than the NVP. The solvent molecules still interact with the top Na+ ions,

11

https://doi.org/10.26434/chemrxiv-2023-7d7tz ORCID: https://orcid.org/0000-0002-1753-491X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-7d7tz
https://orcid.org/0000-0002-1753-491X
https://creativecommons.org/licenses/by-nc-nd/4.0/


but the intensities of corresponding peaks are lower (Figures 3e-f). The DMC molecules are

preferably oriented perpendicularly to the surface (α is close to 180◦, Figures 4e): however, in

the case of neat liquid (Figures S3e), the C O is tilted from being completely perpendicular

by about 15◦. The latter allows the methyl groups of the solvent to undergo weak dispersion

interactions with the F atoms at the surface. The cyclic carbonates exhibit three possible

orientations (Figures 4f and Figures S3f): a first one which is perpendicular to the electrode,

located at a characteristic distance of 2.1Å, while the second one is further away from the

electrode at an average distance of 6.1Å. The third orientation is tilted, with α = 45◦ at

4.2Å. The ratio between these orientations depends on the presence of a co-solvent. In the

EC-DMC mixture, we observe a clear role splitting: while the linear carbonate interacts with

top Na+ ions of the surface, the C O bond of the cyclic one is orientated towards the bulk

solution. In the neat PC (Figures S3f), both roles are played by PC molecules in an equal

proportion (evaluated by integrating the corresponding p(z) peaks).

As was mentioned before, this notable fraction of solvent molecules oriented toward the

bulk solution can be explained by the interactions with the NaPF6 salt. In the case of

graphite (Figure 5a), Na+ ions are mainly found at about 7.1Å from the electrode in the

DMC and EC-DMC solutions, and at 8.6Å in PC, being followed by several low-intensity

peaks at larger separation. Since no tight solvent layer is present near the electrode, the Na+

ions can approach the graphite even closer, being noticed at 4.4–4.8Å separations. At the

NVP electrode (Figure 5b), which exhibits strong solvent adsorption, an intense Na+ peak

is observed just after the first solvent layer, at about 9.2–9.4Å. In the case of neat DMC, it

is split into three smaller peaks (at 8.3Å, 9.4Å and 11.4Å) due to multiple configurations

of the flexible DMC molecule (Figures S3c), but the integral under them match that in

EC/DMC and PC. At the NVPF surface (Figure 5c), the Na ions are distributed in the

range of the 6.8–13.6Å separations, with a principal peak at about 8.2–8.6Å due to several

dominant orientations of solvent molecules in the first layer(Figures 4e-f and Figures S3e-f).

While the sodium cation is small and densely charged, the PF –
6 anion is remarkably
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Figure 6: Potential of mean force of approaching a single Na+ ion to the graphite (a), NVP
(b), and NVPF (c) electrode in different solvents. As a reference (z = 0), the minimum of
each PMF is considered, corresponding to the most energetically favorable position of the
Na+ ion, as illustrated by the simulation snapshots.

larger; it thus displays a lower charge density. Therefore, it is mainly located just after

the first solvent layer at about 7.7Å, 9.0Å and 8.8Å from the graphite, NVP and NVPF

surfaces, respectively (Figure 5d-f). In all the solvents, the peak is high and well-defined due

to the large anion size, which also allows us to clearly identify the second and sometimes

third anionic layers, especially when neat rigid PC is used as a solvent. Similarly to the Na+

cations, the PF –
6 anions can also approach the graphite surface closer, down to distances of

about 4.2Å, while no similar effects are observed in the NVP and NVPF cases.

The potential of mean force (PMF), the free energy profile as a function of the distance

of a Na+ ion relative to the electrode surface, can provide complementary information to

13

https://doi.org/10.26434/chemrxiv-2023-7d7tz ORCID: https://orcid.org/0000-0002-1753-491X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-7d7tz
https://orcid.org/0000-0002-1753-491X
https://creativecommons.org/licenses/by-nc-nd/4.0/


the solvent arrangement.68,69 Here, as a reference (z = 0), the distance corresponding to

the minimum of each PMF is taken, being different from the density profile plots discussed

earlier. Since there is no free energy barrier in approaching a Na+ ion to the graphite surface

in DMC or EC-DMC (Figure 6a), it can easily penetrate the closest solvent layer to the

surface. This observation is consistent with the works of Hwang et al.70 and Vatamanu et

al.71 on LiPF6/EC-DMC/graphite system. On the contrary, a barrier of about 4.5 kcalmol−1

is observed in PC, probably related to a rigid geometry of the solvent molecules. This is

reflected in the small prepeaks in density profiles, shown in Figure 5a, when the probability

of observing a Na+ ion near the surface is lower in neat PC than in other solvents. Due to

the absence of specific sites at the graphite surface, capable of attracting the cation, it can

freely move along and across the surface and move back to the bulk solution. Only in the

case of PC, the barrier of about 3 kcalmol−1 should be overcome. In opposition to graphite,

the NVP surface (Figure 6b) tends to form a firm solvent layer. In all the solvents, the free

energy barrier attains about 20–25 kcalmol−1. Once a cation reaches the NVP surface, it

stays trapped there, being coordinated by three oxygen atoms of neighboring PO 3–
4 groups,

so that it is placed on the top of V atoms. The free energy of diffusing back to the solution

appears to be too high (90–120 kcalmol−1) to conquer.

