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1 INTRODUCTION 

The lower atmospheric boundary layer in the coastal 
regions experiences the influence of various metro-
logical phenomena such as sea breeze (SB), noctur-
nal low-level jet (NLLJ), etc. These phenomena of-
ten cause a rapid change in wind speed and 
direction. During SB the wind speed increases and 
the wind blows from the sea towards the land. This 
phenomenon occurs due to an adverse atmospheric 
pressure gradient generated by the temperature dif-
ference between land and sea (Augustin et al. 2020, 
Mazon et al. 2015, Roy et al. 2021b) during the day-
time.  
During clear weather, after sunset, a strong wind ac-
celeration can be observed around 50-1000 m above 
ground level (a.g.l.), known as NLLJ (Roy et al., 
2021a, Smedman et al. 1996). Moreover, the proper-
ties of NLLJ are influenced by horizontal tempera-
ture gradients between land and sea, elevated turbu-
lence level, etc (Källstrand 1998; Kallistratova et al. 
2013). Recently the offshore wind energy became 
largely exploitable in many countries. Since the SB 

is a frequent event in the coastal and offshore wind 
climate, it can  

significantly affect the resource assessment during 
the initial pre-construction phase of offshore wind 
farms. To explore the impact of SB on power pro-
duction by wind turbines, some studies were done in 
the North Sea (Steele et al. 2013, 2015) and an en-
hancement of energy due to SB was observed. Dur-
ing the SB event, the estimated energy production 
can be increased by 15% (Kumar et al. 2021), but an 
adverse effect of turbulence on wind turbine blades 
was found by Mazon et al. (2015). Garvine et al. 
(2008) stated that SB events are very effective to ful-
fil the power requirement from offshore wind farms.  
To achieve the nighttime power requirement from 
offshore wind farms, NLLJ event can be effective in 
coastal ocean regions. In the Dutch part of the North 
Sea, an occurrence of a small boundary layer deep-
ening due to the NLLJ was observed, which can be 
useful for enhanced power production (Baas et al. 
2005, Duncan 2018). Greene et al. (2009) observed 
that average power production is larger during NLLJ 
day compared to that of for non-NLLJ day. Further,  
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ABSTRACT: Since an uniform high-speed wind is required for maximum power production, it is important 
to survey the meteorological phenomena which can boost up or down the power production by offshore wind 
turbines. The study is focused on developing and validation of advanced methods of detection of such mete-
orological phenomena. In situ measurements were performed at an experimental site located in Dunkirk, 
northern France. The wind variability was measured by Sonic anemometer during a period starting from 11th 
January 2018 to 18th December 2019.  Automatic detection algorithms have been developed to detect sea-
breeze (SB) and nocturnal low-level jet (NLLJ) events from Sonic anemometer measurements near ground. 
The SB detection is based on a recurrent neural network algorithm (RNN). The accuracy of event identifica-
tion by this network is 95%. We found 67 and 78 SB days in 2018 and 2019 respectively. NLLJ detection al-
gorithms developed, using wavelet transformation methods, show a better performance than other existing 
methods. A total of 192 and 168 NLLJ days were found in 2018 and 2019 respectively. The wind speed was 
found higher during the nighttime for NLLJ than for non-NLLJ days, which can increase the peak power pro-
duction up to 40 times, compared to normal days. To evaluate the skill of detection algorithms based on ane-
mometer measurements, simultaneous Sonic and lidar wind measurements have been done at site for 86-day 
long period. The wind speed and turbulence kinetic energy were computed from Sonic anemometer and com-
pared to the lidar measurements. The comparison suggests that the point measurements by Sonic anemometer 
can be very useful for the algorithms of automatic detection of meteorological events. 
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Wilczak et al. (2015) reported that the capacity fac-
tor of a wind turbine (ratio between average power 
output and maximum power capability) increases by 
60% during the NLLJ events. 
Since the wind turbine output power is proportional 
to the cube of hub-height wind speed, errors in wind 
speed forecasting can significantly affect the wind 
power forecasts. Such errors are not only costly in 
terms of ensuring adequate energy supplies to the 
customer, but over-or underestimations of power 
production can also have a considerable related fi-
nancial cost. Therefore, there is a strong motivation 
to fully understand the offshore wind climate. To do 
this we need some advanced algorithms to detect the 
SB and NLLJ events efficiently and quickly.  
This study is focused on the development of some 
cutting-edge classification algorithms for SB and 
NLLJ using time series of wind speed, wind direc-
tion, turbulence kinetic energy, measured by a Sonic 
anemometer in the coastal region of northern France. 
Also, we have checked the performance of these al-
gorithms by comparing them with lidar measure-
ments. In the literature, several methods of SB de-
tection were proposed. The are based on time series 
classification, such as feature-based (Nanopoulos et 
al. 2001), ensemble based (Bagnall et al. 2015, 
Koley and Dey 2012), and deep learning approach 
(Wang et al. 2017, Cui et al. 2016). However, no 
studies were focused on the development of SB day 
classification algorithms using machine learning. 
The objective of this study is to develop a new ma-
chine learning algorithm using a recurrent neural 
network (RNN) to detect SB days. Also, another al-
gorithm is used for detection of NLLJ using discrete 
wavelet transform. The measurements used for vali-
dation of our algorithms are presented in section 2. 
Methodology of analysis and classification is given 
in section 3. The results are summarized in section 4, 
followed by the conclusion in section 5.  

