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Non-local matching of superpixel-based deep features for color transfer and colorization

In this article, we give a thorough description of the algorithm proposed in [H. Carrillo, M. Clément and A. Bugeau, Non-local matching of superpixel-based deep features for color transfer, 2021] for color transfer by relying on a robust non-local correspondence between low-level features at high resolution. An adaptation of this method to colorization process is also described. We highlight the overall relevant results obtained with this technique for both applications and also show its limitations.

Introduction

This article deals with both color transfer, the process of changing the color distribution of a target image based on a reference image, and colorization, the process of digitally applying color to grayscale images. One practical application of these techniques is, for example, to provide filmmakers with a quasi-automatic tool that makes their tasks less time-consuming and tedious than today's professional software. While both color transfer and colorization can sometimes suffer from poor spatial and color consistency, the method described in the studied paper [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] addresses these issues by relying on robust non-local matching between low-level features at high resolution. The non-local concept has already been used extensively in computer vision, notably by [START_REF] Buades | A Non-Local Algorithm for Image Denoising[END_REF] to improve the performance of digital image denoising methods.

The general idea behind the method proposed by [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] is the following. A superpixel segmentation of the target and reference images is first realized using the SLIC algorithm [START_REF] Achanta | SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[END_REF]. Next deep feature maps, which are abstract and semantic representations of an image obtained using a pre-trained deep neural network, are extracted at a superpixel level. Subsequently, a non-local correspondence between superpixels of both images is established using an attention mechanism on the deep features. Global relationships between superpixel are taken into account thanks to this non-local correspondence step, that does not include any additional training. Once the non-local correspondence is established, the pixel-level colors are transferred using a weighted average that takes into account the previously computed attention map between superpixels. All in all, the unsupervised method of [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] is able to transfer the color of the reference image to the target image, while respecting the structure of the target and maintaining a limited computation time for efficient image or video processing.

In this paper, we propose an online implementation of this color transfer method and an extension to the colorization problem. While converting a color image to a grayscale image is a standard task, the reverse operation is a complex problem since no information about the colors to be added is known a priori. This task is classically performed by users, based on their expertise or artistic experience to add hues to monochromatic images. We show that it is possible to automate this colorization process thanks to recent advances in machine learning and neural networks.

The organization of the paper is as follows. Section 2 gives a detailed explanation of the non-local matching technique proposed in [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF]. We then study the application of the method to color transfer in section 3. The proposed extension to colorization is finally explored in section 4.

Non-local matching method

In this section, we present the method proposed by [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] for non-local matching of super-pixelbased deep features between two RGB images I T and I R . In what follows, we will keep the notations of the reference article: I T will be the target image and I R the reference one. We first describe in section 2.1 the extraction of super-pixels features, called super-features. The matching process between super-features is then detailed in section 2.2.

Super-Features Encoding (SFE)

The encoding of the super-features F of an image I takes place in three stages: 1) super-pixel decomposition, 2) extraction of deep features using convolutional neural networks, 3) channel averaging process to obtain super-features.

Super-pixel segmentation

Firstly, two super-pixel maps are generated using a super-pixel decomposition algorithm on the target and reference images. A super-pixel is a group of connected pixels that share common characteristics such as similarity of color or intensity and spatial proximity. Super-pixels are commonly used to speed up the execution of image processing algorithms and, in some cases, to improve results.

We use the SLIC algorithm [START_REF] Achanta | SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[END_REF] which is an adaptation of the k-means clustering algorithm for image segmentation purpose. SLIC segments an image into superpixels using both color and spatial position information. It associates neighboring pixels based on their similarity and updates the superpixel centers until convergence is reached. Rather than simply decimating the image to reduce the amount of information, segmenting into superpixels provides a set of regions of interest to process, without reducing the amount of raw information in the image. Figure 1 illustrates this process. This steps produces two super-pixels maps S T and S R that respectively contain N T and N R super-pixels. We also denote as P i the number of pixels contained in the i-th super-pixel S T (i). 

Deep features

Deep learning features are obtained from a pre-trained convolutional network applied on the reference and target images I R and I T . We use here the first three layers of a modified VGG-19 architecture [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] as a feature extractor. These first three layers provide a long range of low-level features that suit diverse types of images.

In each case, after the convolution step and the application of a ReLU function, activations are then batch-normalized before moving on to the next layer. This stabilizes activation values, reduces covariation effects between different activations and improves learning convergence. We remove max-pooling layers from the baseline VGG-19 architecture.

This step thus produces l = 3 (one for each layer) feature maps f T l and f Rl , composed of C = 64, 128 then 256 channels. The spatial dimension of the feature maps f T l (resp. f Rl ) correspond to the one of the target image I T (resp. reference image I R ).

