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Abstract

The present article is concerned with solving Bernoulli’s exterior free boundary problem in case

of an interior boundary which is random. We provide a new regularity result on the map that sends

a parametrization of the inner boundary to a parametrization of the outer boundary. Moreover,

by assuming that the interior boundary is convex, also the exterior boundary is convex, which

enables to identify the boundaries with support functions and to determine their expectations. We

in particular construct a confidence region for the outer boundary based on Aumann’s expectation

and provide a numerical method to compute it.

1 Introduction

The subject of shape optimization under uncertainties has emerged in recent years. The first ap-
proaches in the literature are based on linearization with respect to random input parameters. Such
a linearization is justified when the uncertainties are assumed to be small. Then, one might either
optimize the objective under consideration under a worst case point of view (see the seminal work of
Allaire and Dapogny [4]) or one optimizes an averaged version of the objective (see our work [9] and
those of Allaire and Dapogny [5]), provided that some statistical data is given on the uncertain param-
eters at hand. All these works have been dealing with problems in optimization of elastic structures,
where the optimization criteria were clearly motivated from an engineering point of view.
Fewer works have considered problems where a shape is the unknown and where shape optimization

is then a convenient reformulation of the problem. This is the case in inverse (shape identification)
problems and in free boundary problems. In the case of inverse problems, we have proposed in [10] a
strategy which is based on the minimization of an averaged version of the objective, possibly modified
by moments of its distribution. However, those reconstructions depend on the criterion selected to
achieve the reconstruction. This is a non-intrinsic choice of the solution strategy and it seems to us
more natural to tackle the random inverse problem in the converse point of view: solve the problem
for each realization of the parameters and then average it. Of course, when studying practical inverse
problems, one has in general no uniqueness of the solution or only weak stability of the reconstruction.
Therefore, we focus in this work on a free boundary problem, where we can follow the strategy first
solve the free boundary and then average it. This program requires to investigate the field of random
sets.
We have presented in [11, 15] the first numerical study of random free boundary problems, where we

discussed the notion of the expected free boundary that makes sense and its practical computation. In
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the present work, we want to go one step further: we are interested in providing numerical confidence
intervals (i.e. regions in this geometrical context) for the free boundary. Notice that there are only
very few works about this topic in the literature (see [8] for the case of convex random sets and [12, 18]
for oriented distance based random sets). In our previous work [12], we proposed some semi-analytical
computations in the context of the oriented distance based expectation. However, the computational
cost of the confidence interval was unfeasible except for elementary examples.
In order to work on a well-founded theoretical fundament and to obtain tractable numerical simu-

lations, we restrict this study to the case of Bernoulli’s exterior free boundary problem when the data
(the inner boundary) is the boundary of a random convex compact set. Indeed, working with convex
sets allows to use a rather intrinsic notion of expectation – the Aumann expectation. It is based on the
support function and has nice properties with respect to Hausdorff distance between sets. Moreover,
under the convexity assumption, the free boundary problem is known to admit a unique solution.
The contribution of this work is twofold. First, we provide, in the context of convex sets, a regularity

result (Theorem 2.3) for the map that sends a parametrization of the inner boundary to a parametriza-
tion of the outer one. This result is established in the deterministic setting, but partially explains
why a ”nice” distribution of the inner boundary generates a ”nice” distribution of the outer boundary,
which enables the computation of an average of the outer boundary. The proof of this result is based
on the implicit function theorem applied to Trefftz’s formulation of a nonlinear system of integral equa-
tions for computing the free boundary. Second, we propose a numerical method in order to compute an
asymptotic confidence region for the outer boundary by using Aumann’s expectation. Our theoretical
findings are supported by numerical illustrations.
The rest of this work is structured as follows. In Section 2, we present the exterior Bernoulli free

boundary, define the Bernoulli map that sends the inner boundary to the outer one, state our regularity
result, and finally prove it. Then, in Section 3, we gather deep results on random convex compact sets.
In particular, we present the Aumann expectation of random convex compact sets and its connection
to the support function of these sets. We quote the corresponding central limit theorem and we derive
the associated result on the asymptotic confidence region. We then present in Section 4 the numerical
method we use to compute a specific random sample, i.e., to solve a (deterministic) Bernoulli free
boundary problem. It is the so-called trial method which is realized by using a reformulation of
the underlying Laplace problem by means of a boundary integral equation. We also explain how to
compute the asymptotic confidence region by a using a bootstrapping method. Finally, we present
numerical studies for two random free boundary problems in Section 5.

2 The exterior Bernoulli free boundary problem

Let K be a compact regular domain in R
d (d = 2, 3) and let λ a positive real number. The problem

of finding a domain D and a function u such that the capacity potential of K in D defined as the
solution of 




−∆u = 0 in D \K
u = 1 on ∂K = Σ
u = 0 on ∂D = Γ

(2.1)

satisfies the overdetermination condition

|∇u| = λ on Γ (2.2)
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is called the exterior Bernoulli free boundary problem. Notice that this overdetermination condition
means that for any x ∈ Γ

lim
y∈D, y→x

|∇u(y)| = λ.

