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Abstract: k-mer counts are important features used by many

bioinformatics pipelines. Existing k-mer counting methods focus on

optimizing either time or memory usage, producing in output very

large count tables explicitly representing k-mers together with their

counts. Storing k-mers is not needed if the set of k-mers is known,
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2 1 INTRODUCTION

making it possible to only keep counters and their association to

k-mers. Solutions avoiding explicit representation of k-mers include

Minimal Perfect Hash Functions (MPHFs) and Count-Min sketches.

We introduce Set-Min sketch – a sketching technique for representing

associative maps inspired from Count-Min – and apply it to the

problem of representing k-mer count tables. Set-Min is provably

more accurate than both Count-Min and Max-Min – an improved

variant of Count-Min for static datasets that we define here. We

show that Set-Min sketch provides a very low error rate, both in

terms of the probability and the size of errors, at the expense of

a very moderate memory increase. On the other hand, Set-Min

sketches are shown to take up to an order of magnitude less space

than MPHF-based solutions, for fully assembled genomes and large

k. Space-efficiency of Set-Min in this case takes advantage of the

power-law distribution of k-mer counts in genomic datasets.

Availability: https://github.com/yhhshb/fress

1 Introduction

Counting k-mer occurrences in genomic sequences is a rather common task in

many bioinformatics pipelines. It is often the first step performed before a more

complicated analysis, and its main applications go from read trimming (Liu

et al., 2012) to alignment-free variant calling (Rahman et al., 2018; Khorsand

and Hormozdiari, 2019). In recent years, many k-mer counting algorithms have

been proposed, such as Jellyfish (Marçais and Kingsford, 2011), DSK (Rizk et al.,

2013) or KMC (Kokot et al., 2017). Each of these methods was conceived with

a particular trade-off between speed and main memory consumption. Jellyfish

primarily addresses speed, whereas DSK and KMC primarily target memory
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efficiency. All these tools output a map associating k-mers to their counts. Such

a map can require a fairly big amount of disk space, especially when large values

of k are used. For example, the KMC output for a human genome with k = 32

weights in at around 28 GB. Memory efficiency remains an important issue

even when outputs are compressed. One way to partially solve this issue is to

only store counters, without storing k-mers themselves. This idea is supported

by the fact that, in many applications, we only deal with k-mers that come

from partially assembled reads or succinct representations of k-mer sets such as

colored de Bruijn graphs (Holley and Melsted, 2019), or spectrum-preserving

string sets (Břinda et al., 2020; Rahman and Medvedev, 2020), that is, only

k-mers present in the original data are queried for their frequencies.

The idea of storing only counter information and not k-mers is also supported

by the observation that the number of distinct k-mer counts in genomic data is

relatively small. Furthermore, it is known that k-mer counts in fully assembled

genomes obey a “heavy-tail” power-law distribution1 with a relatively large

absolute value of the exponent (Csűrös et al., 2007; Chor et al., 2009). For such

distributions, the number of distinct k-mers makes a linear fraction of the data

size, while the number of distinct k-mer counts is relatively small. For example,

for a human genome and k = 27, there are about 2.5 billions distinct k-mers but

only about 8,000 distinct frequency values. A heavy-tail distribution also imply

that the majority of k-mers have a very small count: in the above example, 97%

of k-mers are unique and 99% of k-mers have a count of at most 5. Frequent

k-mers often tend to have an identical count as well, due to transposable elements:

for example, k-mers specific to Alu repeats in primate genomes will likely have

the same count.

Our contribution. We propose a new probabilistic data structure that we

call Set-Min sketch capable to represent k-mer counts information in a small

1Here we assume k to be sufficiently large, typically k > log4 L, where L is the data size.
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space and with small errors. The sketch guarantees that the expected cumulative

error obtained when querying all k-mers of the dataset can be bounded by εN

where N is the number of all k-mers (i.e. essentially, the size of the dataset).

We provide a theoretical analysis in order to dimension the sketch according to

the desired error bound. Set-Min sketch is a general data structure in that it

can be used to efficiently represent a mapping of k-mers to any type of labels.

Nevertheless, it performs best when data is skewed and the number of possible

labels is relatively small.

Applications. The problem considered in this paper is the probabilistic

compression of k-mer count tables computed from fully assembled genomes, with

large k values. A Set-Min sketch is able to provide a more space-efficient map

than other representations with low errors when count distributions are very

skewed. Set-Min sketch can have different uses.

An application of Set-Min sketches not explored here, is to act as a tempo-

rary representation while building more complex structures based on counters.

Consider, for example, the exact computation of weighted pairwise distances

between all pairs of genomes in a given set. Examples of such distances are

the Bray-Curtis similarity measure, see e.g. (Benoit et al., 2016), or Weighted

Jaccard similarity estimation (Chum et al., 2008). The most naive algorithm is

to first produce count tables for each dataset and then compare them pairwisely

to produce the desired output. Instead of storing whole tables, one can store

multiple Set-Min sketches together with a presence-absence data structure, such

as a Bloom filter. By doing so, the weighted comparison computation is reduced

to a single pass through the presence-absence data structure with the counters

of a given k-mer retrieved on-demand from the Set-Min sketches of the datasets

in which the k-mer is found.