Remark. This approach takes into account features derived from VGG-19, a pre-trained deep convolutional networks particularly effective for processing high-dimensional data such as images or videos. The method can nevertheless handle any other handcrafted or learned features.

Average pooling

Finally, we apply average pooling to the deep features using super-pixel maps S T and S R . The features f T and f R of the pixels inside each superpixel are averaged per channel and then stacked in the form of matrices known as super-features. We therefore obtain three super-feature maps F T l ∈ R N T ×C , for the target image, with l index ranging from 1 to 3 corresponding to the information from the first three layers of VGG-19 convolutional neural network and N T the number of super-pixel of the target image. In the same way, for the reference image, we obtain three super-feature maps

F R l ∈ R N R ×C , l = 1 • • • 3. The overall super-features encoding is illustrated in Figure 2.
Figure 2: Super-features encoding of [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF]. Let H and W be the image size in number of pixels, C the number of channels of the different VGG-19 layers used, N R (resp. N T ) the total number of reference (resp. target) super-pixels, and P i the number of pixels in the i-th superpixel. The process takes as input a feature map of size H × W × C, in which each super-pixel is extracted and encoded in vectors of size C × P i . Afterward, the vectors are pooled channel-wise and, finally, stacked in the respective super-features matrices

F T l (resp. F R l ) of size C × N R (resp. C × N T ).

Super-Features Matching (SFM)

As stated above, super-features provide a compact encoding for calculating the correlation between deep features. In order to achieve a robust correspondence between the super-features of the target named F T l and the super-features of the reference named F R l , the authors were inspired by the attention mechanism described in [START_REF] Zhang | Deep exemplarbased video colorization[END_REF].

Attention mechanisms [START_REF] Vaswani | Attention is all you need[END_REF] were popularized with the rise of transformers, a type of neural network architecture that has revolutionized the field of natural language processing and other sequence processing tasks. The attention mechanism allows the model to focus on specific parts of the input when generating output. Rather than processing the whole sequence at once, transformers use attention to give variable importance to each element of the sequence depending on its context.

The idea of the Super-Features Matching (SFM) process is to exploit the non-local similarities between the super-features of the images by calculating the attention map at layer l as follows:

A l (i, .) = softmax M T l R l (i, .) τ , i = 1 • • • N T , (1) 
where, for each superpixel i of the target and j of the reference, we define:

M T l R l (i, j) = (F T l (i) -µ T l ) T (F R l (j) -µ R l ) ∥F T l (i) -µ T l ∥ 2 ∥F R l (j) -µ R l ∥ 2 . ( 2 
)
In this equation, M T l R l corresponds to the correlation matrix between the super-features of the target F T l (i) and the reference F R l (j), computed using the mean values µ ∈ R C over the N T (resp N R ) super-feature values. The choice of the normalization through correlation is motivated by the use of a global temperature parameter τ > 0 to process all components M T l R l in the same way. The softmax operation in expression ( 2) is realized with respect to the second dimension of the matrix, so that j A l (i, j) = 1 for all super-pixels i = 1

• • • N T of the target image; while A l (i, j) ≥ 0 for all i = 1 • • • N T and j = 1 • • • N R .
The final attention map A is the weighted sum of the attention maps for each layer, divided by the sum of the weights:

A(i, j) = l=3 l=1 w l A l (i, j) l=3 l=1 w l , (3) 
where all weights w l are set to 1 in our experiments. The value of the attention map A(i, j) can be understood as a measure of the influence of the super-pixel S R (j) of the reference image I R for the processing of the super-pixel S T (i) of the target image I T .

Color transfer

In this section, we focus on transferring the color of a reference image I R to a target image I T . To that end, we follow the color fusion framework initially proposed in [START_REF] Giraud | Superpixel-based color transfer[END_REF] which uses the attention maps to obtain the new color for each pixel of the target image.

Method

Color transfer aims at changing the colors of pixels in the target image I T using the color palette of the reference image I R . To that end, the method [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] extends the color fusion framework initially proposed in [START_REF] Giraud | Superpixel-based color transfer[END_REF]. The process leverages on the attention map A provided by SFEencoding and SFM-matching, which encodes semantic correspondences between both images. For all pixels inside a super-pixel S T (i), i = 1 • • • N T , the attention map A(i, j) is used as a weight to balance the importance of the color to transfer from the reference super-pixel S R (j). Denoting as I R (j) the mean color value of pixels belonging to the super-pixel j of the reference image I R , the output of the color transfer process on the target image I T at pixel p is obtained as