For general compact sets K, there may exist more than one solution to the free boundary value
problem. Nevertheless, there are classes of compact sets K such that the free boundary problem
admits a unique solution. The largest one is the class of starlike domains [24]. An interesting subclass
of starlike domains is the one of convex domains. For convex domains, the free boundary problem
admits exactly one solution (D, u) and moreover, in [17, Theorem 2-1], Henrot and Shahgholian proved
that the domain D is convex if K is.
We shall therefore introduce S as the space of starlike domains in R

d and K as the space of convex
compact subsets of Rd. The generalization of the result of Henrot and Shahgholian allows us to define
the Bernoulli map B : K × (0,∞) → K which sends a convex compact set K ∈ K and a value
λ ∈ (0,∞) to the closure of the unique domain D that is the solution of the exterior Bernoulli free
boundary problem (2.1).

2.1 Regularity of the Bernoulli map B
We shall next describe the properties of the mapping B. This study was mainly performed by Hayouni,
Henrot and Samouh in [16]. Let us first present the monotonicity properties of the map by gathering
results of [16] for the continuity properties and by extending ideas of [20] for the differentiability
properties.

Theorem 2.1 (Monotonicity of the map) The map B : K × (0,∞) → K is

1. non-decreasing with respect to inclusion: Let K1 and K2 be two compact sets with K1 ⊂ K2.
Then, for any λ > 0, B(K1, λ) ⊂ B(K2, λ);

2. decreasing with respect to the constant: Let λ1 and λ2 be two nonnegative real numbers with
λ1 < λ2. Then, for any K, B(K,λ2) ⊂ B(K,λ1) with B(K,λ2) 6= B(K,λ1).

We are now interested in the regularity of the mapping B. To this end, we first recall the continuity
result of Henrot and the properties of the application of B gathering results from [16, Theorems 2-2
and 3-1].

Proposition 2.2 (Properties of the map) The map B : K × (0,∞) → K is continuous.

Indeed, in the convex case, there is even more regularity. However, this regularity cannot be obtained
through the Hausdorff distance and the support function parametrization. The idea is to define
parametrizations of the inner boundary Σ = ∂K and of the outer boundary Γ = ∂D. Since a convex
set is also starlike, we can represent the unknown boundaries Σ and Γ with the help of radial functions
according to

σ : S
1 → Σ,
σ(ϕ) = rΣ(ϕ)er(ϕ);

γ : S
1 → Γ,
γ(ϕ) = rΓ(ϕ)er(ϕ).

We make in addition the assumption that both γ and σ are Ck for some integer k ≥ 2. We are now
in position to state our main theoretical result.
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Theorem 2.3 The map B̃, defined from Ck(S1) with values in Ck(S1) such that B̃(σ) is the polar
parametrization of the solution to Bernoulli’s free boundary problem associated to the inner boundary
Σ = σ(S1), is Ck−1 around each σ such that Σ is convex. Its restriction to C∞(S1) is C∞.

The proof of this theorem is inspired by the work of Kress in [20, 27] where he introduced a new
numerical method in order to approximate the solution of Bernoulli’s free boundary problem. The key
idea of Kress is to use the integral equation point of view to solve Dirichlet boundary value problems
and to solve Bernoulli’s free boundary problem by Trefftz’s method. We will present the proof in the
case d = 2. The extension to the case d ≥ 3 is similar (see the differences between [20] and [27] in
order to extend the proof from d = 2 and d = 3).

2.2 Proof of Theorem 2.3

Let us recall the definition of the object we shall use. Consider G to be the Green function for the
Laplacian that is given in two spatial dimensions by

G(x,y) = − 1

2π
log ‖x− y‖2.

Namely, the solution u(x) of (4.1) is given in each point x ∈ D \K by Green’s representation formula

u(x) =

∫

Γ∪Σ

{
G(x,y)

∂u

∂n
(y)− ∂G(x,y)

∂ny

u(y)

}
dςy. (2.3)

Using the jump properties of the layer potentials, we obtain the direct boundary integral formulation
of the problem

1

2
u(x) =

∫

Γ∪Σ

G(x,y)
∂u

∂n
(y)dςy −

∫

Γ∪Σ

∂G(x,y)

∂ny

u(y)dςy, (2.4)

where x ∈ Γ ∪ Σ. If we label the boundaries by A,B ∈ {Γ,Σ}, then (2.4) includes the single layer
operator

VAB : C(B) → C(A),
(
VABρ

)
(x) = − 1

2π

∫

B

log ‖x− y‖2 ρ(y)dςy (2.5)

and the double layer operator

KAB : C(B) → C(A),
(
KABρ

)
(x) =

1

2π

∫

B

〈x− y,ny〉
‖x− y‖22

ρ(y)dςy (2.6)

with the densities ρ ∈ C(A) being the Neumann data of u on A.

