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Résumé — In this work, the efficiency of a multiscale strategy based on a domain decomposition method
(DDM) for model-order reduction of friction contact problems is presented. The resolution strategy is
based on the LATIN method combined with the Proper Generalized Decomposition (PGD). The effecti-
veness and possible improvement points of the method will be illustrated on a one-dimensional frictional
benchmark problem which features a large frictional contact interface and sliding front.
Mots clés — multiscale strategy ; model-order reduction ; frictional contact.

1 Introduction

The direct numerical resolution of large-scale, time-dependent nonlinear problems still nowadays
remains a cumbersome challenge, especially for frictional contact problems. There are in this regard a
range of applications where one should not negotiate on the quality and accuracy of the solution. It is
the case, for example, of helically wounded steel wires, widely encountered in the energy and power
transmission fields. The life prediction of such structures involving fretting fatigue phenomena between
their constituent wires is crucial. However, wire-scale simulations for varying tension and bending du-
ring service life require effective computational and modeling strategies [1]. Examples include multigrid
acceleration strategies or DDM techniques for numerical resolution parallelization [3]. A different path
consists in adopting reduced-order models (ROM) methods to decrease the computational cost by see-
king the solution of the given problem in a reduced-order basis (ROB). Nevertheless, a ROB may not
easily and efficiently capture nonregular and propagating multiscale phenomena that occur at contact
interfaces : sliding, sticking and separation zones being difficult to represent. Indeed, for specific pro-
blems where high accuracy of local contact quantities is required, ROM alone may not guarantee high
accuracy while ensuring at the same time a significant decrease in computational cost. As highlighted in
[4, 5], frictional contact problems present a multiscale content, with global modes on the structural level
and localized modes bringing corrections at the contact interfaces. This suggests that proposing a model
reduction method within a multiscale approach may be truly beneficial for problems of this type.

Here, the mixed DDM strategy based on the LATIN method [8] is considered. The LATIN (LArge
Time INcrement) is a non-incremental solver for nonlinear problems which iterates on the whole space-
time domain with an iterative scheme which shares similarities with augmented Lagrangian formulations
and Uzawa-like algorithms, known to be robust for contact problems [13]. The mixed nature of the
method, with both interface displacements and interface forces as unknowns, enables one to deal with
interfaces characterized by different behaviours with a single resolution method. Moreover, the global
space-time approach makes the method suitable for on-the-fly model-order reduction based on the PGD
[9]. A multiscale version of the LATIN-based mixed DDM was introduced in [10, 7, 6]. However, no
particular focus has been paid on frictional problems per se, with a few contact interfaces surrounded by
other material nonlinearities that reduce the influence of the frictional interfaces on the whole structure.

This work is intended to highlight how and to what extent a multiscale approach, in particular one
based on DDM, may be helpful in efficiently solving frictional contact problems with a model reduc-
tion approach. To this end, the multiscale strategy is briefly presented and applied to a one-dimensional
frictional contact problem. The strengths of the method are presented and possible strategies for impro-
vement are proposed.
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2 A multiscale strategy for frictional contact problems

The reference problem of the equilibrium of an elastic structure, under the assumptions of small
displacements and an isothermal quasi-static state, occupying the space domain Ω on the time interval
[0,T ], is considered. The structure is subjected to time-dependent body forces f

d
, imposed loads Fd on

a portion ∂2Ω of the boundary as well as prescribed displacements ud on the complementary part ∂1Ω.
The basic idea consists in describing the structure as an assembly of substructures and interfaces, where
each substructure has its own variables and equations.

A substructure ΩE ⊂ Ω, E ∈ E, with E being the set of substructures, is subjected to the action of its
environment (i.e., the neighbouring substructures VE) by a force distribution FE and a displacement field
W E on its boundary ∂ΩE . The kinematic admissibility condition for W E is denoted with EE,ad and FE,ad
represents the static admissibility conditions for FE . The admissibility of the couple sE = (W E ,FE) is
denoted by SE,ad and includes the verification of the linear elastic constitutive relation σE = K : εE , with
K being Hooke’s tensor. An interface ΓEE ′ between substructures ΩE and ΩE ′ , on the other hand, must
verify equilibrium conditions and the interface constitutive behaviour bEE ′ = 0, which depends on the
nature of the interface (perfect interface, contact interface, boundary condition interface etc.).