I T (p) = N R j=1 W (p, j)I R (j) N R j=1 W (p, j) , (4) 
where W (p, j) = N T i=1 d(p, i)A(i, j) and d(p, i) depends on the distance between the pixel p and the center pi = ( p∈S T (i) p)/P i of the i-th super-pixel of the target image. This weight is calculated using a Mahalanobis-type formula:

d(p, i) = e - (V T (p)-V T (i)) T Σ -1 i (V T (p)-V T (i)) σg (5)
with V T (p) = [p, I T (p)] being the vector describing the position and the color of pixel p, and V T (i) = [p i , I T (i)] being the average vector describing the position and color centroids of superpixel S R (i). The spatial and colorimetric covariances of pixels belonging to the superpixel S R (i) are computed as:

Σ i = δ 2 s [Cov(p)] p∈S R (i) 0 0 δ 2 c [Cov(I T (p)] p∈S R (i) , (6) 
where the parameters δ 2 s and δ 2 c respectively weight the influence of spatial and color information.

In order to optimize computational performance, an initial resizing (down-sizing) was applied to the I R and I T input images. To guarantee optimum visual quality at the end of the algorithm, we introduce a conversion to the CIELAB color space. We start by converting ÎT from RGB to CIELAB color space. We thus obtain the 3 channels Lab representation ( L, â, b) for the colorized image ÎT . We then isolate its chrominance channels â and b and use them for the resizing operation (up-sizing). Next, we concatenate the luminance channel of the original I T image (also converted into CIELAB space to retrieve the luminance channel) with the chrominance channels a and b of ÎT . This process replaces the luminance channel of the resulting image I T with the original gray level of I T . This is an essential step to maintain the structural information present in I T . Finally, we convert back the resulting image from CIELAB color space to the RGB color space, giving us the final synthesized image. As illustrated in Figure 3, this post-processing makes the colorized images more realistic. 

Experimental study

Using the online demonstration, the color transfer method [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] can be applied on any pairs of target and reference images. In this section we carry out a series of experiments to describe the influence of the different parameters.

We first run the companion demonstration code on four pairs of real images1 to illustrate the pros and cons of this technique applied to color transfer. For the purposes of this demonstration, we have arbitrarily assumed that the number of superpixels is equal to 3 × ⌊ √ H × W ⌋. We then analyze the influence of the different τ , δ s and δ c parameters of the method.

As illustrated in Figure 4, the color transfer method can provide plausible results for images containing a single object of interest (flower and bird examples) or more complex scenes (beach example). In the case of the road against a mountain backdrop -see the 4th row of the figure, the correspondence between super-pixels is questionable (as an example, the color of the broken line in the middle of the road has remained unchanged). τ -parameter sensitivity analysis. We now evaluate the impact of the main temperature parameter τ of equation ( 1), that balances the weights in the attention map A. Figure 5 illustrates the color transfers obtained for the beachfront image and different values of τ . As stated in [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF], our experiments suggest that a value τ = 1.5e -2 gives satisfactory visual results of a large range of images.

As the value of τ increases (for example, τ = 1.5e-1), the softmax operation of expression (1) makes the probability distribution A(i, .) more uniform. This implies an important mixing of the colors of all superpixels S R (j), which lead to drab colors in the synthesized image (Figure 5a. On the other hand, when τ decreases, there is a one-to-one matching between a target superfeature and a reference super-feature. For τ = 1.5e-4, this results in non-uniform color transfer at the bottom left part of the image displayed in Figure 5f. δ s and δ c -parameters sensitivity analysis. We now evaluate the impact of the δ c and δ sparameters of equation ( 6), that weight the influence of color and spatial information. Figure 6 illustrates the color transfers obtained for the road image and different values of δ s and δ s . As stated in [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF], our experiments suggest that values δ s = 10 and δ c = 0.1 gives satisfactory visual results of a large range of images. Indeed, with a preponderance of color information δ c and less importance given to spatial information δ s , we observe an inadequate distribution of colors, particularly at the foot of the mountain. In addition, the edges of the road are poorly colored, with dull, lackluster hues that do not faithfully reflect the chromatic palette of the original image.

Colorization

We now propose an extension of the method [START_REF] Carrillo | Non-local Matching of Superpixel-based Deep Features for Color Transfer[END_REF] to colorization. In this setting, the target image I T is a grayscale image, whereas the reference one I R is a color image.

Method

The colorization technique we propose consists of 4 steps: 1) transformation of the reference color image into a grayscale one I Rg ; 2) computing SFE-encoding and SFM-correspondences between super-features of grayscale images I T and I Rg ; 3) synthesis of the colorized target image ÎT , using attention maps and the original colors of the source image I R ; 4) post-processing in CIELAB color space, by mixing the original luminance information in the grayscale image I T with the chrominance channels of ÎT .