Step 1: Reformulation as a system of integral equations. The first step is [20, Theorem 1]:
solving Bernoulli’s free boundary is equivalent to solving the nonlinear system of integral equation

−λVΓΓ 1 + VΓΣ g = 0,

−λVΣΓ 1 + VΣΣ g = 1,
(2.7)

for the unknowns D and g = ∂nu on ∂K = Σ. We first define the parametrized single layer operators

SAB : H−1/2(S1) → H1/2(S1)
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such that (VABϕ) ◦ zA = SAB(ϕ ◦ zB), where A,B ∈ {Σ,Γ} and likewise zΣ = σ. Hence, we have

(SAB u)(t) = −
1

2π

∫ 2π

0

ln ‖zA(t)− zB(τ)‖ ‖z′B(τ)‖u(τ) dτ

for all t ∈ [0, 2π). Notice that the operator SΣΣ does not depend on γ while SΣΓ, SΓΓ and SΓΣ do.
Likewise, SΓΓ does not depend on σ while SΓΣ, SΣΣ and SΣΓ do. To emphasize this dependency, we
will use the notations SΓΓ[γ], SΣΣ[σ], SΣΓ[γ,σ] and SΓΣ[γ,σ].

Step 2: Introducing the application of the implicit function theorem. We define the map

F : Ck(S1)× Ck(S1)× H−1/2(S1) −→ H1/2(S1)× H−1/2(S1)

by
F (γ,σ, g) = (−λSΓΓ[γ]1 + SΓΣ[γ,σ]g,−λSΣΓ[γ,σ]1 + SΣΣ[σ]g)

such that the system (2.7) of integral equations is equivalent to the nonlinear equation

F (γ,σ, g) = (0, 1) .

We shall apply the implicit function theorem to this equation around any particular solution (γ0,σ0, g0)
of the previous solution. Let u0 be the solution of (2.1) associated to the data (γ0,σ0, g0). By
construction, its normal derivative g = ∂nu0 on Σ0 satisfies g0 = g ◦ σ. Since F is linear in g, its
regularity is limited by its partial regularity with respect to γ and σ. Nonetheless, in the following,
we only need to consider the derivatives with respect to g and σ, and not with respect to γ.

Step 3: Computing the partial derivatives. The Fréchet derivatives of the integral operators
SAB are obtained by differentiating their kernels with respect to γ (see [19, Section 18.3] for the general
proof and [20] for its adaptation to the case of Sobolev spaces). Therefore, F is Ck−1 and its partial
derivative with respect to (σ, g) is given by

Dσ,gF (γ0,σ0, g0).[ξ, h] =

(
−DσSΓΣ[γ0,σ0].ξ g0 + SΓΣ[γ0,σ0]h

−λDσSΣΓ[γ0,σ0].ξ 1 +DσSΣΣ[σ0].ξ g0 + SΣΣ[γ0,σ0]h

)
.

Here, the derivatives of the single layer operators with respect to σ are

DσSΣΣ[γ0,σ0].ξ u(t) =
1

2π

∫ 2π

0

[σ(t)− σ(τ)] · [ξ(τ)− ξ(t)]
‖σ(t)− σ(τ)‖2 ‖σ′(τ)‖u(τ) dτ + SΣΣ

(
u
σ′ · ξ′
‖σ′‖2

)
(t),

DσSΓΣ[γ0,σ0].ξ u(t) =
1

2π

∫ 2π

0

[γ(t)− σ(τ)] · ξ(t)
‖γ(t)− σ(τ)‖2 ‖σ′(τ)‖u(τ) dτ + SΓΣ

(
u
σ′ · ξ′
‖σ′‖2

)
(t),

and

DσSΣΓ[γ0,σ0].ξ u(t) = −
1

2π

∫ 2π

0

[σ(t)− γ(τ)] · ξ(t)
‖σ(t)− γ(τ)‖2 ‖γ ′(τ)‖u(τ) dτ.
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Step 4: Rewriting the partial derivatives of the parametrized single layer operators. In
accordance with Kress [20, pp. 513], we introduce the following parametrized double layer operators:
For all t ∈ [0, 2π) and A ∈ {Σ,Γ}, define the (parametrized) double layer operators

KAΣ u(t) =
1

2π

∫ 2π

0

[zA(τ)− σ(t)] · σ′(τ)⊥

‖zA(τ)− σ(t)‖2
u(τ) dτ

and the operators

LΣA u(t) =
1

2π

∫ 2π

0

[σ(t)− zA(τ)] · er(t)
‖σ(t)− zA(τ)‖2

‖z′A(τ)‖u(τ) dτ.

By [20, Eqs. (3.8)–(3.10)], we have

DσSΣΣ[γ0,σ0].ξ u = KΣΣ (α0ξu) + ξ LΣΣu+ SΣΣ(α0κ0ξu),

DσSΣΓ[γ0,σ0].ξ u = ξ LΣΓu,

DσSΓΣ[γ0,σ0].ξ u = KΓΣ(α0ξu) + SΓΣ(α0κ0ξu),

where κ0 is the curvature of Σ0 and α0 is

α0 =
rΣ,0√

r2Σ,0 + (r′Σ,0)
2
.

