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Abstract: The monitoring of coastal areas using remote sensing techniques is an important issue
to determine the bio-optical properties of the water column and the seabed composition. New
hyperspectral satellite sensors (e.g., PRISMA, DESIS or EnMap) are developed to periodically observe
ecosystems. The uncertainties in the retrieved geophysical products remain a key issue to release
reliable data useful for the end-users. In this study, an analytical approach based on Information
theory is proposed to investigate the Cramér–Rao lower Bounds (CRB) for the uncertainties in
the ocean color parameters. Practically, during the inversion process, an a priori knowledge on
the estimated parameters is used since their range of variation is supposed to be known. Here,
a Bayesian approach is attempted to handle such a priori knowledge. A Bayesian CRB (BCRB) is
derived using the Lee et al. semianalytical radiative transfer model dedicated to shallow waters.
Both environmental noise and bio-optical parameters are supposed to be random vectors that follow
a Gaussian distibution. The calculation of CRB and BCRB is carried out for two hyperspectral
images acquired above the French mediterranean coast. The images were obtained from the recently
launched hyperspectral sensors, namely the DESIS sensor (DLR Earth Sensing Imaging Spectrometer,
German Aerospace Center), and PRISMA (Precursore IpperSpettrale della Mission Applicativa—ASI,
Italian Space Adjency) sensor. The comparison between the usual CRB approach, the proposed BCRB
approach and experimental errors obtained for the retrieved bathymetry shows the better ability of
the BCRB to determine minimum error bounds.

Keywords: hyperspectral imaging; ocean color remote sensing; radiative transfer; seabed analysis;
estimation; uncertainty; fisher information

1. Introduction

The degradation of coastal zone ecosystems requires large-scale precision monitoring.
Optical remote sensing allows in-depth analysis of water quality and seabed composi-
tion [1–5]. The estimation of depth and bottom in optically shallow waters has important
implications, e.g., for monitoring coral reefs [6,7], seagrass [8], invasive seaweed [9], or
detecting changes in bathymetry [10,11].

The inherent optical properties (IOP) of the water column, i.e., the spectral absorption
and backscattering coefficients, can be related to three optically active water constituents,
which are Chlorophyll (CHL), Colored Dissolved Organic Matter (CDOM) and nonalgal
Suspended Particulate Matter (SPM) [12]. Numerical models [13,14] and semianalytic
models [15,16] have been developed to simulate the water attenuation as a function of the
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bathymetry, the bottom reflectance, the concentrations of chlorophyll (CCHL), suspended
matter (CSPM), and colored dissolved organic matter absorption coefficient at 440 nm
(CCDOM) [17]. The inversion of the radiative transfer model that describes the propagation
of light into the water column and its interaction with hydrosols and seabed allows the
retrieval of the model parameters, CCHL, CSPM, CCDOM, and in addition bathymetry in
shallow waters [18]. If the bottom reflectance is not available, it can be approximated by a
linear mixture of spectral signatures representative of the seabed, so the mixing coefficients
should be estimated as well [19–23].

Hyperspectral imagery has shown to be more accurate instead of multispectral im-
agery for the decoupling of changes in bathymetry, water quality and seabed type [24–33].
Airborne hyperspectral sensors such as CASI [34], AVIRIS [35] or HYSPEX [36] are char-
acterized by a high spatial resolution (1–2 m). Satellite sensors could cover larger areas
than airborne sensors and a periodical revisit. However, there are few hypersectral sen-
sors currently onboard satellite platforms. The DLR Earth Sensing Imaging Spectrometer
(DESIS, 30 m), was launched in 2018 and integrated into the International Space Station
(ISS) [37], the Precursore IpperSpettrale della Mission Applicativa—ASI (PRISMA, 30 m)
was launched in 2019 [38], and the Environmental Mapping and Analysis Program (EnMap-
DLR, 30 m) was launched in 2022. Finally, the BIODIVERSITY sensor, which is currently
in preparation by CNES (french space agency) [39,40], will be characterized by a spatial
resolution of 8 m. NASA’s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) satellite
mission, which is scheduled in 2024, will carry the hyperspectral Ocean Color Instrument
(OCI, 1 km spatial resolution) [41]. Recently, scientific publications related to the use of
PRISMA and DESIS sensors in the acquatic environment showed the great interest of the
community for using their up-to-date data for the remote sensing of aquatic ecosystem
monitoring [42–45].

Accurate knowledge of uncertainties in the satellite derived geophysical products is
particularly critical for remote sensing of dark targets such as those encountered in aquatic
environments in comparison to terrestrial surfaces such as soil or vegetation. Because
of the weak upward signal (the reflectance is typically less than 10%) exiting the water
column, the spatial and spectral resolutions and the signal to noise ratio (SNR) should be
carefully designed to properly acquire reliable hyperspectral measurements over aquatic
systems. Associated uncertainties, which could be assessed in terms of root mean square
error (RMSE) [46] or mean absolute difference [47], are informative on the confidence level
of these products. Uncertainties are also required for designing future sensors [26,33], or
for improving ocean model accuracy using data assimilation [48].

Uncertainties are often assessed by comparing the satellite-derived values with their
ground truth measured values. In such case, uncertainties are related to sensor noise and
radiometric specifications, as well as those induced by the inversion method, bio-optical
modeling, atmospheric correction, and in situ measurements [46,47,49,50]. It should be
noted that the uncertainty associated with the reflectance inversion to derive a given
ocean colour parameter also depends on the actual value of the parameter. Many differ-
ent statistical and physical methods have been developed for remote sensing of optically
shallow waters [17,18,51–58]. The uncertainties established for a BIODIVERSITY-like sen-
sor have been predicted using simulated images that matches the sensor features [40,59].
In [60,61], the authors present a method to obtain uncertainty estimates for inverted IOP
by propagating the errors through the semianalytical model used for inversion. Most ap-
proaches require both remote-sensing data and ground truth to assess uncertainties. These
approaches can be computationally expensive and also depend on the inversion method.

Cramér–Rao bounds (CRB) have been previously used to determine the performances
of various sensors for a broad range of parameters [62–64]. The CRB provides a lower
bound on the variance of any unbiased estimator of a deterministic parameter [65–68].
In addition to fast computing time, the CRB are convenient because they do not require
hyperspectral data neither ground truth, and they are also independent of the method of
inversion that is used to invert the water reflectance for deriving the bio-optical parameters
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of the water column. The CRB theoretically provide the lower bounds for the uncertainty
of the estimated parameters based on the probability law of the noise that corrupts the
hyperspectral data and on the parametric radiative transfer model. Such lower bounds
actually consists of the diagonal of the inverse of the Fisher Information Matrix (FIM) of
the derived parameters. However, when a high amount of parameters should be retrieved,
and when the SNR is low, the Fisher Information Matrix may be ill-conditioned. As a result,
the CRB calculus is not reliable. Typically, the inversion of the water reflectance to derive
marine products is carried out for a given range of variation of a given product, which
can be seen as a priori knowledge on the parameters. In this case, CRB can be extented to
include such a priori available information [69–71] by deriving Bayesian CRB (BCRB).