The introduction of a multiscale strategy is operated at the interface level. The interface unknowns
sE = (W E ,FE) are split into sE = sM

E + sm
E prior to any discretization, where sM

E is the set of the macro
quantities and sm

E the complementary set of micro quantities. The macroscale is defined by the charac-
teristic length of the interfaces, which is a priori greater than the discretization on the microscale. The
most important feature of the multiscale strategy is that the equilibrium conditions at the interfaces are
partially verified a priori on interface macroquantities :

∀E ∈ E,∀E ′ ∈ VE , FM
E +FM

E ′ = 0. (1)

The corresponding admissibility space is denoted with F M
ad . For further details on the multiscale strategy

one may refer to [7, 6].

2.1 The multiscale strategy within the LATIN framework

The decomposition into substructures and interfaces with their own equations to be satisfied leads
to partition the reference problem into two manifolds of solutions. The manifold Ad , corresponding
to the set of the linear and possibly global equations pertaining to the substructures, and the manifold
Γ representing the set of the local and possibly non-linear equations at the interface level. With this
partitioning, it is possible to apply the LATIN method [8]. The solution is therefore sought iteratively
with a two-search direction alternate algorithm between Ad and Γ, as shown schematically in Fig. 1.

FIGURE 1 – LATIN iterative scheme.

Knowing the solution sn ∈ Ad at iteration n, the first step consists in finding ŝn+1/2 ∈ Γ by following
the ascent search direction E+, which represents the local stage of the LATIN. The local stage problem
(2.1) is solved at the interface level taking into account the different nature of each interface. For frictional
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contact interfaces, Signorini non-penetration conditions and Coulomb’s frictional law have to be verified.
Other interface behaviours such as perfect linkage interfaces or boundary conditions interfaces can be
also taken into account thanks to the mixed nature of the strategy.

Problem 2.1 (local stage). Find ŝ = {̂sE}E∈E, verifying :

equilibrium of forces : F̂E + F̂E ′ = 0
Γ interface constitutive behaviour bEE ′(Ŵ E ,Ŵ E ′ , F̂E , F̂E ′) = 0

search direction E+ : F̂E −FE − k(Ŵ E −W E) = 0

From ŝn+1/2 ∈ Γ, by following a descent search direction E−, the solution sn+1 ∈Ad is found in the linear
stage by solving a linear elastic problem (2.2) at the substructural level.

Problem 2.2 (linear stage). Find s = {sE}E∈E, verifying :

the admissibility of sE : sE ∈ SE,ad
Ad the admissibility of FM : FM ∈ F M

ad

search direction E− : FE − F̂E + k(W E −Ŵ E −W̃
M
E ) = 0

In the search direction E−, the quantity W̃
M
E represents a Lagrange multiplier introduced to enforce

the equilibrium conditions (1). It is computed at every iteration by solving a coarse-scale problem on the
whole structure. The coarse-scale problem allows macro quantities to be propagated among all substruc-
tures and ensures numerical scalability over the number of substructures. [6]. The quantity k appearing in
the search direction equations is the search direction parameter, homogeneous to a stiffness. The value
of k affects the convergence rate of the problem, but not the solution at convergence. Reference values
for k usually adopted in each substructure are given by the stiffness of the substructure itself.

In order to control the convergence of the LATIN algorithm, one can build error indicators based on
the distance between two consecutive solutions belonging to each of the two manifolds. The usual error
indicator adopted, introduced in [8], is the LATIN indicator :

η :=
∑E ∥s− ŝ∥2

1
2 ∑E(∥s∥2 + ∥̂s∥2)

, with ∥□∥2 :=
∫

∂ΩE×[0,T ]
(kW 2 +

1
k

F2)dΓdt. (2)

Such an error indicator characterizes the global distance in space and time between two consecutive
solutions of the linear and local stages blending together displacements and interface forces with the
search direction parameter k. The LATIN indicator, by definition, does not allow to accurately control
the solution locally in space and time. A more stringent indicator has been proposed in [12]. In both
cases, however, the indicator depends on k. In [11], a novel error indicator was introduced, which is
based solely on the non-satisfaction of the constitutive behaviour at the interfaces.

2.2 Approximation of the linear stage : Proper Generalized Decomposition

The linear stage at iteration n+ 1 consists in solving a set of linear problems for each substructure
over all the space-time domain. A PGD approximation of the linear stage can be introduced in order to
speed up the computations [6]. First of all, the solution sn+1 at the current iteration can be equivalently
written in term of corrections with respect to the previous iteration solution sn+1 = sn +∆s, with ∆s =
(∆W ,∆F). Given the linearity of the equations pertaining to the manifold Ad , for each substructure
ΩE the admissibility conditions can be equivalently written in terms of corrections, as well as the search
direction E− : ∆FE +k∆W E − δ̂E = 0. The quantity δ̂E is a residual in the search direction, it is a quantity
known at this stage that depends on the iterates coming form the previous local and global stages and on
the Lagrange multiplier W̃

M
E .