2 MEASUREMENTS  

Figs. 1 show the measurement locations. Measure-
ments have been done in Dunkirk for 2 years period 
(2018-2019) using the Sonic anemometer. The 
measurement device provides 15 minutes averaged 
data of turbulence parameters. Additionally, the lidar 
and 20 Hz Sonic anemometer measurements have 
been done simultaneously for 86 days period (from 
July to October 2021) to assess the impact of NLLJ 
and SB on turbulence kinetic energy of the flow 
field near the ground.  

3 METHODOLOGY  

3.1 Calculation of turbulence parameters  

Let us assume  are the zonal, meridio-
nal and vertical components of wind velocity meas-
ured using the Sonic anemometer.. To avoid the ef-
fect of meteorological coordinate system on the 
turbulence parameters estimation, we have adopted a 
new coordinate system where the mean flow is 
aligned with the x-axis (Roy et al. 2021b, Golzio et 
al. 2019). In the new coordinate system, the instan-
taneous streamwise, transverse, and vertical wind 
velocity components (u, v, and w) were decomposed 
into a mean part and fluctuating part as: 

, ,  (1) 

where  are the mean velocity components 
(15 min averaged), and are the corre-
sponding velocity fluctuations.  
The turbulence kinetic energy (TKE) is defined as: 

 (2) 

 
 

 
 

 

 

 
 

 

 

 

                                         

Figure 1. Measurement locations. 

 

 
 

 

 

 
 

 

 

 

                                         

Figure 1. Measurement locations. 

 



3.2 Identification methods  

To detect the SB, and NLLJ, we have developed 
four automatic detection algorithms referred to here-
after as M1, NM2, WM3, and WM4 (defined in Ta-
ble 1). These algorithms were designed for analysis 
of static point measurements.  

 
Table 1.  Methods used for identification of mete-
orological phenomena by four algorithms applied for 
analysis of Sonic anemometer data. ______________________________________________ 
Methods     developed algorithms ______________________________________________ 
M1    sign change of sea breeze component 
NM2    recurrent neural network (RNN) for 
                       sea-breeze component (SBC) 
WM3   haar wavelet threshold technique for NLLJ 
WM4   symlets wavelet slope technique for NLLJ  _____________________________________________ 

 
In the M1 algorithm, four filters were used to 

identify the SB days (step 1 to 4 in Fig. 2). Step-1 
separates the extreme event. In Step-2, during a pe-
riod from 08:00 to 11:00 UTC, a shift in wind direc-
tion from offshore to onshore was recognized from 
an alteration of the sign of the normalized SB com-
ponent (SBC=(U×sin(0−WD)) /U), where WD is the 
wind direction and U is the horizontal wind speed), 
from negative to positive value of SBC signify the 
SB day. In the last step, a positive slope of the tem-
perature gradient confirms the authenticity of the SB 
day.  