Step 5: Checking the injectivity of the partial derivative. We now claim that the linear
operatorDσ,gF (γ0,σ0, g0), defined on Ck(S1)×H−1/2(S1) into H1/2(S1)×H−1/2(S1), is injective. Assume
that ξ ∈ Ck(S1) and h ∈ H−1/2(S1) satisfy the linear system

−DσSΓΣ[γ0,σ0].ξ g0 + SΓΣ[γ0,σ0]h = 0,

−λDσSΣΓ[γ0,σ0].ξ 1 +DσSΣΣ[σ0].ξ g0 + SΣΣ[γ0,σ0]h = 0.
(2.8)

Using the jump relations of the normal derivative of single layer potential [19, Theorem 7.30], the
solution u0 of (2.1) satisfies for x on Σ

∇u0(x) =
1

2π

∫

Σ

y − x

‖x− y‖2 g0(y) dςy −
λ

2π

∫

Γ

y − x

‖x− y‖2 dςy +
1

2
g0(x)n(x).

Hence, in view of ∇u0 = g0n on Σ0 and er · (n ◦ σ0) ≡ α0, we arrive at

−λLΣΓ 1 + LΣΣ g0 =
1

2
α0g0,

so that the linear system (2.8) can be rewritten as

−KΓΣ[γ0,σ0](α0ξg0)− SΓΣ[γ0,σ0](α0κ0ξg0) + SΓΣ[γ0,σ0]h = 0,

1

2
g0ξα0 +KΣΣ[γ0,σ0](α0ξg0) + SΣΣ[γ0,σ0](α0κ0ξg0) + SΣΣ[γ0,σ0]h = 0.

(2.9)

We set
κ = (α0ξ) ◦ (γ0)

−1 ∈ H1/2(Γ) and ϑ = h ◦ σ−1
0 ∈ H−1/2(Σ),
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and define the function v on R
2 \ Γ as the potential

v(x) =

∫

Γ

(
∂G(x,y)

∂ny

+ κ0G(x,y)

)
κ(y)dςy +

∫

Σ

G(x,y)ϑ(y)dςy.

We now claim that v = 0 in R
2 by separating the plane into K, the domain D\K and the complement

of D. The conclusion that κ and ϑ are 0 and then that ξ and h are also 0 follows from the jump
conditions and the remark that er · (n ◦ σ0) ≡ α0 ≥ 0.
Let us prove the claim v = 0. Combining the jump relations for such a potential (see [19, Theorem

7.30, Section 7-5]) and the two previous relations from (2.9), we obtain that:

• It holds v = 0 on Σ and, by uniqueness of the solution of interior Dirichlet problem, we infer
v = 0 in K.

• In a second step, we deduce that the limit v+, obtained by approaching Γ form outsideD, satisfies
v+ = 0 on Γ. We thus deduce that v = 0 in R

2 \D.

• In a third and last step, we conclude that the limit v−, obtained by approaching Γ from the
interior of D, satisfies the Fourier-Robin condition

∂nv− + κ0v− = 0 on Γ.

Hence, the restriction of v to the domain D \K is the solution of the boundary value problem

∆v = 0 in D \K,
v = 0 on Γ,

∂nv + κ0v = 0 on Σ.

Therefore, integration by parts leads to

0 ≤
∫

D\K

|∇v|2 = −
∫

Γ

κ|v|2 ≤ 0,

where the last inequality comes from the convexity of K that infers the convexity of D by the
Henrot-Shahgholian Theorem and then that κ ≥ 0. Hence, v = 0 in D \K.

Step 6: Conclusion. The claim now follows by applying the implicit function theorem.

3 Random convex sets

In this section, we gather known results from various contexts about random convex compact sets
in order to define the confidence region for the Aumann expectation. This will be needed for the
numerical simulations.

7



3.1 Convex sets and support functions

We recall in this section the well-known properties of convex sets that we shall use. The reader
interested in the proofs of these properties is refered to the reference monograph of Schneider [23].
We denote by Cd the set of non-empty compact subsets of Rd. Endowed with the Hausdorff distance

dH, defined by
dH(K1, K2) = sup

{
{d(x,K1), x ∈ K2} ∪ {d(x,K2), x ∈ K1}

}
,

it is a complete metric space (see Theorem 1-8-3 in [23]). In (Cd, dH), every closed bounded set is
compact (Theorem 1-8-4 in [23]). Each bounded sequence in (Cd, dH) has a converging subsequence
(Theorem 1-8-5 in [23]). The set of compact convex subsets Kd of Rd is a closed subset of Cd. In
particular, the selection theorem of Blaschke states that every bounded sequence in Kd admits a
converging subsequence that converges to a compact convex set.

On the support function of a convex set. A key ingredient for the definition of the Aumann
expectation of a random convex set is the support function. Let us recall its definition and its main
properties. Convex sets are parametrized by their support function hK defined on R

d by

hK(x) = sup{x · y, y ∈ K}.

The support function of a convex set is homogeneous of degree one and hence can be restricted to

the unit sphere without loss of generality. Let h̃K be the restriction of hK to the unit sphere. Let us
introduce the parametrization mapping Υ defined by

Υ : K
d → C0(Sd−1)

K 7→ h̃K .