From colors to grayscale. The transformation of the RGB color image I R = (R, G, B) into a grayscale image is done using the standard weighted average from PAL or NTSC models: I Rg = 0.299R + 0.587G + 0.114B. Super-features encoding and matching. We apply the SFE-encoding to both the grayscale image I Rg and the target one I T . Next we perform the SFM-matching with a slight modifica- tion of the attention map computation described in section 2.2. The merging of the attention maps corresponding to the 3 VGG-19 layers is here realized before the softmax operation:

A(i, .) = softmax l=3 l=1 w l M T l R gl (i,.) τ , i = 1 • • • N T . (7) 
In our experiments, this change appeared useful to avoid the transfer of drab colors.

Color fusion framework. The colorized image ÎT is obtained by tracing back the original colors of the superpixels in the reference image I R , as detailed in equation ( 4) of section 3.

Post-processing step. As explained in section 3, we are going to perform a conversion in CIELAB space in order to improve the visual rendering during resizing, which reduces computation time. We will concatenate the luminance channel of the target grayscale image I T with the chrominance channel of the resulting image ÎT . Figure 7 illustrates this process that produces results that are more consistent, more perceptually faithful and less sensitive to variations in brightness. 

Experimental study

We present in Figure 8 colorization results obtained with the companion demonstration code applied on four real images. When the source and target images are carefully selected, so that they have a particularly high degree of similarity, the visual results are relevant, with realistic colorization (see for instance the flower and the coastline). The colorization process nevertheless tends to reproduce the most predominant hue in the reference image (dipper and human face examples). τ -parameter sensitivity analysis. We evaluate the influence of the temperature parameter τ in equation (7) on the flower example. As illustrated in Figure 9, when τ = 1.5e -2, the color palette of the reference image I R is better represented in the colorized image. On the other hand, increasing the value as τ = 1.5e -1 results in a decrease in the diversity of colors present in the final image.

δ s and δ c -parameters sensitivity analysis. We now evaluate the impact of the δ c and δ s -parameters of equation [START_REF] Vaswani | Attention is all you need[END_REF], that weight the influence of color and spatial information. Figure 10 illustrates the colorization process obtained for the image and different values of δ s and δ c . Again, our experiments suggest that values δ s = 10 and δ c = 0.1 gives satisfactory visual results of a large range of images. Indeed, when the emphasis is placed primarily on color information while neglecting spatial information, the final rendering proves less satisfactory and lacks coherence. Close examination of the image reveals an inconsistent distribution of colors, marked by noticeable and distinct variations in different places. This non-homogeneity creates contrasting areas where hues appear to diverge significantly, introducing visual irregularities within the image. 

Conclusion

This paper presents a framework for color transfer and colorization of a target image using the color information contained in a reference image. The process is based on non-local matching of deep features extracted from superpixels through an attention mechanism. Experimental results demonstrate the effectiveness of this technique, that manages to preserve the fine details, textures and structures of the target images, while producing consistent and plausible color synthesis using the information from the reference image.
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 1 Figure 1: Visualisation of a superpixel segmentation S obtained with the SLIC algorithm [1].
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 3 Figure 3: (a) Target; (b) Reference; (c) Resizing without any prior CIELAB conversion; (d) Resizing combined with CIELAB conversion.
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 4 Figure 4: Application of color transfer to 4 different image series.
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 45 Figure 5: Influence of the temperature value τ on the color transfer.
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 6 Figure 6: Influence of the δ s and δ c -parameters on the color transfer.
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 7 Figure 7: (a) Target; (b) Reference; (c) Resizing without any prior CIELAB conversion; (d) Resizing combined with CIELAB conversion.

Figure 8 : 2 Figure 9 :

 829 Figure 8: Application of colorization to 4 different image series.
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 10 Figure 10: Influence of the δ s and δ c -parameters in the colorization results.

  

Real means no computer-generated images.

https://dspace.mit.edu/bitstream/handle/1721.1/100018/Durand_Style.pdf

Acknowledgment

This study has been carried out with financial support from the French Research Agency through the PostProdLEAP project (ANR-19-CE23-0027-01).

Image Credits

Jeremy bishop (Pexels) 2 Stein Egil Liland (Pexels) 2 Frans Van Heerden (Pexels) 2 Style transfer for headshot portraits (MIT Open Access Articles) 3 Style transfer for headshot portraits (MIT Open Access Articles) 3 Rennon kiefer (Pexels) 2 Nikhil Singh Rajput (Pexels) 2 Pixabay (Pexels) 2 James Lee (Pexels) 2 Ylanite Koppens (Pexels) 2 Jess Loiterton (Pexels) 2 Pixabay (Pexels) 2 Sebastian Palomino (Pexels) 2 Pixabay (Pexels) 2 Frank Cone (Pexels) 2 Vlada Karpovich (Pexels) 2 Slimmars (Pexels) 2 Slimmars (Pexels) 2 Denys Razumovskyi (Pexels) 2 Zoosnow (Pexels) 2