Introducing PGD consists in looking for a space-time separated representation in space and time
for the corrections of forces and displacements, that is ∆W E = Z(x)ϕ(t) and ∆FE = G(x)ϕ(t). If this
separated representation is required to verify admissibility conditions, the following constraint has to be
verified for space modes :∫

ΩE

εE(Z) : K : εE(Z∗)dΩ =
∫

∂ΩE

G ·Z∗dΓ ∀Z∗ ∈ EE,ad, (3)

3



By requiring a separated representation of the unknowns, as well as the admissibility condition (3) for
space modes, the search direction equation can only be verified in a weak sense through the following
minimal residual problem [6, 11] :

Problem 2.3. Find (Z,G) ∈ EE,ad ×FE,ad and ϕ ∈ L2
[0,T ] satisfying

(Z,G,ϕ) = arg min
(G,Z,ϕ)

∥(G+ kZ)ϕ− δ̂E∥2
∂ΩE×[0,T ], (4)

as well as the admissibility condition (3).

The resolution of (4) is usually performed with a fixed point iterative strategy. The first step consists in
computing the space modes knowing the time mode ϕ from the previous step. Then ϕ is updated knowing
the space modes from the first step. The process is stopped after few iterations.

Such a progressive PGD decomposition where new modes are added along the iterations, is generally
not optimal, which means that a large number of modes may be required for a given accuracy. To improve
the quality of the basis and control its size so that it does not grow uncontrollably, time modes updating
[9] and downsizing algorithms [4, 14] can be adopted and will be briefly explained in the next section.

3 Numerical application

As a simple but very demonstrative example, an application on a one-dimensional frictional contact
problem is reported. The benchmark problem consists of a clamped bar subjected to a time dependent
traction loading F(t) on the free side (Fig. 2b). The bar is in contact with a frictional interface by means
of a normal pressure p(t) acting on it (Fig. 2a). In practice, it is assumed that the bar is always in contact
with the surface due to the pressure p.

Contact 
interface

Perfect 
interface

Boundary 
conditions

(a)

0 0.5 1

Time (s)

0

500

1000

F
(t

) 
(N

)

(b)

FIGURE 2 – Benchmark problem set : sketch of the problem (a) and time evolution of the load F(t) (b).

A monoscale monostructure model reduction analysis of this test case was performed in [14]. It was
shown that the problem presents a low reducibility, especially for frictional forces and, because of this, a
lot of PGD modes on the whole contact interface need to be computed. This may lead to loss of efficiency
and poor local accuracy for contact quantities.

Here, the benefits that a domain decomposition approach can bring, and especially the computational
gain in introducing a multiscale aspect, are studied. The structure is therefore decomposed into several
substructures that interact with each other through connecting perfect interfaces and subject also to the
frictional contact interface, as in Fig. 2a in the case of decomposition into 5 substructures.
The used parameters are shown in Tab. 1. A reference search direction k = ES/lsub was adopted for both
frictional and perfect interfaces, with lsub being the length of a substructure.

4



Parameters
Young modulus, E 210 GPa
Bar cross section, S 3.14 mm2

Bar length, L 1 m
Number of DOFs, Nx 51
Number of time steps, Nt 101
Time interval, T 1 s
Friction coefficient, µ 0.3
Pressure load, p(t) 5000 N/L

TABLE 1 – Used parameters for the benchmark problem.

3.1 Performance of the multiscale approach

Fig. 3 shows, in the case of 10 substructures, the behavior of LATIN indicator (2) in the monoscale
version and in the multiscale case. The gain in convergence with the introduction of the multiscale aspect
is remarkable. The multiscale approach, in particular, allows for a huge convergence gain in the first
iterations, where macroquantities converge rapidly. Subsequently, the quantities converge at the local
microlevel. In this second stage the monoscale and multiscale approach exhibit the same convergence
rate. To highlight the effect of the multiscale approach on the solution of the problem, Fig. 4 shows, in
the case of 10 substructures, the solution of the problem after 10 iterations of the LATIN method for
the monoscale approach and the multiscale one, compared to the reference solution at time t = 0.5s and
t = 1s. It is evident how, after a a few iterations, the multiscale approach succeeds in capturing the global
behavior of the problem very well. Subsequently, further iterations are needed for the microquantities to
converge, especially at the sticking-sliding discontinuity zones. The monoscale approach, on the other
hand, turns out to be far from the reference solution, with the loading boundary condition still not fully
propagated along all the substructures.