A crucial property is the isometric connection between the Hausdorff distance and the L∞-norm on
C0(Sd−1): for all K1, K2 ∈ Kd,

dH(K1, K2) = ‖h̃K1
− h̃K2

‖L∞(Sd−1). (3.1)

From support functions to convex sets. In order to use the support function in numerical
computations, we need a way to reconstruct a convex set from a support function. This is the role of
the envelope operator which is defined as

E : C1(Sd−1,R) → C1(Sd−1,Rd)

h̃ 7→ E
[
h̃
]
,

where, for all x ∈ S
d−1, one sets

E [h̃](x) = h(x)x+∇τ h̃(x).

This operator allows to reconstruct a convex set whose restricted support is h̃. Notice that this point
has been investigated in a recent work of Antunes and Bogosel [3].

Example 3.1 In the planar case, one gets simply h̃ : [0, 2π) → R and a parametrization of a set

whose support function is h̃ is

E(h̃) : θ 7→ h̃(θ)er(θ) + h̃′(θ)e′r(θ).
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In the three-dimensional case, the unit sphere is endowed with the usual spherical coordinates so that

h̃ : [0, 2π)× [0, π] → R. We thus get

E(h̃) : (θ, ϕ) 7→ h̃(θ, ϕ)er(θ) + ∂θh̃(θ)eθ(θ, ϕ) +
1

sin(θ)
∂ϕh̃(θ)eθ(θ, ϕ).

Let us recall that the Frenet vectors satisfy the relations

∂θer = eθ ∂θeθ = −er ∂θeϕ = − sin θ er
∂ϕer = sin θ eϕ ∂ϕeθ = cos θ eϕ ∂ϕeϕ = − cos θ eθ

Among continuous functions of the unit sphere, some are support functions on a convex set and some
are not – support functions are sublinear functions. Recall that a function is sublinear if it satisfies
both:

∀(x, y) ∈ R
d, λ ≥ 0 : f(λx) = λf(x) and f(x+ y) ≤ f(x) + f(y).

Vice versa, each sublinear function is the support function of a convex set (Theorem 1-7-1 [23]). As
a consequence, Υ(Kd) is a convex cone of the vector space C0(Sd−1). It is a closed subset. More
precisely, if a sequence of support functions converges pointwise, then it converges uniformly to a
support function (Theorem 1-8-15 [23]). Let us notice that the vector space generated by Υ(Kd) is
dense in C0(Sd−1).
There is no clear local characterization of sublinear functions. However, when using this parametriza-

tion on convex sets in a computation, one needs a practical way to characterize the fact that the en-
velope operator maps the function to a convex set. One way is to use the curvature. For a convex set,
the curvatures is positive everywhere. This remark provides a characterization of support functions
of regular convex sets by the set of continuous functions on the unit sphere in terms of differential
inequalities that should be satisfied pointwise.

3.2 Random sets

For general definitions and properties of random sets, we refer to the book of Molchanov [21] and,
for the specific case of random compact convex sets, to the article [22] of Puri and Ralescu. Notice
that, as Cd is not a vector space, the concept of expectation is not so easy to establish and various
definitions exist. We chose in this work to use the notion of Aumann expectation.
Let us start by recalling the definition a of random convex sets. Let (Ω,F ,P) be a complete

probability space.

Definition 3.2 A random compact set in R
d is a Borel measurable function X : Ω → Cd. A random

compact set X is a random convex compact set in R
d if its realizations are almost surely convex.

Remark 3.3 X is a random convex compact set in R
d if and only if the support function h̃X(u) is a

random variable for every u ∈ S
d−1. Owing to that property, one deduces that the distribution of a

convex compact set is characterized by the values of the function CX(K) = P(X ⊂ K) for K ∈ Kd.

We are in position to define the Aumann expectation of a random convex compact set.

Definition 3.4 Let X be a random compact convex set. The Aumann integral of X is defined as

EA(X) = {E(ξ) | ξ ∈ L1(Ω,F ,P), ξ(ω) ∈ X(ω) a.s.}, (3.2)

where E(ξ) denotes the classical expectation.
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Remark 3.5 1. Here ξ : Ω → R
d is called a “selection” of X.

2. If the distribution of X is non-atomic and if E
(
dH(X, {0})

)
<∞, then EA(X) is compact convex

and it is, owing to the Hörmander embedding, the unique convex compact set which satisfies

E
(
h̃X(u)

)
= h̃EA(X)(u)

for all u ∈ S
d−1.

This notion of expectation has been studied much. In particular, one has the following deep limit
theorems we quote from the works of Puri and Weil.

Theorem 3.6 (Strong law of large numbers (Puri and Ralescu [22])) Let (Xn)n be i.i.d. ran-
dom compact convex sets in R

d such that E(dH(X1, {0})) <∞. Then

X1 + · · ·+Xn

n
−−−→
n→∞

EA(X1) a.s., (3.3)

where the convergence holds in the Hausdorff metric sense.

Theorem 3.7 (Central limit theorem (Weil [26])) Let (Xn)n be i.i.d. random compact convex
sets in R

d such that E
(
dH(X1, {0})2

)
<∞. We denote

Xn =
X1 + · · ·+Xn

n
.