In this sudy, it is proposed to improve the CRB approach by developping the BCRB
expression, to account for the realistic estimation of the water parameters which involves
a given estimation domain. The main contributions of this study are as follows: (i) the
development of the BCRB method for the considered marine products, (ii) the resulting
values of theoretical error bounds for two sensor data, namely PRISMA and DESIS images,
that were acquired above the same coastal area of south France. The paper is organized as
follows: in Section 2 the data, models and methods are presented. In Section 3, the CRB
and BCRB of the water parameters obtained for the two sensors used (PRISMA and DESIS)
are carried out. The results are discussed in Section 4.

2. Material and Methods
2.1. Data

Generally, Cramér–Rao bounds do not need real data to be calculated, as mentioned
in Section 1. In [64], Cramér–Rao Bounds are calculated using a simulated set of water
parameters, for different sensor noise characteristics. However, the use of realistic param-
eters provides practical information in the context of scene analysis. This work aims to
investigate those bounds for real water products. The products of the inversion of two
hyperspectral images of the same area that is located in the south of France are used as input
parameters to calculate the BCR and the BCRB for respectively DESIS and PRISMA sensors.

2.1.1. Study Area

The study area is the bay of Cassis (France), which is located between Marseille and
Toulon in the south of France (Figure 1).

a b
Figure 1. Red-Green-Blue (RGB) image acquired by (a) DESIS sensor (13 June 2021) and (b) PRISMA
sensor (14 August 2021).

A field campaign has been carried out on 11 June 2021 to acquire in situ measurements
of the water column bio-optical properties and of the bottom composition. However,
these in situ data were not used in the current study because another going-on study
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is in preparation where a deeper analysis of the data, of the inversion procedure and
of the retrieved results will be performed. Benthic habitat is mainly composed of sand,
Posidonia, and brown algae. The SHOM (hydrographic and oceanographic department
of the marine office) and the IGN (national geographic institute) French institutes carried
out a LIDAR (light detection and ranging) campain in 2015 to provide the bathymetric
data base ®Litto3D [72,73], with a precision of 95% and a spatial resolution of 1 m. The
data from ®Litto3D are used here as ground truth bathymetry for the investigated area. A
bathymetric profile from the beach (Figure 2) shows that the variation in depth for a spatial
resolution of 30 m can be by several meters within a single pixel, which makes difficult
to estimate water column parameters together with the bottom composition at shallow
depths. Consequently, the pixels that correspond to a depth shallower than 3 m depth are
discarded for the inversion process.

As it can be seen in the Figure 2a, the depth gradient is high in all the coastal area.

a b
Figure 2. Litto3D data: (a) bathymetry between 0 m and 30 m; the red vertical line in column 250 is
the location of the profile; (b) depth profile corresponding to the red line, from the beach up to −30 m.

2.1.2. Satellite Images

The DESIS and the PRISMA hyperspectral satellite data are used in this study. The
DESIS sensor is characterized by a spatial resolution of 30 m, a spectral range from 400 nm
to 1000 nm and a spectral sampling interval of 2.5 nm. The PRISMA sensor is characterized
by a spatial resolution of 30 m, a spectral range from 400 nm to 2500 nm and a spectral
resolution of 10 nm. DESIS image was acquired on 13 June 2021 and PRISMA image
on 14 August 2021. Atmospheric correction was operated from the Rayleigh reflectance
and the atmospheric transmittance that were simulated using the atmospheric model
6S and using default values of Mid-latitude summer atmospheric model for Rayleigh
correction [74]. We did that because no measurements of Sea Level Pressure and Ozone
over the study area were available at two different dates (13 June 2021 and 14 August
2021). The optical thickness of the aerosols has been measured using the data provided by
the nearest AERONET ground station. The aerosol reflectance was subtracted from the
top-of-atmosphere radiance using the black pixel method for pixels located offshore [75,76].
Such a method relies on the strong light absorption by seawater in the near infrared, which
thus leads to derive the atmospheric radiance from the satellite measurements. Two bands
in the near infrared (NIR) are required to extrapolate the aerosol reflectance from the near
infrared to the visible part of the spectrum. Since the study area consists of clear waters
(not turbid), the use of the black pixel method is relevant. In this work, PRISMA and DESIS
wavelengths were both ajusted to a 10 nm resolution, and the considered spectral range was
[420 nm–700 nm] for both sensors, because of the high absorption caused by the seawater
in the NIR.

An example of PRISMA and DESIS reflectance spectra for two pixels, corresponding
respectively to a sand area and to a mixed Posidonia area located at the seabed, are shown
Figure 3. Pure Posidonia is only located in deep (>25 m) areas. The shape of the bottom
reflectance is distorted by the light absorption by the water column.
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Figure 3. Spectral signatures from DESIS and PRISMA images, for the same two pixels, corresponding
respectively to a sand seabed area and to a mixed (70%) Posidonia seabed area.

It can be observed that beyond 700 nm, the information is not useful due to the high
absorption by the water column.

2.2. Models

The semi-analytical radiative transfer model, the environmental noise probability
model, and the water parameters probability model used in the study are briefly described
here. In the following, lower case variables in bold are vectors, and uppercase variables in
bold are matrices.

2.2.1. Semi-Analytical Radiative Transfer Model

The semi-analytical radiative transfer model that has been proposed by Lee et al. [15,52]
is used here for modelling the water reflectance from the bio-optical properties of the water
column (Equation (1)):

µ = rrs,∞[1−KC] +
1
π

r0,BKB , (1)

where µ = [µ(λ1)...µ(λL)]
t is the modeled subsurface reflectance spectral vector, λ is the

wavelength, and L is the number of spectral bands. r0,B is the bottom reflectance, rrs,∞ is
the reflectance of an infinitely deep water column, KB and KC are the attenuation matrices
for the photons that interact (KB) or not (KC) with the bottom. KB and KC are expressed as
follows (Equations (2) and (3)):

KB = diag
[
e−(kd(λl)+kb

u(λl))H
]

l∈[1:L]
(2)

KC = diag
[
e−(kd(λl)+kc

u(λl))H
]

l∈[1;L]
(3)

where kd is the attenuation coefficient of the water for the downwelling light, kb
u (kc

u) is
the spectral attenuation coefficient of the water for the upwelling light, for the photons
that interacts (resp. do not interacts) with the bottom. Two optical parameters, namely the
absorption and the backscattering coefficients a(λ) and bb(λ), depend on the water quality.
The absorption and backscattering coefficients affect the subsurface reflectance through
rrs,∞ and the attenuation coefficients kd, kb

u, kc
u. They are mainly dependent on three

optically active constituents, phytoplankton pigments (CHL), colored dissolved organic
matter (CDOM) and suspended particles matter (SPM). In this study, the expressions
taken from [17,52] are used to express these parameters. The detailed expression of kd,
kb

u, and kc
u, a, bb can be found in [64]. The unknown parameters are the water constituent

concentrations CCHL, CSPM, CCDOM (absorption coefficient at 440 nm), and the bathymetry
designed by H. These four parameters can be estimated by inverting the radiative transfer
Equation (1), using an optimization algorithm that minimizes the mean square error (MSE)
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between the measured rrs and the modelled reflectance µ. The bottom composition consists
of a linear mixing of M pure materials which are representative of the seabed as follows:

r0,B =
M

∑
m=1

amsm. (4)

Then the bottom can be estimated additionally, by estimating the mixing coefficients
am. If the sum-to-one constraint ∑M

m=1 am = 1 is applied to the mixing coefficients, they
represent the abundance fraction of each material in a single pixel.