In NM2 framework, the Long short-term memory 
(LSTM) neural networks are a typical form of recur-
rent neural network (RNN). Hidden units in LSTM 
are capable of recalling the long-term memory in se-
quential data (e.g., time series data), lead to enhance 
the efficiency to classify the SB and non-SB days. 
Fig. 3 shows the LSTM framework of method NM2. 
Since, SB days are frequent during the summer, we 
have used six months of data (from April to Septem-
ber) in the input layer. The SBC in each day treated 
as features, which consist of 15 minutes averaged 
wind direction for a period of 24 hours. 182 sequen-
tial feature vectors are used to train the network.  
The cell state in one LSTM block is updated by four 
interacting layers demonstrated as: forgetting gate, 
input gate, cell state updating and output gate. Equa-
tions involves in these gates are detailed in (Roy et 
al., 2021, Goodfellow et al., 2016). Note that a num-
ber of  

 
 

 

  
 
Figure 2. Conceptual scheme for the sea-breeze identification 
method M1. 

 
trials with hidden units were made to optimize the 
hyperparameter. We found that 96 hidden units al-
lows the optimal prediction of SB days. The Output 
from LSTM pass through a fully connected layer (2 
classes). The output from fully connected layer is 
followed by output layer and consists of softmax ac-
tivation function leading to classification as binary 
(i.e. 1 for SB or 0 for non SB).  
We have used cross-entropy loss function to train 
classifiers. To optimize the backpropagation, the 
Adaptive Momentum Estimator (ADAM) is used. 
To train the network, we have used 182 sequences 
from the year 2018. To test the network output, same 
number of sequences from the year 2019 is used. 

 

  
 
Figure 4. Conceptual scheme for the low-level jet identification 
method WM3 using haar wavelet function. 

 

 

 

 

 

                   

 

                                

Figure 3. Recurrent neural network for the sea-breeze identification method NM2. 
 



Fig. 4 shows the conceptual scheme for WM3, 
where we have used 5 filters (steps 1 to 2.3) to iden-
tify the NLLJ event. Since the LLJ is a nighttime 
event, Step-1 eliminates the extreme events. The 
turbulence kinetic energy (TKE) is calculated in 
Step-2. The decomposition of TKE is done by the 
Haar wavelet function (Baars et al., 2008, Augustin 
et al., 2020) in Step-2.1. In steps-2.2 and 2.3, maxi-
mum absolute values of wavelet function after sun-
set up to early morning signifies the occurrence of 
NLLJ. 

 
 

 
 
Figure 5. Conceptual scheme for the low-level jet identification 
method using symlets wavelet function and slope of wavelet 
coefficients (WM4). 

 
The conceptual scheme for WM4 is shown in Fig. 

5. Steps-1 and 2 used in this algorithm are exactly 
the same as WM3. But the decomposition of the 
TKE signal is done by discrete wavelet transform. 
Symlets mother wavelet function (Al-kadi et al., 
2012) is used to decompose the TKE signal into 4 
levels of time resolutions (15 minutes to 1 hour). We 

have tried to identify the NLLJ with all resolutions 
of decomposed TKE signals and found that a 1-hour 
resolution (level 4) of the TKE signal provides the 
optimal classification. The slope of this decomposed 
TKE has been computed after sunset up to early 
morning. In steps- 2.2 and 2.3, if the slope is posi-
tive from morning to midnight and negative from 
midnight to early morning considered as an NLLJ 
event otherwise non NLLJ event. 

4 RESULTS AND DISCUSSION  

4.1 Seabreeze classification results 

The daytime heating creates thermal instability be-
tween land and sea, resulting in a concentrated wind 
flow from the sea toward land. We found 67 and 78 
SB days in 2018 and 2019 respectively during the 
summertime (Fig.6 a and b) using M1 algorithm. 
Furthermore, we have developed a NM2 algorithm 
using LSTM block capable of detecting SB days. To 
train the network we have used the categorical SBC 
data from 2018. Trained network (NM2) is used to 
classify the SB days in 2019.  
The average actual and predicted SBC for all SB 
days are shown in Fig. 7 a and Fig. 7 b respectively. 
To check the classification performance of the NM2 
algorithm, three statistical metrics were used: sensi-
tivity, specificity, and classification accuracy (Fig. 7 
c).  
The sensitivity is defined as the ratio between classi-
fied true positive (i.e., both observation and predic-
tion samples are positive) and the total number of  

 

 

 

 

 

 

 

                      

Figure 6. Identification of SB days using M1 algorithm from wind measurements in 2018 (a), 2019 (b). SB days identi-

fied by NM2 algorithm. 