Then √
n
(
h̃Xn

− h̃EA(X1)

)
D−−−→

n→∞
Z, (3.4)

where Z is a centered Gaussian C(Sd−1)-valued random variable, and as corollary

√
ndH

(
Xn,EA(X1)

) D−−−→
n→∞

‖Z‖∞. (3.5)

With the aforementioned central limit theorem at hand, a confidence region for the Aumann expec-
tation can be defined. This was introduced in the work of Choirat and al. [8].
Let ǫ be a nonnegative real number. We first define the inflated and deflated copies of the empirical

estimator Xn: set K
+
n (ǫ) and K

−
n (ǫ) be the two compact convex sets defined by

K+
n (ǫ) =

{
x ∈ R

d, d(x,Xn) ≤ ǫ
}

and
K−
n (ǫ) =

{
x ∈ Xn, d(x,R

d \Xn) ≤ ǫ
}
.

If B denotes the unit ball, these definitions can also be written as

K+
n (ǫ) = Xn + ǫB and K−

n (ǫ) + ǫB = Xn.

Using the property describing the Minkowski sum by the support function of convex sets, we obtain
the relations

h̃K±
n
= h̃Xn

± ǫ.
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Given a real number α ∈ [0, 1], one seeks to determine ǫ such that

P
(
K−
n (ǫ) ⊂ EA(X1) ⊂ K+

n (ǫ)
)
≥ 1− α.

In terms of support functions, we can write

P
(
K−
n (ǫ) ⊂ EA(X1) ⊂ K+

n (ǫ)
)

= P
(
h̃Xn

− ǫ ≤ h̃EA(X1) ≤ h̃Xn
+ ǫ
)

= P
(∥∥h̃EA(X1) − h̃Xn

∥∥
∞

≤ ǫ
) (3.6)

by using the calculation rules for support functions restricted to the unit sphere. Notice that we have
reduced, thanks to Weil’s limit theorem, the problem of the confidence region to the estimation of a
quantile for a real valued random variable. In practice, we can invoke the central limit theorem 3.4 in

order to see that h̃EA(X1)− h̃Xn
follows approximately a centered normal distribution. In that context,

one needs to know the distribution of the limit law ‖Z‖∞. Indeed, under this knowledge, we obtain
the following asymptotic confidence region for the expectation of the random free boundary.

Definition 3.8 If one knows a real number C such that P(‖Z‖∞ ≤ C) ≥ 1− α, then one has

lim
n→+∞

P

(
K−
n

(
C√
n

)
⊂ EA(X1) ⊂ K+

n

(
C√
n

))
≥ 1− α.

Not much can be said about the distribution ‖Z‖∞ from the theoretical point of view. Hence, one
can only approximate it by sampling. With respect to the heavy computational cost, we follow a
bootstrap method as suggested in [8]. This approach will be proposed in the Section 4.5.

4 Computing free boundaries

We now present the numerical method we propose to perform the computations. In order to compute
the expectation of the domain D(ω), we have to be able to determine the free boundary Γ(ω) for each
specific realization ω ∈ Ω of the interior boundary Σ(ω). For sake of simplicity in representation, we
omit the random parameter ω ∈ Ω in this section, i.e., we assume that ω ∈ Ω is fixed.

4.1 Trial method

In the following, we identify the sought free boundary Γ with the radial function r ∈ C2
per([0, 2π]) which

parametrizes the boundary in accordance with

γ : [0, 2π] → Γ, γ(ϕ) = r(ϕ)

[
cosϕ
sinϕ

]
.

Then, we employ the so-called trial method, which is a fixed point type iterative method, to determine
the unknown function r.
Suppose that the current boundary in the k-th iteration is Γk and let the current state uk satisfy

∆uk = 0 in Dk,

uk = 1 on Σ,

−∂uk
∂n

= λ on Γk.

(4.1)
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In order to find an improved boundary Γk+1 being a “better” approximation to the free boundary
problem (2.1), we modify the old boundary Γk with respect to the radial direction. This is achieved
by the update rule

γk+1 = γk + δrker.

The increment function δrk ∈ C2
per([0, 2π]) is chosen such that the desired homogeneous Dirichlet

boundary condition is approximately satisfied at the updated boundary Γk+1, i.e.,

0 = uk ◦ γk+1 ≈ uk ◦ γk +
(
∂uk
∂er

◦ γk
)
δrk on [0, 2π], (4.2)

where uk is supposed to be smoothly extended into the exterior of the domain Dk. For numerical
reasons, we decompose the derivative of uk in the direction er into its normal and tangential components

∂uk
∂er

=
∂uk
∂n

〈er,n〉+
∂uk
∂t

〈er, t〉 on Γk (4.3)

to arrive finally at the following iterative scheme, which is known to be linearly convergent, cf. [13, 14,
25]:

(1) Choose an initial guess Γ0 of the free boundary.

(2a) Solve the boundary value problem with the Neumann boundary condition on the free boundary
Γk.

(2b) Update the free boundary Γk such that the Dirichlet boundary condition is approximately sat-
isfied at the new boundary Γk+1:

δrk = − uk
∂uk
∂er

= − uk

λ〈n, er〉+ ∂uk
∂t

〈t, er〉
(4.4)

(3) Repeat step (2) until the process becomes stationary up to a specified accuracy.