2.2.2. Environmental Noise

Previous works highlighted the importance of taking into account and modelling the
variability of the observation [57]. The measured subsurface reflectance rrs can be described
by a Gaussian random vector (Equation (5)):

rrs ∼ N(µ, Γ). (5)

For each pixel of a given hyperspectral image, the mean value is µ, as provided by the
Equation (1), and the spectral covariance matrix Γ is supposed to be known and similar for
each pixel. Practically, Γ can be obtained from the whole image. An equivalent formulation
as Equation (5) could be as follows: rrs = µ + n, where n is an additive Gaussian noise
with zero mean and a covariance equal to Γ.

2.2.3. Water Column Parameters and Mixing Coefficients Variability

For the CRB development, each water parameter that should be retrieved, i.e., CCHL,
CCDOM, CSPM, H, am, is considered as an unknown, but fixed parameter. For the BCRB
development, each parameter that should be retrieved, i.e., CCHL, CCDOM, CSPM, H, am,
is considered as a random variable that follows an a priori known Gaussian law. All
the parameters are supposed to be mutually independent [57]. The vector parameter
Λ = [CCHL, CCDOM, CSPM, H, am] follows the Gaussian law:

Λ ∼ N(Λ̄, Σ), (6)

where Σ =


σ2

CHL 0 0.... 0
0 σ2

CDOM 0.... 0
0 . .... 0
0 .... 0
0 0 .... σ2

am

 is a diagonal matrix composed of the random

parameters variances.

2.3. Methods
2.3.1. Water Column Bio-Optical Parameters and Seabed Composition

The water column parameters {CCHL, CCDOM, CSPM, H} and the seabed composition
coefficients {am, m = 1...M} were obtained by inverting the atmospherically corrected
reflectance from DESIS and PRISMA images in the spectral range [420 nm–700 nm]. The
inversion procedure was achieved by minimizing the Euclidian distance between the
measured reflectance spectrum and the simulated one, using the lsqcurve f it ®MATLAB
optimisation algorithm and Equation (1). The parameters were each optimized in a fixed
range. The main constituents of the seabed are sand, Posidonia, and brown photophilic
algae. Consequently, three mixing coefficients a1, a2, a3 (see Equation (4)), are considered.
The values of the retrieved geophysical products {CCHL, CCDOM, CSPM, H, a1, a2, a3} are
used as input parameters for the calculation of the CRB and BCRB, for each pixel and for
each satellite image.
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2.3.2. Covariance Estimation of the Environmental Noise

An estimate of the environment noise covariance is obtained directly from the hy-
perspectral images. It is considered that this noise includes the sensor noise as well as
surface variations or variability in the atmospherical correction. A confident estimate of the
covariance matrix of the environmental noise Γ is essential to obtain consistent CRB and
BCRB. The Automated Local Convergence Locator (ALCL) method [77] is an algorithm
for locating suitable spatial areas for environmental noise retrieval in a remote sensing
image. ALCL aims to find an area where the spectrally averaged standard deviation (std)
of the reflectance computed over a square window does not change as the window size is
incremented. Here, the ALCL criterion was modified as proposed in [64] to favor lower
noise areas, and it was implemented to find a homogeneous area of optically deep water in
the image.

The DESIS (resp. PRISMA) covariance matrix is calculated on a rectangular area
corresponding to the low values of the ALCL weighted map. It can be seen in Figure 4 that
the estimated noise covariance is slighty higher for PRISMA than for DESIS. The mean
value of the diagonal of the covariance matrix is 2.28E−7 for DESIS data and 2.39E−7 for
PRISMA. This small difference can be due to the sensor SNR, but also to the sea surface
effects and atmospherical conditions, since the dates of acquisition were not the same.

Figure 4. Covariancematrices estimated on an homogeneous area of DESIS and PRISMA images.

2.3.3. Development of the Cramér–Rao Bayesian Bounds Approach

The use of Cramér–Rao Bounds has been introduced for water column and bottom
parameters in recent studies [62–64]. The CRB can provide lower bounds for the estimation
error of the unknown parameters, with fast computing time and for any chosen range of
parameters. It can be an interesting technique for designing future satellite sensors. The
CRB and BCRB calculus is the core of the presented work.

In [64], the semianalytical radiative transfer model of Lee has been already used
to calculate CRB, although the parameterization of the water column constituents was
somewhat different than the one we use here (P, G, X instead of CCHL, CCDOM, CSPM).
Λ = [CCHL, CCDOM, CSPM, H, am(m = 1...M)]T is the vector of unknown ocean color geo-
physical parameters to be retrieved from the remote-sensing observation rrs. The vector
dimension is N = 4 + M if no sum-to one constraint is applied, and N = 4 + M− 1 if the
sum-to one constraint is applied during the inversion. According to [69,70], the Fisher In-
formation Matrix J is a square N × N matrix whose elements are defined as (Equation (7)):

[J(Λ)]i,j = E
[(

∂l(rrs|Λ)

∂Λi

∂l(rrs|Λ)

∂Λj

)]
, (7)

where l(rrs|Λ) is the log-Likelihood of rrs given Λ. The variance of any unbiased estimator
Λ̂i(rrs) of an element Λi of Λ is bounded as follows (Equation (8)):

E
[(

Λ̂i(rrs)−Λi
)2
]
≥
[
J(Λ)−1

]
i,i

. (8)
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In the multivariate Gaussian case with mean µ and known covariance matrix Γ,
Equation (7) can be as follows [69,78] (Equation (9)):

[J(Λ)]i,j =
∂µ

∂Λi
Γ−1 ∂µ

∂Λj
. (9)

Here, the determination of the Fisher Information Matrix only requires the calculation
of the derivatives ∂µ

∂Λi
. The Cramér–Rao Bounds of the parameters Λi are given by the

diagonal elements of the inverse of the Fisher Information Matrix (Equation (10)):

CRB(Λi) =
[
J(Λ)−1

]
i,i

(10)

Based on such a modelling approach, CRB(Λi) includes the uncertainties associated
to the considered Fisher Information Matrix, which only depends on the sensor radiometric
specifications, bio-optical model, and environmental noise. Errors related to ground truth
measurements, systematic corrections such as atmospherical corrections, inverse method
or inaccurate modeling are not considered. CRB(Λi) are the minimum uncertainties in
Λ̂i(rrs) due to the environment noise (described by Γ), and to the sensitivity of the model µ

to the parameters variation (described by ∂µ
∂Λj

), for the specified wavelengths.
Some a priori information is often available on the range of variation of the parameters.