 

 

 

 

 

 
                        

Figure 7. performance test of NM2 algorithm for SB days identification in 2019, actual average SBC of all SB days (a), 

predicted average SBC of all SB days (b), confusion matrix and accuracy (c). 

 



samples in true class 1, where false negative signi-
fies the observed samples are positive but prediction 
samples are negative. Specificity can be stated as the 
proportion between true negative (i.e., both observa-
tion and prediction samples are negative) and the to-
tal number of samples in true class 2, where false 
positive means the observed samples are negative 
but prediction samples are positive. The accuracy is 
calculated as the ratio of true positive and negative 
samples with all classes. The proposed NM2 algo-
rithm is good enough with sensitivity = 98%, speci-
ficity = 91%, and classification accuracy = 95%. The 
performance of the NM2 algorithm can be enhanced 
with a greater number of observations. 
Fig. 8 shows the average wind speed of all SB days 
as a function of time (UTC). For both years, the 
range of average wind speed Lws=2.9 m/s to Hws=4.9 
m/s is quite similar (Figs. 8a and b), here Lws and 
Hws is low and high wind speed respectively. The 
maximum wind speed during the SB days occurs 
roughly from 13:00 UTC to 17:30 UTC in both 
years. We have observed that the maximum average 
wind speed during SB events is around 5 m/s (a.g.l. 
10 m). 

4.2 Nocturnal low-level jet classification results  

A concentrated wind flow after sunset is known as 
the NLLJ. Since the NLLJ is a nighttime phenome-
non, it can increase offshore wind power production 
during the nighttime. Therefore, it is important to 
detect the NLLJ phenomenon in coastal regions 
where offshore wind turbines are installed. We have 
developped two automatic NLLJ detection algo-
rithms WM3 and WM4. Since the performance of 
both algorithms is quite similar for the NLLJ classi-
fication, we present the results obtained only by 
WM4 in Fig. 9. 
From Figs. 9 a and b it is quite difficult to make any 
concrete discussion about the season of maximum 

NLLJ occurrence. Except for October 2018 and Jan-
uary 2019, we found a significant occurrence of 
NLLJ every month. A total of 192 and 168 NLLJ 
were found in 2018 and 2019 respectively. 

4.3 Comparative study between the Sonic and lidar 
measurements 

All the identification algorithms are developed using 
Sonic anemometer measurements (15 minutes aver-
aged) at 10 m a.g.l. Since the range of height of off-
shore wind turbines is generally from 80m to150m, 
it is necessary to check if there is some significant 
signature of meteorological events occurring at the 
altitude in the near-ground measurements. To check 
it, simultaneous measurements have been performed 
using a 20 HZ Sonic anemometer (at 10 m a.g.l.) and 
a lidar measurements (spatial range from 40m to 300 
m a.g.l.) in Dunkirk for 86 days from 23/07/2021 to 
16/10/2021. 
During this measurement period, we found the oc-
currence of NLLJ approximately every night. We 
found 2 SB days from 23/07/2021 to 31/07/2021 8 
days in August, and 10 days in September 2021. 
Note that we have selected three representative days 
to compare the Sonic and lidar measurements, 
07/09/2021 for NLLJ,21/09/2021 for SB day, and 
07/10/2021 for a normal day. Note that, though we 
found the NLLJ at 18:00 and 22:00 to 24:00 UTC on 
07/10/2021 we can ignore this period as the intensity 
of the NLLJ was very small. To compare all the 
events, we have selected the period starting from 
00:00 to 18:00 UTC as a normal day.  
Figs. 10a, b and c show the horizontal wind speed 
variation as a function of time and height. We found 
NLLJ during 18:00 to 24:00 UTC (Fig. 10a), SB 
during 11:00 to 16:00 UTC (Fig. 10b). 
Estimation of the power production is performed us-
ing the velocity data. We have calculated the power 
as , where r is the rotor ra-

 

 

 

 

                

Figure 8. Average of wind speed ( ) for all SB days during 2018 (a), 2019 (b). 