Another application is the quick sharing of counter information between
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different computational units in a distributed setting. Consider a situation

where both a server and one of its clients have access to the same genomic

representation (say, a set of contigs). Only the server can efficiently perform

k-mer counting, while the client has to process incoming data based on the

counts, but doen’t have the computational resources to perform counting by

itself. In this case, the server could send a Set-Min sketch to the other node.

One further feature of Set-Min sketches is their mergeability in case of

redundant maps. In this scenario, a large map can be split into m sub-maps

without the restriction of having disjoint sets of keys. Even if some maps have

redundant information, i.e. share common (key,value) pairs, the Set-Min sketch

built by cell-wise union of the m sketches will be equivalent to the sketch built

from the whole original map. Note that Count-Min sketches are not mergeable

for redundant maps but are mergeable when constituent maps have to be “added

up”. Set-Min sketches don’t have this property. In this respect, Set-Min and

Count-Min sketches may have complementary uses.

Outline of the paper. In Section 2, we start by formally introducing the

relevant terminology and underlying methods. Section 3 presents the idea and

algorithmic foundations of our method. Our results are presented in Section 4

while Section 5 discuss the limitations of our method and possible workarounds.

We conclude in Section 5 with a summary of the work.

2 Background

2.1 k-mer spectrum

A k-mer spectrum is a distribution of k-mer frequencies across all k-mers oc-

curring in the data, showing how many k-mers support each frequency value.

For large values of k, k-mer spectra follow a power-law distribution (Csűrös
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et al., 2007; Chor et al., 2009) characterized by a linear-like dependence when

represented in log-log scale. That is, the k-mer frequency distribution fits a

dependence f(t) ≈ c · t−a, where a is usually greater than 2. An example of

the spectrum for the human reference genome with k equal to 32 is given in

Figure 1. According to this distribution, a very large fraction of k-mers have

very low frequencies, while a few k-mers have “unexpectedly” large frequencies.

Large value of a implies that there are relatively few distinct frequency values

with non-zero support, whose number depends as the 1
a -power of the number of

k-mers.

2.2 Count-Min and Max-Min sketches
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101
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109

Figure 1: k-mer spectrum of the human genome for k = 32 in log-log scale.

Count-Min sketch (Cormode and Muthukrishnan, 2005a) is a method to
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compactly represent an associative array a of counters in an approximated way.

Count-Min is especially suitable for the streaming framework, when counters

associated to keys can be updated dynamically. A Count-Min sketch is an

R×B matrix A of counters where each row i is associated with a hash function

hi(·). To store counters and support their dynamic updates given in a stream,

Count-Min works as follows. To process an update which is a (key,value) pair

(p, `), we perform A(i, hi(p)) = A(i, hi(p)) + ` for each row i. The (approximate)

current counter associated with a key p is retrieved as â(p) = mini{hi(p)}.

It has been shown that for a Count-Min sketch built on an associative array

(vector) a, with R = dln( 1δ )e and B = d eεe for any given ε and δ, the over-estimate

error of an individual counter is bounded by ε‖a‖1 with probability at least 1−δ,

where ‖a‖1 is the L1-norm of a (Cormode and Muthukrishnan, 2005a). If counts

follow a Zipfian rank-frequency distribution with parameter b > 1, B can be

reduced to O(ε−1/b) to guarantee the same bounds (Cormode and Muthukrishnan,

2005b). Note that b > 1 corresponds to 1 < a < 2 in the corresponding spectrum

distribution (Adamic, 2000), while k-mer spectra often fit a distribution with

a ≥ 2. Count-Min sketch supports negative updates, i.e. allows ` < 0 in updates

(p, `), provided that the cumulative value for each key stays positive. If updates

are only positive, there exists a modification of Count-Min leading to a better

accuracy, mentioned in (Cormode, 2009) (therein attributed to (Estan and

Varghese, 2002)) as conservative update. Under this modification, updates for

each row i are made according to A(i, hi(p)) = max{A(i, hi(p)), â(p)+ `}, where

â(p) is the current Count-Min estimate of a(p). It is easily seen that under this

scheme, â(p) can still only over-estimate a(p), but cannot be larger than â(p)

computed by the original Count-Min. In this paper, we will deal with the static

case when the value of any key is given once and never changes after that. In

this framework, the conservative update strategy can be further modified by



8 3 METHODS

defining updates as A(i, hi(p)) = max{A(i, hi(p)), `}. We call this variant of

the sketch Max-Min. In the static case, Max-Min sketch improves Count-Min

without any computational overhead: it simply replaces addition by max in the

update rule. As with the conservative update, one can check that estimates by

Max-Min can only be over-estimates which, however, don’t exceed estimates by

original Count-Min.