Notice that the update equation (4.4) is always solvable at least in a neighbourhood of the optimum
free boundary Γ since there it holds −∂u/∂er = f〈er,n〉 > 0 due to ∂uk/∂t = 0, f > 0 and 〈er,n〉 > 0
for starlike domains.

4.2 Discretizing the free boundary

For the numerical computations, we discretize the radial function rk associated with the boundary Γk
by a trigonometric polynomial according to

rk(ϕ) =
a0
2

+

p−1∑

ℓ=1

{
aℓ cos(ℓϕ) + bℓ sin(ℓϕ)

}
+
ap
2
cos(pϕ). (4.5)

This obviously ensures that rk is always an element of C2
per([0, 2π]). To determine the increment

function δrk, represented likewise by a trigonometric polynomial, we insert the m ≥ 2p equidistantly
distributed points ϕi = 2πi/m into the update equation (4.4):

δrk = − uk

λ〈n, er〉+ ∂uk
∂t

〈t, er〉
in all the points ϕ1, . . . , ϕm.

This is a discrete least-squares problem which can simply be solved by the normal equations. In view
of the orthogonality of the Fourier basis, this means just a truncation of the respective trigonometric
polynomial.
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4.3 Computing the support function

Having the final boundary Γ at hand, we can compute its support function. The definition of the
support function

p(ϕ) = sup
x∈Dk

〈x, er(ϕ)〉, ϕ ∈ [0, 2π),

amounts to the computation of

p(ϕ) = max
ψ∈[0,2π)

〈γ(ψ), er(ϕ)〉 = max
ψ∈[0,2π)

r(ψ)〈er(ψ), er(ϕ)〉, ϕ ∈ [0, 2π).

This computation is performed for n discrete angles ϕi = 2πi/n, i = 0, 1, . . . , n− 1, and ψj = 2πj/n,
j = 0, 1, . . . , n− 1. Finally, a Fourier series representing the periodic function p(ϕ) is computed.

4.4 Boundary integral equations

Our approach to determine the solution uk of the state equation (4.1) relies on the reformulation as a
boundary integral equation.
The equation (2.4) in combination with (2.5) and (2.6) indicates the Neumann-to-Dirichlet map,

which for problem (4.1) induces the following system of integral equations:

[
−(1

2
I +KΓΓ) VΣΓ

−KΓΣ VΣΣ

] [
uk|Γ
∂uk
∂n

∣∣
Σ

]
=

[
VΓΓ KΣΓ

VΓΣ

(
1
2
I +KΣΣ

)
] [
λ
1

]
. (4.6)

The boundary integral operator on the left hand side of this coupled system of boundary integral
equation is continuous and satisfies a G̊arding inequality with respect to the product Sobolev space
L2(Γ)× H−1/2(Σ) provided that diam(D) < 1. Since its injectivity follows from potential theory, this
system of integral equations is uniquely solvable according to the Riesz-Schauder theory.
The next step to the solution of the boundary value problem is the numerical approximation of the

integral operators included in (4.6) which first requires the parameterization of the integral equations.
To that end, we insert the parameterizations σ and γk of the boundaries Σ and Γk, respectively. For
the approximation of the unknown Cauchy data, we use the collocation method based on trigonomet-
ric polynomials. Applying the trapezoidal rule for the numerical quadrature and the regularization
technique along the lines of [19] to deal with the singular integrals, we arrive at an exponentially
convergent Nyström method provided that the data and the boundaries and thus the solution are
arbitrarily smooth.

4.5 Bootstrapping for the confidence interval

The main difficulty one has to face here is the heavy computational cost of the confidence region
as it requires to compute the distribution of the limit law ‖Z‖∞. The first idea is then of course

to approximate it by a finite sampling approximation
√
n
∥∥h̃EA(X1) − h̃Xn

∥∥
∞
. However, this is almost

untractable since it requires to solve too much free boundary problems. Following the references [8, 18],
we propose to use a bootstrapping method in order to reduce the number of needed solutions to the
free boundary problem.
The procedure we propose in order to evaluate a confidence interval is the following:
From k = 1 to N (Monte-Carlo method) do
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1. Take p directions on the sphere S
d−1 and simulate n discretized support functions hX1

, . . . ,hXn
.

Note that each discretized support function is a vector in R
p.

2. Obtain then the empirical distribution associated and simulate for b = 1, . . . , J samples hb1, . . . ,h
b
n

following this distribution. This is the bootstrap step which gives

h∗
n =

1

J

(
J∑

b=1

[
1

n

n∑

i=1

hbi

])
.

3. The quantity h∗
n − hXn

approximates of hEA(X1) − hXn
, thus calculate

∥∥h∗
n − hXn

∥∥
∞
. Note that

it holds the identity
hXn

= hXn
.

After these computations, we have N values of
∥∥h∗

n−hXn

∥∥
∞
. Denote by F̂N the empirical cumulative

distribution associated with
∥∥h∗

n − hXn

∥∥
∞
, given by

F̂N(x) =
1

N
#
{∥∥h∗

n − hXn

∥∥
∞

≤ x
}
. (4.7)

Finally, we determine ǫ > 0 such that F̂N(ǫ) ≥ 1 − α. The quantify ǫ defines the size of the desired
confidence interval to the confidence level α.