 

 

 

 

 

                

                 

 

Figure 9. Identification of NLLJ days using WM4 algorithm from wind measurements in 2018 (a), 2019 (b) 



dius, U is the wind speed at a.g.l.= 140 m, ρ is the 
air density, φ is the efficiency factor, we have used 
φ=40% for all calculations. Fig. 10d shows that the 
maximum power (10 megawatts) can be achieved at 
22:00 UTC during the NLLJ event. We found an in-
crease in power at 13:30 UTC during the SB event 
(Fig. 10e). However during the NLLJ event, the es-
timated peak power generation is approximately 20 
times higher than that during the SB event (Fig. 
10e). It is observed from Fig. 10d that estimated 
power generation starts to increase from the initia-
tion of LLJ (18:00 UTC), then it achieved a peak at 
22:00 UTC, and it starts to decrease from 22:00 to 
24:00 UTC. For the SB period (11:00 to 16:00 UTC) 
the estimated power variation shows a similar evolu-
tion.  
Comparison between the wind speed U at 140 m and 
10 m a.g.l. suggests that during the NLLJ U at 140m 
is 2 times larger (Figs. 10g and j). The variability of 
U suggests the existence of a jet shear layer at 10 m 
and jet core at 140 m a.g.l. However, U obtained at 
two altitudes, 10 m and 140 m a.g.l., is similar dur-
ing the SB event (Figs. 10h and k), which signifies 
that the SB can develop an internal boundary layer 
near the ground. It is hard to find a correlation be-
tween U at two altitudes during a normal day. 

The TKE shows a time variability similar to that of 
wind speed U during the NLLJ and SB events (Figs. 
10 m, n). By comparing all parameters in Fig. 10 it 
is found that wind variability at a.g.l. 140 m and 10 
m is similar, thus Sonic anemometer measurements 
can be useful to identify LLJ and SB events.  

5 CONCLUSIONS  

In this study, we assessed the wind measurements 
aiming at identifying various meteorological events 
in Dunkirk prior to offshore wind farm installation 
there. Measurements have been done using a Sonic 
anemometer and wind lidar in the coastal region of 
Dunkirk. We found that the peak wind speed is 4 
times and 1.5 times higher during NLLJ and SB 
events respectively than that for normal days. The 
wind speed during SB can boost the average energy 
production by approximately 15% than non-sea 
breeze days. The SB can increase 2 times the energy 
production at sites close to the shore compared to 
sites located far from the shore. During the nighttime 
the wind speed is higher for NLLJ than non-NLLJ 
days, which can increase the peak power production 
up to 40 times compared to normal days. Therefore, 
the quantification of the occurrence of NLLJ and SB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. First row: wind speed and direction from lidar measurement for three atmospheric conditions: NLLJ, SB, normal day 

condition (a, b, c); Second row: expected power at 140m a.g.l. for three conditions (d, e, f); Third row: wind speed at 140m a.g.l. for 

three conditions (g, h, i); Fourth row: wind speed from Sonic measurement for same conditions at a.g.l. = 10 m (j, k, l); TKE at 

a.g.l. = 10 m for same conditions (m, n, o). Shaded portion bounded by gray dashed line shows the periods of LLJ and SB events. 

Dashed dot lines correspond to the peak power production during LLJ and SB events. 



days in a year is important for wind energy resource 
assessment. We have developed four algorithms to 
identify NLLJ and SB days based on: sign change of 
the sea breeze component (M1), recurrent neural 
network (RNN) also for SBC (NM2), haar wavelet 
threshold technique for NLLJ (WM3), and symlets 
wavelet slope technique for NLLJ (WM4).   

These algorithms identified the SB and NLLJ days 
successfully. Some significant results obtained from 
the analysis are the following: 

1. The proposed NM2 algorithm is good enough for 
SB identification with sensitivity = 98%, specificity 
= 91%, and classification accuracy = 95%. 

2. For NLLJ detection, both WM3 and WM4 algo-
rithms give very good and nearly identical results 
(99% of similarity).  

3. During the NLLJ and SB events the estimated 
peak power generation is approximately 40 and 2 
times higher than that of a normal day respectively. 

4. Comparison between wind speed at 140 m and 10 
m a.g.l. suggests that during NLLJ, the wind speed 
at 140m is 2 times larger than that at 10 m a.g.l. 
However, the wind speed obtained at both levels is 
similar during the SB event due to the formation of 
internal boundary layer. 
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