Previous studies showed the interest of including such knowledge when estimating the
water column parameters, especially when the number of parameters increases [56]. In this
case, the unknown parameters are considered as random parameters, with a known a priori
probability law. In a practical point of view, the inversion process used to estimate Λi(rrs) is
usually performed by minimizing the squared error between the modeled reflectance µ and
the measured reflectance rrs. The minimum is searched in a bounded domain of variation
for the parameters, which can be considered as a priori information. This information could
be taken in consideration to determine a minimum error for the parameters estimation.
The maximum a posteriori Fisher Information Matrix JMAP, whose elements are defined in
Equation (11), includes the a priori information on the estimated parameters [69,70,79–83]:

JMAP
i,j = EΛ[J(Λ)]i,j +EΛ

[
∂ log PΛ(Λ)

∂Λi

∂ log PΛ(Λ)

∂Λj

]
(11)

where EΛ denotes expected value over the parameter vector Λ. Here, the parameter Λi
mean square error is bounded as:

E[(Λi − Λ̂i)
2] ≥

[
(JMAP)−1

]
i,i

,

where Λ̂i can be any nonbiased estimate of Λi [69].
If the parameter vector Λ follows a Gaussian law and if the noise n is additive and

follows a Gaussian law as well, the two terms of JMAP
i,j are given by Equation (12):

EΛ[J(Λ)]i,j = EΛ

[
∂µ

∂Λi
Γ−1 ∂µ

∂Λj

]

EΛ

[
∂ log PΛ(Λ)

∂Λi

∂ log PΛ(Λ)

∂Λj

]
= di,j (12)

where di,j denotes the (i, j) element of Σ−1.
It has been shown that JMAP can be approximated by [80,84,85]:

JMAP = MT J M + Σ−1 (13)
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where M is the identity matrix I if each individual parameter follows a Normal distribution.
The Bayesian Cramér–Rao bound (BCRB) is given by Equation (14).

BCRB(Λi) = [(JMAP)−1]i,i (14)

3. Results

The products of the inversion of PRISMA and DESIS images are used to calculate
their respective BCR and BCRB. It should be highlighted that the aim of this work is
not to obtain optimal inversion performance but to develop a method to obtain a reliable
evaluation of the inversion performance.

The water column parameters and the seabed composition are obtained for both
images by inverting the reflectance data, using the radiative transfer equation presented in
Equation (1) (see Section 2.3.1). The bottom reflectance is supposed to be a mixing of three
materials, sand, Posidonia, and brown algae (see Section 2.1). Their spectral signatures are
respectively referred to as s1, s2, s3, and the corresponding abundances (mixing coefficients)
are respectively a1, a2, a3. The mean square error between the modeled reflectance and the
measured reflectance is optimized for each pixel N to retrieve the vector parameter Λi. The
spectral signatures used here are extracted from the same spectral library than those used
in [59], which were collected in 2018 in the nearby area of Porquerolle island (France).
Posidonia, brown algae and colonised Posidonia reflectance are the same than those used
in [59], the sand spectrum magnitude is higher here. The reflectance spectra were obtained
by dividing the ASD radiance of the benthic habitats by a Spectralon white field radiance,
consequently they are in percentage.

The ®Litto3D bathymetry (see Section 2.1.1), referred to as z, is considered as the
ground thruth, and is used to calculate the empirical error (RMSE) on bathymetry.

The sum-to-one constraint was applied to the abundances coefficients during the
inversion, so only two abundance coefficients were considered as unknown parameters,
resulting in six unknown parameters. Additional constraint such as limited domain of in-
version for each parameter was applied during the optimisation procedure. The theoretical
minimum bound for the estimation error of the water parameters have been performed for
several cases: first, it was assumed that each parameter was estimated separately, all the
others being known, so scalar CRB and BCRB (CRB1 and BCRB1) were calculated for each
parameter of the vector Λ = [CCHL, CCDOM, CSPM, H, a1, a2]. In a second step, the water
composition CCHL, CCDOM, CSPM, was supposed to be known, resulting in three parameters
vectors Cramér–Rao Bounds being estimated (CRB3 and BCRB3). In a third step the CRB
and BCRB for all the six parameters that were considered as simultaneously retrieved were
calculated (CRB6 and BCRB6). This last configuration corresponds to that of the inversion.
Since the CRB and BCRB provide minimum variance bounds, the square root of the BCR
and BCRB are presented, to be consistent with a root mean square (RMSE) error. For
the Bayesian BCRB, the a priori distribution law of each parameter is approximated by a
Gaussian distribution with a mean value equal to the value estimated in each pixel, and

a variance equal to q2

12 , q = b− a, a and b being respectively the bounds of the research
domain in the inversion algorithm for the estimation of each parameter.

The CRB and the BCRB relative to the depth are compared with empirical errors,
obtained using the retrieved bathymetry denoted as H, and the ®Litto3D data, denoted as
z, considered as ground truth. The RMSE error for H is:

RMSE =

√√√√ 1
N

N

∑
n=1

(H(n)− z(n))2,

where n = 1...N is the index of the pixels in the inversion domain. The relative error RE is
obtained by using:
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RE =
1
N

N

∑
n=1

H(n)− z(n)
z(n)

.

3.1. CRB and BCRB for the PRISMA Image

The PRISMA image has been masked for outliers pixels e.g., boats, and for pixels
such as z < 3 m or z > 30 m (or alternatively z > 20 m). Then, the inversion of the
water parameters was performed in the inversion domain Dp3−30 (resp. Dp3−20), defined
as the nonmasked pixels of the PRISMA image. The sum-to-one constraint was applied
to the mixing coefficients a1, a2, a3 during the inversion. The spectral signatures of sand,
Posidonia and brown algage that were used for the inversion are shown in Figure 5.

Figure 5. Reflectance spectra of benthic habitat used for the inversion of PRISMA image.

3.1.1. Results for PRISMA Data Using the Inversion Domain Dp3−30

The mean values obtained for the retrieval of the water column parameters (see
Section 2.2) in the inversion domain Dp3−30 are presented in Table 1:

Table 1. PRISMA data: mean values of the retrieved water parameters in the inversion domain
Dp3−30, and bounds applied to the parameters during the inversion process.

Retrieved Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2 a3

Mean value 13.23 0.004 0.03 0.21 0.65 0.30 0.04

Bounds for inversion [0–30] [0–5] [0–5] [0–5] [0–1] [0–1] [0–1]

The water quality shows mainly suspended matters (SPM) concentration, while low
concentrations of Chlorophyll and organic dissolved matters are retrieved. The water is
then considered as clear. The estimated bottom composition shows a majority of sand cover,
while Posidonia abundance is around 30% and brown algae is rare.

The CRB and BCRB values, which are shown in Table 2, have been calculated for the
retrieved values of the water column parameters in the inversion domain Dp3−30. In order



Remote Sens. 2023, 15, 2242 11 of 24

to take the sum-to-one constraint into account for the Cramér–Rao bounds calculus, only
the two coefficients a1, a2 were considered as free parameters, the last one is retrieved by
using a3 = 1− a1 − a2. CRB0.5

N is the root of the mean Cramér–Rao Bound over the whole
area of the inversion domain, N is the number of parameters being retrieved (size of the
vector Λ). The a priori standard deviation (std) for each parameter is the square root of the
corresponding diagonal term of Σ, as defined in Equation (6).