5 Numerical results

5.1 First experiment: smooth support function

In our first experiment, we consider a random support function p(ϕ) which is computed by a random
Fourier series. Namely, we define

p(ϕ) = 0.1

(
1 +

a0(ω)

2
+

∞∑

ℓ=1

1

ℓ4
{
aℓ(ϕ) cos(ℓϕ) + bℓ(ϕ) sin(ℓϕ)

})
, (5.1)

where aℓ(ϕ) and bℓ(ϕ) are independent and uniformly distributed random variables in [−1/2, 1/2]. The
cubic decay of the Fourier coefficients ensures that p ∈ C3

per([0, 2π]) and, hence, the realization of Σ(ω)

is always a C2-smooth boundary. In practice, we truncate the infinite Fourier series of the support
function after ℓ = 50 terms.
The specific setup for our the numerical solution of the free boundary problem is as follows. We

consider the desired Dirichlet data to be λ = 10. For the numerical solver, 400 equidistant collocation
points per boundary are used in the boundary element method and also for the calculation of the
update and the support function in accordance with Subsections 4.2 and 4.3. The initial guess of the
trial method is a ball with radius r0 = 0.2. We stop the trial method if the L∞-norm of the Dirichlet
data at the free boundary are smaller than 10−6. In all, we compute M = 10 000 samples of the free
boundary problem. Some of these random samples are found in Figure 1, where the gray matter is the
final domain D(ωi) while the coloured lines indicate the iterates of the trial method.
The computed mean boundaries are found in Figure 2. The interior mean boundary is a circle of

radius 0.1 while the exterior mean boundary is circle of radius 0.176. We mention that, by definition
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Figure 1: Different realizations of the free boundary problem in case of a smooth random support
function as interior boundary.

of the function p(ϕ) in (5.1), in view of E(p) ≡ 0.1 and E(p′) = 0, the mean of the support function
of the interior boundary is also ≡ 0.1, and hence the interior mean boundary is indeed be the circle
of radius 0.1. Moreover, by symmetry arguments, the exterior mean boundary should also be a circle,
but of unknown radius.
We shall next comment on the computation of the confidence interval. We need to compute the

empirical cumulative distribution F̂N of the random variable
∥∥h∗

n − h̃Xn

∥∥
∞
, compare (4.7). To this

end, we distribute the M = 10 000 free boundary computations in accordance with N = n = 100 and
set J = 100 for the bootstrapping. These parameters were chosen so that the total duration of the
computations is of the order of two hours on a standard notebook – in our case a MacBook. This
results in the empirical cumulative distribution found in Figure 3. The size of the confidence interval
is 6.81 · 10−3 in case of the confidence level α = 10% and 8.37 · 10−3 in case of the confidence level
α = 5%. In view of this small confidence interval, the computed circular mean boundaries are quite
optimal with high probability.

5.2 Second experiment: polygonal inclusion

In the second experiment, we shall consider convex random polygons with five vertices as interior
boundary Σ(ω), which we construct as follows. We draw a uniformly distributed random vector
ψ ∈ [0, 2π]5, representing the angles of the vertices, and a random radius r ∈ [a, b], representing the
perimeter where the vertices lie on. Hence, the polygon has the five vertices

v1 = rer(ψ1), v2 = rer(ψ2), . . . v5 = rer(ψ5),
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Figure 2: The mean of the support functions of the interior boundary and the exterior boundary in
case of the first example.
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Figure 3: The empirical cumulative distribution F̂N scaled by the factor
√
n in case of the first example.

where we assume that ψ1 < ψ2 < · · · < ψ5. In order to avoid degenerate polygons, we further impose
the condition that the distance between two subsequent vertices is larger or equal to a prescribed lower
bound d. Finally, the barycenter

s =
1

5

5∑

i=1

vi

of the convex polygon is shifted into 0 by the coordinate transform

vi 7→ v̂i := vi − s, i = 1, 2, . . . , 5.

In our experiment, we choose the polygon’s perimeter bounds as a = 0.05, b = 0.10, and d = 0.25.
We draw again 10 000 samples, where all parameters in the trial method are set as in the first

experiment. Some samples are illustrated in Figure 4, where again the gray matter indicates the
final domain, which are accompanied by the iterates of the nonlinear solver for the exterior boundary,
indicated by lines.
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Figure 4: Different realizations of the free boundary problem in case of a convex random polygon as
interior boundary.

The computed mean boundaries, which turned out to be (approximately) circles of radius rΣ =
0.0523 and rΓ = 0.128, are found in Figure 5. Likewise to the first example, it is clear from a
symmetry point of view that circular shapes of the mean are expected.

The empirical cumulative distribution F̂N of the random variable
∥∥h∗

n− h̃Xn

∥∥
∞

is found in Figure 6.

The confidence interval has the size 4.68 · 10−4 for the confidence level α = 10% and 5.34 · 10−4 for
α = 5%. In Figure 7, we plot a zoom of the asymptotic confidence regions for various values of the
sample size n in order to illustrate the Definition 3.8. Of course, the sampling size remains small to
reach the asymptotic regime.
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