50 100 150 200
LATIN iterations

10-8

10-6

10-4

10-2

100

LA
T

IN
 in

di
ca

to
r

Multiscale
Monoscale

FIGURE 3 – LATIN indicator evalution for the monoscale and the multiscale approach.

These results show indeed how the multiscale approach allows for significant gain, especially in
the first iterations. However, local convergence of microquantities still continues to maintain the same
convergence rate as the monoscale approach, which may still lead iterate a considerable number of times
in order to have an accurate computation of local quantities. One method to improve this weakness may
be to update the search direction parameter k, taken constant in space and time, according to the contact
conditions once the contact status has come to convergence. The search direction parameter would then
result as a function of space and time k(x, t). Updating the search direction can be, however, computa-
tionally burdensome since it would require to recompute the linear operators of the LATIN. Despite this,
still updating few time after the contact status has come to convergence may be beneficial, especially if
one can provide a separated representation of k(x, t) to facilitate the integration of the operators.
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FIGURE 4 – Frictional contact forces distribution after 10 iterations of the LATIN for the monoscale and
the multiscale approach at time t = 0.5s (a) and t = 1s (b).

3.2 Preliminary SVD analysis and introduction of PGD

Before proceeding with the application of PGD in the test case, an a posteriori SVD analysis of the
previous problem in the case of 5 substructures is given. Fig. 5 shows the trend of the singular values
for the frictional contact forces in the different substructures, numbered from 1, which corresponds to
the clamped substructure, to 5, corresponding to the substructure where the external force is applied.
Different substructures subjected to different sticking-sliding conditions show different potential reduci-
bility. The first two, more under sticking conditions, exhibit singular values that decrease very rapidly.
The last three, on the other hand, where a large sliding front is present, display a very slow trend in
singular values decreasing

2 4 6 8 10
SVD mode number

10-20

10-15

10-10

10-5

100

105

S
in

gu
la

r 
V

al
ue

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5

FIGURE 5 – SVD singular values for frictional forces on the different substrctures.

In Fig. 6 is shown a comparison between space modes of frictional forces for substructures 4 and 5. A
more global aspect of the first modes, more energetic and, one might say, at “low-frequency" is evident,
compared with subsequent modes that bring more local, “high-frequency" corrections. The contribution
of the first modes in the multiscale approach is well captured in fact by the macroproblem for the whole
structure. This corresponds in fact to the rapid initial convergence rate at the beginning in Fig. 3 and
can be visualized as well in the solution plot of Fig. 4 where some information is still missing locally
in the sticking-sliding transition zones. Moreover Fig. 6 highlights another interesting aspect. Indeed,
substructures 4 and 5 exhibit similar sticking-sliding conditions and evolution over time, for this reason
their modes present similar shapes. This suggests the idea of being able to share the PGD basis between
similar subdomains along the LATIN iterations [6, 11].

6



0 0.5 1
x/l

sub

-0.33

-0.32

-0.31

-0.3

-0.29

-0.28

-0.27

-0.26

-0.25

-0.24

-0.23
Space mode 1

Sub 4
Sub 5

0 0.5 1
x/l

sub

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Space mode 3

Sub 4
Sub 5

0 0.5 1
x/l

sub

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Space mode 5

Sub 4
Sub 5

FIGURE 6 – SVD space modes 1, 3 and 5 of frictional forces for substructures 4 and 5.

The introduction of PGD allows the linear stage problems of the LATIN to be solved in a separated
representation framework and to save computational time. However, even though finding a new pair
of PGD modes is less onerous than solving the problem in full format, adding a new mode to each
iteration of the LATIN is still expensive and leads to a high ROB size that can cause the method to lose
effectiveness. For this reason, an established way to avoid adding modes at each iteration unless necessary
and to simultaneously improve the quality of the reduced representation is to perform a preliminary stage
by updating all the time functions [9]. However, for strongly non-regular and non-linear problems such as
frictional contact problems, this does not prevent the generation of strongly redundant modes that move
the PGD basis away from its optimality. It is therefore necessary to contain the size of the PGD basis and
control its quality along the iterations of the LATIN. A soft sorting and downsizing algorithm such as the
one proposed in [4] may be sufficient, as shown in Fig. 7 and 8, where the the first 3 SVD modes of the
displacements of substructure 5 are compared with the first 3 PGD modes displaying a good correlation.
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FIGURE 7 – SVD space modes 1, 2 and 3 of displacements for substructure 5.
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FIGURE 8 – PGD space modes 1, 2 and 3 of displacements for substructure 5.