Table 2. PRISMA data: standard deviation (std) of the constraint applied to each parameter during
the inversion, and square root of the mean CRB1, (resp. CRB3, CRB6, BCRB1, BCRB3 and BCRB6),
obtained for the retrieved parameters in the domain Dp3−30.

Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2

a priori std 8.66 1.44 1.44 1.44 0.29 0.29

CRB0.5
1 0.55 0.02 0.001 0.07 0.02 0.28

CRB0.5
3 2.20 – – – 0.11 2.25

CRB0.5
6 5.92 0.19 0.006 0.15 0.23 2.62

BCRB0.5
1 0.49 0.02 0.001 0.07 0.02 0.11

BCRB0.5
3 0.73 – – – 0.03 0.24

BCRB0.5
6 1.37 0.14 0.005 0.14 0.08 0.27

As expected, there is not much difference between the CRB and the BCRB for the case
where only one parameter is unknown (CRB1 and BCRB1). This is because the estimation
of only one unknown parameter while the others are supposed to be known, can be easily
achieved, whether or not one has a priori knowledge. There is a higher difference betwen
CRB1 and BCRB1 for the Posidonia abundance parameter a2. The Posidonia may be
difficult to estimate because of its low reflectance values compared to the sand ones. The
Bayesian BCRB, which uses the a priori information attached to the parameters, remains
weak for the cases where three and six parameters are retrieved simultaneously, while the
value of CRB increase in those cases.

The empirical errors on the bathymetry, RMSE and RE, are calculated for many depth
ranges, in the case of all parameters being retrieved simultaneously (N = 6, Table 3):

Table 3. PRISMA data: RMSE error and relative error RE (in bracket) for the retrieved bathymetry.
The true depths are respectively comprised between [3 m–30 m], [3 m–6 m], [6 m–12 m], [12 m–30 m].

Depth Range z ∈ [3 m–30 m] z ∈ [3 m–6 m] z ∈ [6 m–12 m] z ∈ [12 m–30 m]

RMSE (m) and relative error RE (%) 8.67 (32%) 2.06 (35%) 1.23 ( 9%) 9.28 (34%)

The overall RMSE is about 8.67 m for a depth range between 3 m and 30 m (about
32% of relative error in mean). It is greater than both CRB6 and BCRB6, which are the
theoretical lower bounds for the error. The calculation of RMSE has also been carried out
for three other depth ranges to better understand the uncertainties in the retrieval of the
depth. It can be noted that the RE is higher for shallowest and deepest waters: it is 35%
for H ∈ [3 m–6 m] and 34% for H ∈ [12 m–30 m], while it is lower for intermediate depth
values (RMSE = 1.23 m, RE = 9% for H ∈ [6 m–12 m]). This latter point will be discussed
in the following (Section 4).

To better understand the variation of the RMSE and RE with the depth range as
observed in Table 3, both Cramér–Rao Bounds and empirical RMSE error for H are reported
as a fuction of the bathymetry (Figure 6).
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Figure 6. PRISMA data: root mean square of the Cramér–Rao and the Bayesian Cramér–Rao bounds
as a function of the estimated bathymetry, and empirical error (RMSE) as a function of the true
bathymetry, for the inversion domain Dp3−30.

Note that since the CRB are calculated using the oceanic parameters retrieved from
the inversion process of PRISMA data, the CRB and BCRB values are dependent on the
retrieved bathymetry H, while the empirical RMSE error on the estimation of depth
is reported as a function of the true bathymetry z, as provided by the ®Litto3D model.
Both CRBN and BCRBN increase with the depth; CRB1 is merged with BCRB1, while the
Bayesian BCRBN are lower than CRBN for 3 and 6 parameters estimated conjointly. The
RMSE empirical error vary in a different manner; it is quite high for depths between 3 m
(RMSE = 2.5 m) and 6 m (RMSE = 1.14 m) meters, and decreases with the depth to attain
a minimum value of 0.85 m at 8.5 m depth, to attain 1.23 (RE = 9%) for the depth range
z ∈ [6 m–12 m]. The RMSE is 1.23 m (RE = 9%) for the depth range z ∈ [6 m–12 m],
and increases beyond 12 m depth, to reach 14 m at 29 m depth (RE = 34% in the range
z ∈ [12 m–29 m]). This will be discussed in the following (Section 4).

Beyond 20 m depth, the CRB0.5
6 increases rapidly and gets higher than the empirical

RMSE error, which is not consistent with theory. Then, CRB0.5
6 cannot be used to calculate

minimum error bounds. Conversely, BCRB0.5
6 remains lower RMSE and increases in

parallel with it beyond 20 m depth.

3.1.2. Results for PRISMA Data Using the Inversion Domain Dp3−20

A second set of experiments was made for PRISMA image, to impose a more restrictive
inversion domain and tighter constraints for the inversion. In the following, the inversion
domain Dp3−20 is defined as the nonoutsiders pixels in the domain z ∈ [3 m–20 m]. The
inversion bounds are set to [0 m–20 m] for H. The mean values of the retrieved parameters
are given in Table 4.

Table 4. PRISMA data: mean values of the retrieved water parameters in the inversion domain
Dp3−20, and bounds applied to the parameters during the inversion process.

Retrieved Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2 a3

Mean value 11.57 0.002 0.03 0.16 0.72 0.25 0.03

Bounds for inversion [0–20] [0–5] [0–5] [0–5] [0–1] [0–1] [0–1]
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In the domain Dp3−20, as compared to Dp3−30, the mean value of the bathymetry is
lower, the water composition is similar except for the SPM concentration which is lower.
The sand estimated proportion is higher (a1 = 0.72 instead of a1 = 0.65).

The resulting CRBN and BCRBN are provided in Table 5:

Table 5. PRISMA data: standard deviation (std) of the constraints applied to each parameter during
the inversion, and square root of the mean CRB1, (resp. CRB3, CRB6, BCRB1, BCRB3 and BCRB6),
obtained for the retrieved parameters in the domain Dp3−20.

Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2

a priori std 5.77 1.44 1.44 1.44 0.29 0.29

CRB0.5
1 0.11 0.02 0.001 0.08 0.007 0.11

CRB0.5
3 0.45 – – – 0.03 0.61

CRB0.5
6 0.81 0.19 0.006 0.16 0.10 0.85

BCRB0.5
1 0.11 0.02 0.001 0.08 0.007 0.09

BCRB0.5
3 0.27 – – – 0.02 0.23

BCRB0.5
6 0.62 0.14 0.005 0.15 0.07 0.26

The restriction of the inversion domain to Dp3−20 affects only the values of the CRBN
and BCRBN of H, a1 and a2, which are lower than those obtained in the domain D3−30,
while the CRBN and BCRBN for the water parameters are in accordance with those obtained
in the domain Dp3−30.