2.3 Minimal Perfect Hashing

Minimal Perfect Hash Functions (MPHFs) are bijective functions between keys

of a set S and integers in the range [0, |S| − 1]. By using hash values as indexes

for an external array, it is possible to associate any type of information to the

k-mers. The construction of MPHFs can be hyper-graph peeling-based (Yu et al.,

2017; Esposito et al., 2019) or array-based (Müller et al., 2014). The first family

of algorithms leads to smaller MPHFs, close to theoretical space lower bound

of 1.44 bits per key, while array-based MPHFs are conceptually simpler and

have practical implementations for k-mer sets, such as BBHash (Limasset et al.,

2017).

3 Methods

3.1 Set-Min sketch in a nutshell

Assume we are given a set K of keys with associated values taken from a set L

with |L| � |K|. In our case, K is the set of k-mers occurring in the dataset and

L includes their frequencies, although our method will hold for any set of labels

L. We want to compactly implement the associative map of (key,value) pairs.

A Set-Min sketch is an R×B matrix M where each bucket is treated as a set,

initially empty. Similar to the Count-Min sketch, rows in the matrix correspond
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to hash functions hi, 0 ≤ i ≤ R− 1, that we assume pairwise independent.

At construction time, the key of each (key,value) pair (p, `) is hashed by

the hash functions to retrieve its buckets and the value ` is inserted into each

set. Formally, we update M(i, hi(p)) = M(i, hi(p)) ∪ {`} for each row i. To

retrieve the value associated with a key p, we compute the intersection of the

corresponding sets, that is ∩0≤i≤R−1hi(p). If the intersection is a singleton, the

value is returned. If the intersection is empty, p is not present in the map. If the

intersection contains more than one value, we have a collision.

3.2 Dealing with collisions

Intersect:

>

Final answer:

Figure 2: Example of collision resolution in case of multiple items occurring in
the intersection. The brown label is returned because it is more rare compared
to the blue one.

In case of collision, the choice is guided by the number of k-mers supporting

each label of the intersection: the label with the smallest support is returned
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(see Figure 2). The rationale for this is that the label with the smallest support

has the smallest probability to appear “by chance”, as labels with larger support

occur in more buckets and are therefore more likely to occur in the intersection

by chance. Thus, the algorithm compares spectrum values for all values of

the intersection, and returns the label with the smallest value (ties are broken

randomly). If the spectrum is monotonically decreasing (as it is usually the

case for large k, see Figure 1), then the label returned is simply the largest one

among those in the intersection.

In this work, we assume that only k-mers present in the dataset can be

queried. In this case, a query can no longer result in an empty intersection. We

further optimize by not storing in the sketch the label `1 with the largest support.

For large k, `1 is usually 1 which is the frequency of the largest fraction of

k-mers. `1 is retrieved implicitly: when the intersection is empty, `1 is returned.

This optimization allows us to save space and will be further discussed later.

Note that, with these modification, an error may occur even if the resulting

intersection is a singleton but the right label is actually `1.

We now show that with Set-Min sketch, we can bound the total absolute error

over all k-mers of the dataset. Consider a sketch S built on a map assigning

to each k-mer p ∈ K a value (label) `p ∈ L which is the frequency of p in the

dataset. We denote by c` the number of k-mers with frequency ` ∈ L (spectrum

value).

Consider

D =
∑
p∈K
|ˆ̀p − `p| (1)

where ˆ̀
p is the label of p returned by the sketch. Our goal is to dimension R

and B such that D ≤ ε‖a‖1, where ‖a‖1 is the total number of k-mers in the

dataset (roughly, the dataset size) and 0 < ε ≤ 1.

Querying p returns an incorrect frequency m 6= `p iff m occurs in the
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intersection and cm < c`p . The probability of this event is

(
1−

(
1− 1

B

)cm)R
≈
(
1− e−

cm
B

)R
(2)

and the expectation of the error when querying p is then

∑
cm<c`p
m∈L

|m− `p|
(
1− e−

cm
B

)R
. (3)

Summing up over all k-mers, we obtain

E[D] =
∑
`∈L

c`
∑
cm<c`
m∈L

|m− `|
(
1− e−

cm
B

)R
. (4)

The total number of k-mers is ‖a‖1 =
∑
`∈L `c`. Given 0 < ε ≤ 1, our goal

is to choose B and R in order to ensure

∑
`∈L

c`
∑
cm<c`
m∈L

|m− `|
(
1− e−

cm
B

)R
< ε

∑
`∈L

`c`. (5)

Assuming that k is sufficiently large and the spectrum is monotonically

decreasing, i.e. cm < c` iff m > `. (5) then rewrites to

∑
`∈L

c`
∑
m>`
m∈L

(m− `)
(
1− e−

cm
B

)R
< ε

∑
`≥1

`c`. (6)

Assume now that the spectrum follows a power-law with large exponent, that

is, c` = C · `−a for some a > 2. Note that under this assumption, the number of

unique k-mers is c1 = C, and the number of all k-mers is

∑
`≥1

`c` = C ·
∑
`≥1

1

`a−1
≤ C · a− 1

a− 2
,
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since ζ(s) =
∑
i≥1

1
is ≤

s
s−1 for s > 1.