The solvent layer at the NVPF surface is less tight, and the energy barrier achieves only

7–10 kcalmol−1. The most probable adsorption site is in the hollow at the surface, being

bounded by two oxygen atoms of PO 3–
4 groups. In such a case, the cation starts to penetrate

the electrode, and further investigation of this process becomes out of the scope of classical

MD. Alternatively, Na+ ions can be absorbed on the top of P atoms, stabilized by interaction

with two oxygen atoms (Figure S4), when no hollow site is available nearby.

The origin of the free energy barrier rises from the partial desolvation of a Na+ ion

when it approaches the electrode, penetrating through a tight first solvent layer. This can

be confirmed by tracking the coordination number of a single Na+ ion moving towards the

surface. Figure 7 (as well as Figure S5) shows that, indeed, no desolvation is observed
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Figure 7: Total coordination number of solvent and anion species around a Na+ cation moving
towards the electrode surface in the NaPF6/EC-DMC solution. As a reference (z = 0), the
minimum of each PMF given Figure 6 is considered. The coordination number values are
averaged over several replicas.

for the graphite, while the Na+ cation loses its solvation shell when approaching NVP and

NVPF. When comparing different materials, the firmness of solvent packing at a carbonate-

based solvent at the electrode surface is greater at the NVP than at the NVPF, which

actually explains the difference in the energy barriers: highly oriented solvent molecules at

the interface require a higher energy contribution to change their configuration to solvate

the diffusing Na+ ion. In our recent EQCM study of the same systems under electrochemical

cycling,38 we observed a detectable mass loss right before the insertion of Na+ ions related

to the desolvation only at the NVP, while in the case of NVPF, due to loose packing, the

desolvation process remains confined within the penetration depth of the resonator’s acoustic

wave, thus cannot be detected as a mass loss.

Quantitative and even qualitative comparison with literature data remains problematic

since the value of the activation barrier depends on a diversity of factors. In addition, no

data for Na+-based systems have been reported to this point. Abe et al.34,72 measured the

activation barriers of LiClO4 salt in DMC and EC DMC (1:1 by vol.) at graphite by elec-

trochemical impedance spectroscopy, and the variation between solvents (9.6 kcalmol−1 and

13.8 kcalmol−1 for DMC and EC DMC, respectively) was explained by the lower solvation
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ability of DMC than that of EC. However, changing the nature of the SEI almost vanished

the difference between the two solvents. In our theoretical model, no SEI is present and no

barrier is observed for NaPF6 in these two solvents near graphite. Nevertheless, the height

of the free energy barrier (when present) should also depend on the nucleophilic properties

of a solvent. In their experimental study of a SEI-free LiPF6/Li4Ti5O12 system, Xu et al.36

showed that an ether-based electrolyte had lower desolvation energy (by about 3 kcalmol−1)

than carbonates. By modelling the diffusion of a Li+ ion towards LiCoO2 in PC and water,

Nikitina et al.73 also obtained rather different values: 10.4 kcalmol−1 and 5.8 kcalmol−1, re-

spectively. For our DMC - EC/DMC - PC carbonate series, the difference between solvents’

donor ability is too delicate to be captured by simulations: partial changes of O solvent

atoms are quite close and no explicit lone pairs are present. Therefore, the solvent packing

at the interface appears to play the principal role in defining the height of the activation

barrier.

4 Conclusions

To sum up, the diffusion of a Na+ ion through the electrolyte solution towards the cathode

is strongly dependent on the surface nature. The nanostructure of the closest solvent layer

at the interface defines the height of the activation barrier, commonly associated with the

desolvation process. The desolvation does not seem to be observed at the SEI-free graphite

electrode due to the absence of specific directional interaction between the solvent and the

carbon sheets. On the contrary, because of the surface inhomogeneity and the presence

of donor and acceptor groups, the polyanionic Na-insertion compounds exhibit a notable

arrangement of solvent molecules in the closest layer, penetrating through which a Na+

ion partially loses its solvent shell. The effect is the most pronounced at the NVP, which

demonstrates the greatest energy barrier among studied systems as a result of the highly

ordered and well-oriented first solvent layer. The solvent arrangement at the NVPF surface
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is slightly less marked due to the presence of non-polar fluorine atoms which partially disturb

the solvent-electrode electrostatic attraction.

The nature of the solvent also plays an important role, but only when different families

of solvents are compared. In our carbonate series, the variation between solvents (namely,

due to the partial charge distribution) is quite subtle being a less significant factor than the

electrode material. Even so, the lack of flexibility of the solvent impacts the tightness of its

packing at the surface, which can lead to an increase in the activation energy barrier.
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