The empirical errors on H are provided in Table 6 for several depth ranges:

Table 6. PRISMA data: RMSE error and relative error RE on the bathymetry H, for depths respec-
tively comprised between [3 m–20 m], [3 m–6 m], [6 m–12 m], [12 m–20 m].

Depth Range z ∈ [3 m–20 m] z ∈ [3 m–6 m] z ∈ [6 m–12 m] z ∈ [12 m–20 m]

RMSE (m) and relative error RE (%) 4.09 (20%) 2.06 (35%) 1.23 ( 9%) 4.72 (23%)

Compared to the results of Table 3 (domainDp3−30), the errors in the range z ∈ [3 m–6 m]
and z ∈ [6 m–12 m] do not change, while the errors in the ranges z ∈ [3 m–20 m] and
z ∈ [12 m–20 m] are lower than for z ∈ [3 m–30 m] and z ∈ [12 m–30 m].

The RMSE empirical error, CRB and BCRB for the bathymetry H are reported in
Figure 7 as a function of the bathymetry:

Figure 7. PRISMA data: root mean square of the Cramér–Rao and Bayesian Cramér–Rao bounds as a
function of the estimated bathymetry, and empirical RMSE error as a function of the true bathymetry,
for the inversion domain Dp3−20.
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The CRBN and BCRBN increase with depth, while the empirical RMSE error first
decreases in the interval z ∈ [3 m–9 m], and increases after 9 m depth. The CRB6 show
some irregular variations after 15 m depth, while the BCRB6 are lower and more regular
and increase in parallel with the RMSE.

3.2. CRB and BCRB for DESIS Image

For DESIS image, the inversion domain is defined in the same way as for PRISMA
image. The masked pixels could be somewhat different, because the day of acquisition
was not the same and outliers pixels such as boats may have changed. In addition, the
atmosphere conditions could also have changed, so despite the atmospherical correction
it could lead to small variations. Last, water condition could have changed as well. The
reference spectra used for the inversion are shown in Figure 8.

Figure 8. Reflectance spectra of benthic habitat used for the inversion of DESIS image.

It can be seen that the Posidonia reflectance spectrum is not the same than the one
used in the inversion of PRISMA image. For each image, the final selected signatures
were the ones that provided the best final inversion results in terms of bottom habitats
retrieval. For PRISMA image, colonised Posidonia was more representative than the fresh
Posidonia signature which was used for DESIS image, because of the latter acquisition date
in summer.

3.2.1. Results for DESIS Data Using the Inversion Domain Dd3−30

The first set of experiments is performed for the pixels in the domain Dd3−30. The
imposed bounds in the inversion procedure are the same as for the PRISMA image.

The mean values of the retrieved water and seabed parameters over the inversion
domain are reported in Table 7:

Table 7. DESIS data: mean values of the retrieved water and seabed parameters in the domain
Dd3−30.

Retrieved Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2 a3

Mean value 13.90 5.36 10−6 0.05 0.70 0.57 0.42 0.01

Bounds for inversion [0–30] [0–5] [0–5] [0–5] [0–1] [0–1] [0–1]
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The main conclusions on the water quality remain the same as for the PRISMA image:
the suspended matters (SPM) concentration is moderate, while low concentrations of
Chlorophyll and organic dissolved matters are retrieved. However, the mean value of
the retrieved SPM are higher (0.70 g.m−3 for DESIS and 0.21 g.m−3 for PRISMA). For the
bottom cover, a little difference is noticeable with PRISMA results, the estimated sand cover
is higher (0.65) and the Posidonia coverage is lower (0.30) for PRISMA data. It could be
due to the use of the colonized Posidonia spectral signature which is more similar to sand
spectra than fresh Posidonia spectral signature (used to invert PRISMA data).

The square root of the mean CRB (resp. BCRB) obtained for the DESIS image are
presented in Table 8 for the data in D3−30.

Table 8. DESIS data: Square root of the mean CRB1, (resp. CRB3, CRB6, BCRB1, BCRB3 and BCRB6),
obtained for the retrieved parameters in the domain Dd3−30.

Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2

a priori std 8.66 1.44 1.44 1.44 0.28 0.28

CRB0.5
1 0.31 0.03 0.001 0.08 0.02 0.04

CRB0.5
3 1.28 – – – 0.26 0.51

CRB0.5
6 2.15 0.12 0.009 0.17 0.67 1.34

BCRB0.5
1 0.29 0.03 0.001 0.08 0.02 0.04

BCRB0.5
3 0.57 – – – 0.12 0.18

BCRB0.5
6 1.04 0.11 0.006 0.17 0.14 0.25

As the number of unknown parameters increases, the lower bounds increase, and the
difference between CRB and BCRB also increases. It is observed that the use of BCRB3 (resp.
BCRB6), leads to a decrease of around 50% the CRB for H. The CRB1 for the Posidonia
abundance a2 is lower than for PRISMA data. It could be due to the colonized Posidonia
spectral signature used, which has higher values than the fresh Posidonia signature used for
PRISMA inversion. Generally the CRB and the BCRB are slightly below than for PRISMA
data in the domain Dp3−30, except for the SPM concentration.

Table 9 presents the RMSE and the RE errors on the bathymetry H for several depth
ranges:

Table 9. DESIS data: RMSE and RE empirical errors on the bathymetry H for depths respectively
comprised between [3 m–30 m], [3 m–6 m], [6 m–12 m], [12 m–30 m].

Depth Range z ∈ [3 m–30 m] z ∈ [3 m–6 m] z ∈ [6 m–12 m] z ∈ [12 m–30 m]

RMSE (m) and relative error RE (%) 6.96 (25%) 1.35 (25%) 1.20 ( 9.6%) 7.50 (27%)

The empirical errors are lower for DESIS data than for PRISMA data (see Table 3) in
the ranges [3 m–6 m], and [12 m–30 m], but they are the same in the range [6 m–12 m].
Both Cramér–Rao Bounds and empirical RMSE error for H are reported as a fuction of the
bottom depth in Figure 9.

The RMSE error increases after a minimum at 11 m depth, the CRB6 and CRB3 exceed
the empirical error beyond 18 m depth, ans the BCRB6 remains lower and parallel to
the error.
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Figure 9. DESIS data: root mean square of the Cramér–Rao and the Bayesian Cramér–Rao bounds as a
function of the estimated bathymetry, and empirical RMSE error as a function of the true bathymetry,
for data in the domain Dd3−30.

3.2.2. Results for DESIS Data Using the Inversion Domain Dd3−20

The mean values of the retrieved water and seabed parameters over the inversion
domain are reported in Table 10:

Table 10. DESIS data: mean values of the retrieved water and seabed parameters in the domain
Dd3−20.

Retrieved Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2 a3

Mean value 12.35 4.11 10−7 0.06 0.79 0.62 0.37 0.008

Bounds for inversion [0–20] [0–5] [0–5] [0–5] [0–1] [0–1] [0–1]

The main conclusions are similar as for the domain Dd3−30, except for the bathymetry
which is lower, for the SPM concentration which slightly higher and the sand abundance
which is higher. Compared to the PRISMA image, the concentration of SPM is higher,
while the mean value of sand abundance is lower and the Posidonia abundance is higher.