We then have the following result.

Theorem 1. Given 0 < ε ≤ 1, if B > C and R, B satisfy

R · log B
C
> log

1

ε
, (7)

then (6) holds.

Proof. Our goal is to estimate

∑
`∈L

c`
∑
m>`
m∈L

(m− `)
(
1− e−

cm
B

)R
, (8)

where c` = C ·`−a. We assume B > C and approximate 1−e−
cm
B ≈ cm

B = C
Bm

−a.

We further lower-approximate (8) by replacing sums by integrals, thus obtaining

∫ ∞
1

C · `−a
∫ ∞
`

(m− `)
(
C

B
m−a

)R
dmd`. (9)

Routine computation of the integral yields

C

(
C

B

)R
1

(aR− 2)(aR− 1)(aR+ a+ 3)
. (10)

The inequality of the Theorem becomes

(
C

B

)R
1

(aR− 2)(aR− 1)(aR+ a+ 3)
< ε

a− 1

a− 2
. (11)

The Theorem follows.

The theorem allows us to dimension the Set-Min sketch. For example, one

can set B = αC for some constant α > 1 and R = logα
1
ε .
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Algorithm 1: Heuristic to compute R and B
Data: {c`}`∈L, ‖a‖1 =

∑
`∈L `c`, ε

Result: R and B
R← 1;
B ← 1.44× cmax;
T ← ε‖a‖1;
E ← E(D) (computed by (4));
while E > T do

R← R+ 1;
E ← E(D);

end
M ← R×B;
while E < T do

R← R− 1;
B ← dMR e;
E ← E(D);

end
R← R+ 1;
B ← dMR e;

3.3 Computing tighter sketch dimensions

Theorem 1 provides a way to dimension a Set-Min sketch, provided that the

spectrum follows a power-law distribution with a sufficiently large parameter

a. In order to validate these estimates experimentally, and, at the same time,

obtain a tool for computing tighter values B and R for arbitrary spectra, we

implemented a simple heuristic hill climbing algorithm to compute those values

by directly solving equation 5.

Algorithm 1, given below, starts with R = 1 and some initial value of B

and then iteratively increments R and recomputes (4) until equation (5) holds

true. In the implementation, B is initially set to 1.44× cmax, where cmax is the

largest spectrum value. After such a value of R is found, the algorithm starts

decrementing R while incrementing B to maintain the total space RB constant

as long as (5) holds. The final R and B are thus the last which satisfied (5) in

the decrementing loop. Note that, for both loops, there is a value of R for which
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the exit condition is satisfied. The rationale for this step is to have as small R

as possible in order to reduce the query time, while maintaining the total space.

4 Results

We implemented Set-Min in a software tool named fress, available at https://

github.com/yhhshb/fress. The fress pipeline compares Set-Min with Count-

Min and MPHF implementations. BBHash (Limasset et al., 2017) (https://

github.com/rizkg/BBHash) is the only external library required, as Count-Min

is implemented within fress.

Rather than storing a set in each bucket of the sketch, fress only stores an

index to an array of involved sets. Note that the current version of fress does

not include any complex optimisation, such as multi-threading or bit-packing of

the final matrix. Sorted spectra and lists of involved sets are explicitly stored in

text format.

We tested Set-Min on six data sets of different size and complexity. Four of

them are fully assembled genomes:

SAI Sakai strain of Escherichia Coli taken from (Yi and Jin, 2013) (NCBI

accession number B000007),

MNO genome of Drosophila melanogaster from FlyBase2,

RAI genome of Gossypium Raimondii (Hatje and Kollmar, 2012) downloadable

from AFproject(Zielezinski et al., 2019),

GRC human reference genome assembly GRCh383.

The other two contain unassembled reads:
2http://flybase.org
3ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_

GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_
analysis_set.fna.gz

https://github.com/yhhshb/fress
https://github.com/yhhshb/fress
https://github.com/rizkg/BBHash
https://github.com/rizkg/BBHash
http://afproject.org/app/
http://flybase.org
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38 /seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38 /seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38 /seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
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USAI Sakai strain at 5x coverage from AFproject,

SRR low-coverage human data SRR622461 from the 1000 Genomes Project4

Table 1 summarizes the characteristics of each data set for each value of k in

our analysis. Observe that, while the number of distinct k-mers is comparable

to the total number of k-mers (data size), the number of distinct k-mer counts

is small. This is in accordance with the power-law distribution discussed in

Section 2.1.