The non-linear aspect in the LATIN is still integrated in the local stage in full format on the interfaces.
This may in fact represent a bottleneck to model reduction, especially in the case of many and large
interfaces. One can think of the possibility to integrate the local stage in a reduced format as well by
making use, for example, of an a hyperreduction format dedicated to the LATIN-PGD [2].
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4 Conclusions

In this paper, some strengths and points of improvement of the LATIN-based multiscale mixed DDM
method for the model-order reduction of frictional contact problems were presented. The DDM approach
allows to create reduced bases per substructure to better track sliding fronts and propagative phenomena.
The multiscale aspect leads to a significant gain in convergence in the early stages, taking advantage of
the multiscale nature of the phenomenon itself. However, after few iterations the convergence rate drops
and it is necessary to refer to search direction updating techniques, which are scheduled to be proposed.
PGD is naturally introduced in the linear stage of LATIN and allows for the addition of new modes where
and when required to better follow the evolving frictional phenomena, with the size of the basis which
can be efficiently controlled with a downsizing algorithm. The local stage still remains a bottleneck as it
is integrated in full format and the potentiality offered by a reduced RPM integration will be considered.
Moreover, the need to control the local error with an appropriate convergence indicator is crucial for
specific applications. Two-dimensional problems with more complex loadcases and larger number of
frictional interfaces will be tested to further comprehend the potentiality of the proposed approach.

Références

[1] F. Bussolati, P.-A. Guidault, M. L. E. Guiton, O. Allix, and P. Wriggers. Robust contact and friction model
for the fatigue estimate of a wire rope in the mooring line of a floating offshore wind turbine. Lecture Notes
in Application and Computational Mechanics, 93 :249–270, 2020.

[2] M. Capaldo, P.-A. Guidault, D. Néron, and P. Ladevèze. The reference point method, a “hyperreduction”
technique : Application to PGD-based nonlinear model reduction. Computer Methods in Applied Mechanics
and Engineering, 322 :483–514, 2017.

[3] Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatỳ, V. Vondrák, and P. Horyl. A theoretically suppor-
ted scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Computer
Methods in Applied Mechanics and Engineering, 205 :110–120, 2012.

[4] A. Giacoma, D. Dureisseix, A. Gravouil, and M. Rochette. Toward an optimal a priori reduced basis strategy
for frictional contact problems with LATIN solver. Computer Methods in Applied Mechanics and Enginee-
ring, 283 :1357–1381, 2015.

[5] P.-A. Guidault, D. Zeka, D. Néron, M. Guiton, and G. Enchéry. Model order reduction for the fatigue life
prediction of wire ropes in tension and bending. In 7th International Conference on Computational Contact
Mechanics, 2023.

[6] P. Ladeveze and A. Nouy. On a multiscale computational strategy with time and space homogenization for
structural mechanics. Computer Methods in Applied Mechanics and Engineering, 192(28-30) :3061–3087,
2003.

[7] P. Ladevèze, A. Nouy, and O. Loiseau. A multiscale computational approach for contact problems. Computer
Methods in Applied Mechanics and Engineering, 191(43) :4869–4891, 2002.

[8] P. Ladevèze. Nonlinear Computational Structural Mechanics - new approaches and non-incremental methods
of calculation. Mechanical Engineering Series. Springer New York, 1999.

[9] A. Nouy. A priori model reduction through proper generalized decomposition for solving time-dependent
partial differential equations. Computer Methods in Applied Mechanics and Engineering, 199(23-24) :1603–
1626, 2010.

[10] A. Nouy and P. Ladevèze. Multiscale computational strategy with time and space homogenization : a radial-
type approximation technique for solving microproblems. International Journal for Multiscale Computatio-
nal Engineering, 2(4), 2004.

[11] J.-C. Passieux. Approximation radiale et méthode LATIN multiéchelle en temps et espace. PhD thesis, Ecole
normale supérieure de Cachan, 2008.

[12] R. Ribeaucourt, M.-C. Baietto-Dubourg, and A. Gravouil. A new fatigue frictional contact crack propagation
model with the coupled X-FEM/LATIN method. Computer Methods in Applied Mechanics and Engineering,
196(33-34) :3230–3247, 2007.

[13] J. C. Simo and T. Laursen. An augmented lagrangian treatment of contact problems involving friction.
Computers and Structures, 42(1) :97–116, 1992.

[14] D. Zeka, P.-A. Guidault, D. Néron, M. Guiton, and G. Enchéry. Preliminary study for the simulation of
wire ropes using a model reduction approach suitable for multiple contacts. In 25ème Congrès Français de
Mécanique, 2022.

8

View publication stats

https://www.researchgate.net/publication/378006279