The square root of the mean CRB (resp. BCRB) obtained for the DESIS image are
presented in Table 11 for the inversion domain Dd3−20.

Table 11. DESIS data: standard deviation (std) of the constraints applied to the parameters during
the inversion, and square root of the mean CRB1, (resp. CRB3, CRB6, BCRB1, BCRB3 and BCRB6),
obtained for the retrieved parameters in the domain Dd3−20.

Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2

a priori std 5.77 1.44 1.44 1.44 0.28 0.28

CRB0.5
1 0.24 0.03 0.002 0.09 0.02 0.04

CRB0.5
3 0.85 – – – 0.21 0.38

CRB0.5
6 1.61 0.11 0.009 0.20 0.52 1.04

BCRB0.5
1 0.23 0.03 0.002 0.09 0.02 0.04

BCRB0.5
3 0.47 – – – 0.11 0.17

BCRB0.5
6 0.82 0.10 0.006 0.19 0.14 0.24
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As the number of unknown parameters increases, the lower bounds increase, and the
difference between CRB and BCRB also increases. The root of the mean CBR for H for the
case where three and six parameters are unknown is 0.85 m, and 1.61 m respectively. It is
observed that the use of the Bayesian approach BCRB, which takes into consideration the
available a priori knowledge on the range of variation of the oceanic parameters, leads to a
50% reduction of the CRB0.5

3,6 for the two latter cases.
The empirical RMSE and RE errors on H are calculated in the domain Dd3−20

(Table 12):

Table 12. DESIS data: RMSE and RE empirical errors on the bathymetry H, for depths respectively
comprised between [3 m–20 m], [3 m–6 m], [6 m–12 m], [12 m–20 m].

Depth Range z ∈ [3 m–20 m] z ∈ [3 m–6 m] z ∈ [6 m–12 m] z ∈ [12 m–20 m]

RMSE (m) and relative error RE (%) 2.71 (15%) 1.35 (25%) 1.20 (9%) 3.09 (16%)

The root mean square error RMSE3−20 = 2.71 m, is higher than both CRB0.5
6 and

BCRB0.5
6 . The minimum error is in the depth domain z ∈ [6 m–12 m] (1.2 m, 9%). The error

increases for low bathymetry and high bathymetry.
The CRB and BCRB for H are presented as a function of the retrieved depth H in

Figure 10, together with the RMSE as a function of the ground truth depth z.
The CRBN and the BCRBN increase with the depth. The a priori knowledge (i.e., BCRBi)

does not lead to a decrease of the bounds when a single parameter is retrieved (BCRB1
and CRB1), while the Bayesian bounds are lower for the cases of three and six retrieved
parameters. The empirical error is quite high for a weak bathymetry z ∈ [3 m–8 m] (around
1.3 m), decreases for z between 8 m and 13 m, and increases for z > 14 m. For depths higher
than 18 m, the CRBN increase rapidly and exceed the RMSE, while the BCRBN remain
lower and increase in parallel with the RMSE.

Figures 7, 9 and 10, show that the standard CRB approach cannot be used to estimate
the minimum bounds in the considered inversion domain, because it may exceed the RMSE
in some cases. The BCRB6, which include the same a priori knowledge on the parameters
than the RMSE, provides a better idea of what minimal bounds could be expected when
estimating water constituents and seabed parameters.

Figure 10. DESIS data: root mean square of the Cramér–Rao bounds and the Bayesian Cramér–Rao
bounds and empirical error (RMSE) as a function of the bathymetry, for the domain Dd3−20.
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4. Discussion
4.1. Interpretation of the Variation of RMSE with the Depth
4.1.1. Lower Depths

Both empirical errors estimated from PRISMA and DESIS images show a nonexpected
variation for lshallow depths. It is well known that the error on depth estimation increases
with the depth [63], except for very shallow water (less than 0.5 cm depth for moderately
turbid waters). Here the error on H presents a minimum around 8 m depth, while it should
regularly increase from 1 m depth. The CRB6 and BCRB6 do not present this minimum,
they regularly increase, as expected.

Let us examine the error sources taken in consideration in the development of the
CRB and BCRB lower bounds. The error sources are the environmental noise (covariance
matrix), the sensitivity of the model to a variation of the parameters, and the number of
parameters that needs to be simultaneously retrieved (i.e., size of the Fisher Information
matrix). The CRB and BCRB also depend on the set of wavelengths used. Other sources of
error could be examined, such as the spatial resolution. In Section 2.1, where the data are
presented, it is shown that the depth increases rapidly with the distance from the beach
(Figure 2). The spatial resolution is 30 m for both PRISMA and DESIS images. The depth
slope, which is calculated between the pixel #1 and the pixel #4 of the depth profile shown
Figure 2, leads to a variation of 2.3 m depth per pixel (square of 30 m × 30 m of the scene)
in mean. However, in the pixelwise inversion procedure developed to obtain the vector
parameter Λ, the depth is assumed to be constant over one pixel. If the depth varies inside
a single pixel, there could be a confusion between depth (H) and bottom composition (am).
Then, the simultaneaous estimation of all the parameters is no longer reliable and the error
increases due to the rough spatial resolution. The error is higher for lower depths because
the relative depth variation within one pixel is higher for very shallow water than for
deeper water, making the estimation very challenging at lower depths.

Briefly, the results shown Figures 5, 6, 8 and 9, and in Tables 3, 6, 9 and 12, which
report a higher error for shallow pixels, show that the spatial resolution of the satellite
sensor is a critical parameter for estimating the depth in shallow and steep coastal areas.

4.1.2. Higher Depths

For the intermediate depth interval [6 m–12 m], the influence of the bottom slope
gets relatively lower within one pixel because the reflectance model is less sensitive to a
variation of depth of a few meters. In addition, the bottom composition has lower influence
at these depths. This could explain that the RMSE is lower (around 9% of relative error
for all the treated cases). For the depth range [12 m–20 m] (resp. [12 m–30 m]), the error
increases. Following Lee’s model given in Equation (1), the attenuation matrices KB and
KC decrease as the water column height H increases, so the water reflectance tends to that
of rrs,∞ at higher depths. Then, very poor information on the depth H could be derived.
As a result, the retrieval error on H increases at higher depths, the bottom being barely
visible. RE is 23% (resp. 34%) for PRISMA data and RE is 16% (resp. 23%) for DESIS data.
DESIS data seem to be more robust than PRISMA data for the deepest areas; however, the
RMSE and RE errors are very dependent on outliers pixels, which can be masked or not in
the inversion procedure. Therefore, it is not possible to draw any final conclusion about the
comparison of the PRISMA and DESIS sensors performances.