4.1 Set-Min vs Count-Min sketch

Table 2 compares Set-Min sketch to Count-Min sketch. Dimensions R and B

were computed using Algorithm 1 to insure bound (5) to hold for ε = 0.01.

Dimensions of Count-Min sketch were set to be the same. Value 1 is the most

common count in all reported datasets and it was not inserted into Count-Min

sketch in order to make the comparison againts Set-Min as fair as possible. Zero

values are thus interpreted as the non-inserted count.

For ease of comparison, column T reports the threshold ε‖a‖1 given to

Algorithm 1. Columns Es and Ec report the actual total sum of errors for

Set-Min and Count-Min, respectively. In all reported cases Es < T , as expected.

The total error of Count-Min, Ec is, most of the time, one order of magnitude

larger than Es. For SRR with k = 15, it even exceeds the total number of k-mers

‖a‖1 in the dataset.

The average error of Set-Min is, in most cases, very close to 1, which suggests

that the overwhelming majority of collisions occur between successive counts

such as 1 and 2 – the most abundant ones in the spectra considered here. The

average error of Count-Min is bigger but of the same order of magnitude, except

for small k and unassembled datasets.
4ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz .

Only the file SRR622461_1 is used in this study.

http://afproject.org/app/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz
https://www.internationalgenome.org/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz
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Table 1: Data sheet for the data sets used in our study. Columns Tk and Dk

report the total number (in millions) of k-mers and the number of distinct k-mers,
respectively. Dc reports the number of distinct k-mer counts. Ck reports the
number (in millions) of distinct k-mers with a count value different from the
most common one (which is 1 in all reported cases).

Type Name Tk [M] k Dk [M] Dc Ck [M]

assembled

SAI 5.50
11 2.38 69 1.30
15 5.23 42 0.16
21 5.30 28 0.11

MNO 143

15 101 883 15.51
21 122 710 4.10
27 124 605 4.00
32 125 522 4.01

RAI 727

15 251 1944 105.71
21 546 1019 57.13
27 604 699 45.21
32 632 540 38.59

GRC 2935

15 547 12718 370.16
21 2327 10038 95.15
27 2483 7946 73.99
32 2567 6651 66.71

unassembled

USAI 25
11 3.06 239 2.76
15 9.74 143 6.74
21 10.0 97 6.52

SRR 7500

15 676 22323 538.56
21 3635 17211 1435.30
27 3734 13157 1353.95
32 3703 10643 1261.06

On the other hand, the fraction of k-mers producing an error is in striking

contrast: in case of Set-Min, about only 1-3% of distinct k-mers produce an error,

while for Count-Min, this fraction is much larger. This shows that Count-Min

cannot be used when most of k-mer counts are expected to be retrieved precisely,

for comparable sketch sizes.
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Table 2: Set-Min compared to Count-Min. T is the reference upper bound on the
sum of errors equal to ε‖a‖1 (right-hand side of (5)). Es and Ec are the sum of
errors for Set-Min and Count-Min respectively. Ns and Nc are the percentages
(rounded to integers) of distinct k-mers producing an error, for Set-Min and
Count-Min, respectively. As and Ac are respective average errors, with average
taken over the number of distinct k-mers resulting in an error in the respective
sketch.

Name k R B T Es Ec Ns Nc As Ac

SAI 11 4 1.04 · 106 5.50 · 104 5.00 · 104 1.39 · 106 1.8 26 1.15 2.24
SAI 15 5 2.13 · 105 5.50 · 104 4.66 · 104 2.38 · 105 0.9 4 1.01 1.1
SAI 21 5 1.20 · 105 5.50 · 104 5.29 · 104 4.57 · 105 0.9 7 1.05 1.18

USAI 11 5 4.58 · 105 2.57 · 105 1.99 · 105 7.44 · 107 2.6 99 2.46 24.6
USAI 15 4 4.79 · 106 2.49 · 105 2.45 · 105 8.01 · 106 1.9 33 1.31 2.53
USAI 21 5 3.99 · 106 2.38 · 105 2.00 · 105 7.91 · 106 1.6 34 1.21 2.35

MNO 15 5 1.79 · 107 1.43 · 106 1.39 · 106 8.35 · 106 1.4 7 1 1.25
MNO 21 4 4.69 · 106 1.43 · 106 1.41 · 106 2.26 · 107 1.1 12 1.03 1.61
MNO 27 5 3.72 · 106 1.43 · 106 1.11 · 106 2.28 · 107 0.9 12 1.01 1.48
MNO 32 5 3.81 · 106 1.42 · 106 1.11 · 106 2.10 · 107 0.9 12 1.01 1.44