4.2. Comparison between CRBN and BCRBN

For the depth estimation, as previously mentioned, there is no significant difference
between CRB1 and BCRB1. This is because the inversion of one parameter is not challenging
in the context of the noise of PRISMA (and DESIS) data and shallow clear water. For such a
case, the introduction of a priori knowledge does not change the accuracy of the estimate.
Of course the expected RMSE error of estimation, as well as the CRBN and the BCRBN ,
depend on the number of unknown parameters N that should be estimated simultaneously.
The differences between CRBN and BCRBN appear for three parameters unknown, and
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increase with the number of retrieved parameters (6 parameters). The CRBN become
unstable and diverge for the higher depths and the higher number of parameters. The
CRBN can exceed the RMSE for challenging conditions such as a low signal to noise level,
and a high number of unknown parameters. This is not consistent with theory which
claims that CRB represent the lower bounds, which can only be reached using a Maximum
Likelihood estimator, when all the sources of variability are correctly modeled. Here, some
sources of error are not taken into account, such as radiative transfer model errors, noise
model errors, spectral signatures reliability and variability, and also the influence of the
spatial resolution. The CRBN should be significantly less than the errors. Beyond z = 13 m,
the RMSE increases with an approximately constant slope for all experiments, because the
optimization algorithm is driven by the imposed bounds of the parameters. The BCRBN ,
which take into account this a priori knowledge, remain always lower than the RMSE and
increase in parallel with it from around 17 m depth.

For the water constituents concentrations CCHL, CCDOM, CSPM, there is not much differ-
ence between the CRBN and BCRBN for all the configuration tested (Tables 2, 5, 8 and 11).
This could be due to the values of the imposed bounds in the optimization, which are quite
large compared to the actual values of the parameters; consequently the a priori knowledge
is weak and does not significantly decrease the BCRBN in comparison with the CRBN .

Our results show that the CRB6 are not able to represent the minimum bounds for the
error obtained for six parameters unknown, while BCRB6 has the advantages to represent
those minimum bounds. The models and the method used to develop the Bayesian version
of the CRB, although they are based on some assumptions (see Section 2), could be used to
derive a good approximation of minimum bounds for estimated water column parameters
and seabed composition.

4.3. Difference between PRISMA and DESIS Sensors

The results of the inversion of PRISMA and DESIS sensors are regionally consistent.
They both show presence of SPM, low concentrations of CHL and CDOM, a major cov-
erage of sand and Posidonia, and very few brown algae. However, some differences
were observed.

The CRBN and the BCRBN depend on the parameters value. It is not possible to
compare PRISMA and DESIS sensors performances based on the CRBN and theBCRBN
obtained for the products of the inversion of the two images presented in Figure 1, because
the retrieved parameters are different for each image. To compare the lower bounds for
the two sensors, the water column parameters and the bottom composition should be
the same. One simulation using the same values of all the parameters representative of
the scene and the same bottom reflectance for both sensors has thus been carried out.
The characteristics of the two sensors such as wavelengths between 420 nm and 700 nm
and covariance matrices are the ones that have been used previously in Section 3. The
parameters values used for simulation are presented in Table 13:

Table 13. Values of the water parameters and bottom abundances used in the simulation.

Retrieved Parameter H (m) Cchl (mg.m−3) Ccdom (m−1) Cspm (g.m−3) a1 a2 a3

Mean value [1–20] 0.001 0.05 0.5 0.65 0.30 0.05

The resulting BCRB6 as a function of the depth are shown Figure 11.
Generally, the BCRB are slightly lower for DESIS than for PRISMA, except for the

SPM concentrations. For the bathymetry H, the lower bounds increase with the depth,
varying from 0.01 m (1%) at 1 m depth for both sensors, to 2.24 m (11%) for PRISMA and
1.80 m (9%) for DESIS at 20 m depth. The relative difference between the PRISMA and
DESIS BCRB is 20% at 20 m depth. The lower bounds for the water column composition
(CHL, CDOM, SPM) increase at lower depth, due to the lack of information about the
water composition because the water layer is too thin. This is an expected result [64].
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The bounds associated with CHL concentrations are very high compared to the CHL
concentrations used for the simulations. This is consistent with the previous results shown
Tables 2, 5, 8 and 11. In fact, very little CHL is present in the water column; thus, it could
not be detected. This could lead to an associated BCRB higher than the parameter value
CCHL. The relative difference between PRISMA and DESIS BCRB is around 30%. For the
CDOM concentration, which is near zero in Figure 11, the values of the BCRB are between
0.012 m−1 and 0.007 m−1 for PRISMA, and between 0.009 m−1 and 0.005 m−1 for DESIS.
There is a minimum around 7 m depth, and the BCRB both increase at lower and higher
bathymetry. The BCRB are low compared to the parameter value (about 10%), and the
relative difference between PRISMA and DESIS BCRB is around 20%. The BCRB associated
with SPM are higher than the concentrations for low bathymetry (H < 3 m). They decrease
rapidly up to 6 m, and it continues to decrease slowly beyond 6 m. The BCRB are higher
for DESIS between 2 m and 14 m, and the two sensors BCRB curves superimposed beyond
14 m. The relative difference is around 20% at 10 m depth. The BCRB for the abundances
increase with the depth, and for a2 it tends towards the a priori std 0.28 m (it should be the
same for a1 for deepest bottoms).

(a) (b) (c)

Figure 11. Comparison between BCRB obtained for PRISMA and DESIS sensors, using 6 retrieved
parameters and simulated data; (a) for H, (b) for CHL, CDOM, SPM, (c) for a1, a2.

Briefly, the minimum error bounds BCRB for PRISMA and DESIS sensors are of the
same magnitude, even if it appears a relative difference between 10% and 30% in the range
of parameters used in favor of DESIS, except for the SPM minimum bound which is lower
for PRISMA.

5. Conclusions and Perspectives

In this paper, a Bayesian Cramér–Rao Bounds approach has been proposed for assess-
ing the water column parameters estimation from hyperpsectral satellite data acquired
over a coastal environment. Two sets of satellite data have been used, namely DESIS and
PRISMA data. For both cases the RMSE empirical error between ground truth and re-
trieved bathymetry was compared to the standard Cramér–Rao Bounds and to the Bayesian
Cramér–Rao Bounds, for the case where up to six water colum and bottom parameters
should be retrieved by the inversion algorithm. The standard CRB approach was shown
to go beyond the empirical error for the most challenging retrieval configurations such as
those which imply retrieving various water parameters and bathymetry simultaneously.
The Bayesian BCRB approach that takes into account the inversion constraints applied to
the retrieved parameters, is proved to be more robust than CRB, lower than the empirical
error and to vary in parallel with it in the most challenging cases. The proposed BCRB
approach is then able to quantify uncertainties that could be reached when inverting the sea
surface remote sensing reflectance to derive ocean color parameters. The mains outcomes
of this study are as follow:

- A method for deriving Bayesian Cramér–Rao bounds (BCRB) of water column pa-
rameters and seabed composition is proposed
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- The obtained BCRB are consistent with empirical measures of errors for the retrieved
bathymetry

- The standard CRB are not always consistent with the empirical measures of errors for
the retrieved bathymetry

- The spatial resolution of the satellite sensor is crucial for having reliable parameters
estimation in shallow and steep areas

- The PRISMA and DESIS sensors have comparable minimum bounds performances

The proposed BCRB approach does not take into account the loss of performance due
to rough spatial resolution. Future works could consist in modeling the uncertainty that is
induced by the spatial resolution.
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