RAI 15 4 8.36 · 107 7.27 · 106 5.65 · 106 1.50 · 108 2.1 27 1.08 2.25
RAI 21 4 8.47 · 107 7.27 · 106 5.73 · 106 4.09 · 107 1 6 1.01 1.3
RAI 27 4 7.14 · 107 7.27 · 106 6.49 · 106 3.56 · 107 1.1 5 1.01 1.22
RAI 32 4 6.38 · 107 7.27 · 106 6.87 · 106 3.15 · 107 1.1 4 1.01 1.17

GRC 15 3 2.26 · 108 2.93 · 107 2.78 · 107 1.36 · 109 2.9 52 1.78 4.74
GRC 21 4 1.42 · 108 2.93 · 107 2.60 · 107 1.65 · 108 1.1 6 1.01 1.23
GRC 27 4 1.07 · 108 2.93 · 107 2.82 · 107 1.91 · 108 1.1 6 1.01 1.25
GRC 32 4 9.84 · 107 2.93 · 107 2.92 · 107 1.85 · 108 1.1 6 1.01 1.22

SRR 15 4 1.17 · 108 7.90 · 107 4.93 · 107 1.34 · 1010 3.3 96 2.2 20.68
SRR 21 3 2.39 · 109 7.35 · 107 7.09 · 107 5.63 · 108 1.8 9 1.11 1.68
SRR 27 4 1.78 · 109 6.80 · 107 4.92 · 107 4.58 · 108 1.3 8 1.04 1.53
SRR 32 4 1.72 · 109 6.34 · 107 4.95 · 107 4.01 · 108 1.3 7 1.03 1.48

4.2 Set-Min vs Max-Min sketch

We compared Set-Min to Max-Min – an optimized version of Count-Min (see

Sect. 2.2). Note that in the case when the k-mer spectrum is strictly decreasing

for increasing k-mer counts, the maximum count corresponds to the one with

the smallest support. In the general case, we use a variant when, instead of

directly comparing count values, counts are ordered according to the support
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size. That is, updates are performed by keeping the label with the minimum

number of k-mers in the k-mer spectrum, and a query returns the label with the

smallest such number.

Table 3 compares Set-Min with Max-Min. As expected from theoretical

considerations, the performance of Max-Min in terms of the average error and

the sum of errors is better than for regular Count-Min, but worse than for

Set-Min. The same behaviour is observed for the number of k-mers having an

erroneously estimated frequency. Therefore, Max-Min falls in-between Set-Min

and Count-Min, providing a simple and inexpensive practical method to enhance

the latter, without reaching the accuracy of the former.

Altogether, Table 3 shows that the performance of Max-Min is closer to

Count-Min than to Set-Min. This is because, by keeping the maximum element

in each bucket, we are reducing each set of Set-Min to a single element opening

the possibility of increased collisions by potentially sharing a given maximum

element between unrelated k-mers. The intersection operation performed by

Set-Min during query is thus strictly necessary, to guarantee the desired error

bounds.

4.3 Set-Min sketch vs KMC output

Not surprisingly, Set-Min achieves better memory consumptions than KMC in

all our tests (columns Mkmc and Ms of Table 4). Values of R and B do not

change from Table 2. The compression rate is variable: from a small factor to

two orders of magnitude. The best compression is achieved for larger values of k

and assembled genomes. The former is primarily explained by the decreasing

number of distinct counts, due to the power-law behaviour. As for the difference

between assembled genomes and sequencing data, we will discuss it in more

details in Section 5.
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Table 3: Set-Min compared to Max-Min sketch. Columns Ec, Nc, Ac are replaced
by Em, Nm, Am with the same meaning as their Table 2 counterparts.

Name k T Es Em Ns Nm As Am

SAI 11 5.50 · 104 5.00 · 104 4.15 · 105 1.8 13.5 1.15 1.29
SAI 15 5.50 · 104 4.66 · 104 2.13 · 105 0.9 4 1.01 1.01
SAI 21 5.50 · 104 5.29 · 104 4.02 · 105 0.9 7.2 1.05 1.06

USAI 11 2.57 · 105 1.99 · 105 1.24 · 107 2.6 63.5 2.46 6.4
USAI 15 2.49 · 105 2.45 · 105 1.72 · 106 1.9 13.3 1.31 1.33
USAI 21 2.38 · 105 2.00 · 105 1.76 · 106 1.6 14.2 1.21 1.24

MNO 15 1.43 · 106 1.39 · 106 5.74 · 106 1.4 5.6 1 1.02
MNO 21 1.43 · 106 1.41 · 106 1.78 · 107 1.1 11.2 1.03 1.31
MNO 27 1.43 · 106 1.11 · 106 1.78 · 107 0.9 12.1 1.01 1.2
MNO 32 1.42 · 106 1.11 · 106 1.65 · 107 0.9 11.3 1.01 1.17

RAI 15 7.27 · 106 5.65 · 106 5.81 · 107 2.1 16.8 1.08 1.38
RAI 21 7.27 · 106 5.73 · 106 3.05 · 107 1 5.2 1.01 1.07
RAI 27 7.27 · 106 6.49 · 106 2.84 · 107 1.1 4.5 1.01 1.05
RAI 32 7.27 · 106 6.87 · 106 2.61 · 107 1.1 4 1.01 1.03

GRC 15 2.93 · 107 2.78 · 107 4.07 · 108 2.9 27.8 1.78 2.67
GRC 21 2.93 · 107 2.60 · 107 1.38 · 108 1.1 5.5 1.01 1.08
GRC 27 2.93 · 107 2.82 · 107 1.62 · 108 1.1 6 1.01 1.09
GRC 32 2.93 · 107 2.92 · 107 1.58 · 108 1.1 5.7 1.01 1.08

SRR 15 7.90 · 107 4.93 · 107 3.31 · 109 3.3 61.8 2.2 7.92
SRR 21 7.35 · 107 7.09 · 107 2.42 · 108 1.8 5.9 1.11 1.13
SRR 27 6.80 · 107 4.92 · 107 2.05 · 108 1.3 5.2 1.04 1.06
SRR 32 6.34 · 107 4.95 · 107 1.89 · 108 1.3 4.9 1.03 1.04

4.4 Set-Min sketch vs MPHFs

Table 4 also reports the space usage for BBHash to obtain the best memory-

optimized hash functions. Column Mbbhash is the space (in bytes) required by

the hash function only, while Mbball is the space required by the hash function

plus the external array of frequencies.

As in the previous case, Set-Min sketch is more memory-efficient when k is

large, taking about an order of magnitude less memory than a MPHF. For small

values of k, BBHash takes slightly less space and, being exact, may therefore be
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Table 4: Set-Min (ε = 0.01) compared to KMC and BBHash (run with γ = 1). All
memory is reported in bytes. Column Mkmc , Ms, Mbball are the memory taken
by a fully functional map between k-mers and their frequencies when applying
KMC, Set-Min sketch and BBHash, respectively. Mbbhash is the memory of the
hash function produced by BBHash without the external array of frequencies.

Name k Mkmc Ms Mbbhash Mbball

SAI 11 1.21 · 107 5.75 · 106 9.13 · 105 3.00 · 106
SAI 15 3.80 · 107 1.20 · 106 2.06 · 106 5.99 · 106
SAI 21 4.77 · 107 6.77 · 105 2.03 · 106 6.00 · 106

USAI 11 1.54 · 107 1.49 · 107 1.17 · 106 4.61 · 106
USAI 15 6.95 · 107 2.87 · 107 3.72 · 106 1.35 · 107
USAI 21 8.53 · 107 3.00 · 107 3.91 · 106 1.39 · 107

MNO 15 7.08 · 108 1.68 · 108 3.87 · 107 2.15 · 108
MNO 21 9.80 · 108 3.55 · 107 4.66 · 107 2.45 · 108
MNO 27 1.24 · 109 3.75 · 107 4.73 · 107 2.48 · 108
MNO 32 1.37 · 109 3.84 · 107 4.90 · 107 2.36 · 108

RAI 15 1.76 · 109 7.54 · 108 9.59 · 107 5.98 · 108
RAI 21 4.37 · 109 6.78 · 108 2.16 · 108 1.24 · 109
RAI 27 6.04 · 109 5.36 · 108 2.37 · 108 1.29 · 109
RAI 32 6.96 · 109 4.79 · 108 2.70 · 108 1.38 · 109

GRC 15 3.83 · 109 1.70 · 109 2.09 · 108 1.65 · 109
GRC 21 1.86 · 1010 1.28 · 109 9.32 · 108 6.46 · 109
GRC 27 2.48 · 1010 9.66 · 108 9.86 · 108 6.57 · 109
GRC 32 2.82 · 1010 8.38 · 108 1.08 · 109 6.54 · 109

SRR 15 4.73 · 109 2.00 · 109 2.59 · 108 2.12 · 109
SRR 21 2.91 · 1010 1.61 · 1010 1.48 · 109 1.10 · 1010
SRR 27 3.73 · 1010 1.60 · 1010 1.48 · 109 1.08 · 1010
SRR 32 4.07 · 1010 1.46 · 1010 1.57 · 109 1.04 · 1010

the preferable choice. However, one should keep in mind that MPHF does not

support updates, while a Set-Min sketch is updatable to a certain extent with

new (k-mer,count) pairs, and also mergeable with another possibly redundant

map.

The behaviour of the unassembled datasets is of particular interest. Even for

large k’s, MPHF appears to be a better choice for this type of data. The causes
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of this phenomenon and possible solutions are discussed in Section 5.

4.5 Time measurements
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Figure 3: Construction time of Set-Min sketches compared to Count-Min, Max-
Min and BBHash (with external array). Time is reported in milliseconds on a
logarithm scale.

Construction time is reported in Figure 3. Set-Min sketches are generally

faster to build than memory-optimized BBHash except for smaller values of

k. However, similarly to Table 4, Set-Min sketch is at a disadvantage when

the count value distribution is less skewed, such in the case of short k or for

unassembled reads. For highly skewed data, Set-Min can be built faster than

BBHash MPHFs, but is still more computationally demanding than Count-Min

or Max-Min because of the additinal operations required to create and update
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the sets of labels.
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Figure 4: Average query time of Set-Min, Count-Min and BBHash.

Set-Min average query time performance is 50% slower than Count-Min (and

by extention of Max-Min) and comparable to those of BBHash, when data is

very skewed. Following the previous trend, Set-Min sketches appear to be the

slowest method for small values of k and for unassembled reads.

5 Discussion

5.1 Unassembled datasets

As seen in Table 4, for the unassembled datasets, Set-Min sketch does not

seem to have an advantage in memory usage, even for large k’s. We found
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Figure 5: Spectrum in log-log scale of SRR unassembled data sets for k = 32.

that this is due to low-count k-mers, specifically to k-mers whose count does

not exceed the sequencing coverage. It is known that for Illumina sequencing,

sequencing errors produce a linear growth of the number of new distinct k-mers

(for large k) depending on the coverage (see e.g. Figure 2(b) of (Salikhov et al.,

2014)). Frequencies of these “erroneous” k-mers do not have the same statistical

behaviour as bona fide k-mers, in particular first spectrum values do not decay

at the same rate as the rest of the spectrum. Figure 5 shows the spectrum of the

unassembled SRR datasets. One can observe a slower decay behaviour for a few

first spectrum values. In this situation, additional rows are needed just to make

the sketch able to distinguish, with required precision, between small frequency

values. Note that in practice, distinguishing between small frequencies is often

irrelevant. For example, many read assemblers simply discard low-frequency

reads as a way to de-noise the data. In the case of Set-Min, it is possible to

collapse together the first m columns of the spectrum by assigning to all k-mers

in this subset the same frequency. This would considerably reduce the sketch
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size. Formally, error guarantee (5) would not hold anymore, but most of newly

introduced errors would be small (typically, equal to 1) and would occur for low

counts only.

To check the above, we constructed a Set-Min sketch for SRR with dimensions

(R,B) = (4, 3310557), merging together the first five columns of the sorted

spectrum and assigning count 5 to all merged k-mers. While the final sum of

errors was well above the theoretical limit (109 against 7 · 106), the maximum

and average error were respectively 55 and 2.8. In many applications this error

level could be acceptable.

5.2 Presence-absence information

As introduced in Section 3.2, in this work we assumed that only k-mers present

in the dataset can be queried. This assumption allowed us to discard the largest

value of the spectrum corresponding to unique k-mers, thereby saving space.

Set-Min sketches can seamlessly work without this assumption, but the space

required for storing k-mer counters may not be competitive to other solutions.

An alternative could be to build an additional data structure, such as a Bloom

filter, representing presence-absence information for the set of k-mers having

the largest count. This allows the discrimination between k-mers absent in the

dataset from those present but non-represented in the sketch.

Another scenario occurs when working with multiple datasets of very high

similarity, such as a large collection of bacterial strains or a collection of RNA-seq

data (Solomon and Kingsford, 2016; Yu et al., 2018). In this case, it might

be beneficial to build a Bloom filter for the k-mers present in the union of the

datasets, and maintain multiple Set-Min sketches to represent k-mer counts in

each dataset.

Note that Set-Min sketches can also be helpful for long-term storage and
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transmission of the k-mer composition of a dataset augmented with count

information. The k-mers of the dataset can be reassembled into simplitigs (Břinda

et al., 2020) with a Set-Min sketch storing the (approximated) frequencies. The

full count table can be restored from the simplitigs and the sketch.

6 Conclusions

We presented Set-Min sketch – a novel sketching method inspired by the Count-

Min sketch. Its primary use is to associate keys to labels without explicitly

storing the former. In this paper, we demonstrated the performance of Set-Min

sketch for storing k-mer counts information, where the distribution of labels

(k-mer counts) follows a power-law distribution. Under this assumption, we

proposed simple bounds for a Set-Min sketch that guarantee the total error sum

to be within an ε fraction of the total number of k-mers in the dataset.

We showed that Set-Min sketch allows us to save space compared to the

raw output of the popular KMC k-mer counting tool when applied to labels

following a skewed distribution, at the price of a very modest error rate. This

saving is especially important in the case of whole-genome data and large values

of k, where it can achieve a two orders of magnitude reduction in memory usage.

Set-Min has been shown to be more space efficient than the MPHF-based soluton

for large values of k. For smaller k’s, however, MPHFs provide an implementation

with comparable memory consumption. Finally, when compared to Count-Min

and Max-Min sketches of comparable dimensions, our sketch achieves better

point-query errors thanks to the distribution-aware dimensioning performed on

the k-mer spectrum, and the reliance on already computed count tables as input.
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