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Abstract

We present a variety of geometrical and combinatorial tools that are
used in the study of geometric structures on surfaces: volume, contact,
symplectic, complex and almost complex structures. We start with a
series of local rigidity results for such structures. Higher-dimensional
analogues are also discussed. Some constructions with Riemann sur-
faces lead, by analogy, to notions that hold for arbitrary fields, and
not only the field of complex numbers. The Riemann sphere is also
defined using surjective homomorphisms of real algebras from the ring
of real univariate polynomials to (arbitrary) fields, in which the field
with one element is interpreted as the point at infinity of the Gaus-
sian plane of complex numbers. Several models of the hyperbolic plane
and hyperbolic 3-space appear, defined in terms of complex structures
on surfaces, and in particular also a rather elementary construction of
the hyperbolic plane using real monic univariate polynomials of degree
two without real roots. Several notions and problems connected with
conformal structures in dimension 2 are discussed, including dessins
d’enfants, the combinatorial characterization of polynomials and ra-
tional maps of the sphere, the type problem, uniformization, quasi-
conformal mappings, Thurston’s characterization of Speiser graphs,
stratifications of spaces of monic polynomials, and others. Classical
methods and new techniques complement each other.

The final version of this paper will appear as a chapter in the Vol-
ume Surveys in Geometry. II (ed. A. Papadopoulos), Springer Nature
Switzerland, 2024.
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1 Introduction

Given a differentiable surface, i.e., a 2-dimensional differentiable manifold,
one can enrich it with various kinds of geometric structures. Our first aim
in the present survey is to give an introduction to the study of surfaces
equipped with locally rigid and homogeneous geometric structures.

Formally, a geometric structure on a surface S is given by a section of
some bundle associated with its tangent bundle TS. We shall deal with
specific examples, mostly, volume forms, almost complex structures (equiv-
alently, conformal structures, since we are dealing with surfaces) and Rie-
mannian metrics of constant Gaussian curvature. We shall also consider
quasiconformal structures on surfaces. Foliations with singularities, Morse
functions, meromorphic functions and differentials on almost complex sur-
faces induce geometric structures that are locally rigid and homogeneous
only in the complement of a discrete set of points on the surface. Lami-
nations, measured foliations and quadratic differentials are examples of less
homogeneous geometric structures. They play important roles in the theory
of surfaces, as explained by Thurston, but we shall not consider them here.

A theorem of Riemann gives a complete classification of non-empty sim-
ply connected open subsets of R2 that are equipped with almost complex
structures. Only two classes remain! This takes care at the same time of
the topological classification of such surfaces without extra geometric struc-
ture: they are all homeomorphic. The classical proof of this topological fact
invokes the Riemann Mapping Theorem, that is, it assumes the existence
of an almost complex structure on the surface. Likewise, only two classes
remain in the classification of non-empty open connected and simply con-
nected subsets of R2 that are equipped with a Riemannian metric of constant
curvature: the Euclidean and the Bolyai–Lobachevsky plane. The latter is
also called the non-Euclidean or hyperbolic plane.

No classification theorem similar to that of simply connected open sub-
sets of R2 holds in R3, even if one restricts to contractible subsets. See
[110] for the historical example, now called “Whitehead manifold”, which,
by a result of Dave Gabai (2011) [37], is a manifold of small category, i.e.,
it is covered by two charts, both of which being copies of R3 that moreover
intersect along a third copy of R3.

We shall be particularly concerned with almost complex structures, i.e.,
conformal structures, on surfaces. The theory of such structures is inter-
twined with topology. This is not surprising: Riemann’s first works on
functions of one complex variable gave rise at the same time to fundamental
notions of topology. He conceived the notion of “n-extended multiplicity”
(Mannigfaltigkeit), an early version of n-manifold, he introduced basic no-
tions like connectedness and degree of connectivity for surfaces, which led
him to the discovery of Betti numbers in the general setting (see Andé Weil’s
article [109] on the history of the topic), he classified closed surfaces accord-
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ing to their genus, he introduced branched coverings, and he was the first
to notice the topological properties of functions of one complex variable
(one may think of the construction of a Riemann surface associated with a
multi-valued meromorphic function). At about the same time, Cauchy, in
his work on the theory of functions of one complex variable, introduced path
integrals and the notion of homotopy of paths. We shall see below many
such instances of topology meeting complex geometry.

In several passages of the present survey, we shall encounter graphs that
are used in the study of Riemann surfaces. They will appear in the form of:

1. Speiser graphs associated with branched coverings of the sphere: these
are used in Thurston’s realization theorem for branched coverings
(§6.3), in the type problem (§7.2), in the theory of dessins d’enfants
(§8.1) and in a cell-decomposition of the space of rational maps (§8.4);

2. rooted colored trees associated with slalom polynomials (§8.2);

3. pictures of monic polynomials used for the stratification of the space
of slalom polynomials (§8.3).

At several places, we shall see how familiar constructions using the field
of complex numbers can be generalized to other fields. Conversely, algebraic
considerations will lead to several models of the Riemann sphere and of 2-
and 3-dimensional hyperbolic spaces. Relations with the theory of knots
and links will also appear.

Let us give now a more detailed outline of the next sections:
In §2 we present a few classical examples of rigidity and local rigidity

results in the setting of geometric structures on n-dimensional manifolds.
A theorem due to Jürgen Moser, whose proof is sometimes called “Moser’s
Trick”, deals with the classification up to isotopy of volume forms on com-
pact connected oriented n-dimensional manifolds. We show how this proof
can be adapted to the symplectic and contact settings. A local rigidity result
(which we call a Darboux local rigidity theorem) gives a canonical form for
volume, symplectic and contact forms on non-empty connected and simply
connected open subsets (S, ω) of Rn.

In dimension two, almost complex structures are also locally rigid, and
we present a Darboux-like theorem for them. The question of the exis-
tence and integrability of J-structures on higher-dimensional spheres arises
naturally. We survey a result due to Adrian Kirchhoff which says that an n-
dimensional sphere admits a J-structure if and only if the (n+1)-dimensional
sphere admits a parallelism, that is, a global field of frames. This deals with
the question of the existence of J-fields on higher-dimensional spheres, which
we also discuss in the same section: only S6 carries such a structure.

Section 3 is concerned with the first example of Riemann surface, namely,
the Riemann sphere. We give several models of this surface. Its realization
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as the projective space P1(C) leads to constructions that are valid for any
field k and not only for C. In the same section, we review a realization of
P1(C) with its round metric as a quotient space of the group SU(2) of linear
transformations of C2 of determinant 1 preserving the standard Hermitian
product. The intermediate quotient SU(2)/{±Id} is isometric to P 3(R)
and also to the space Tl=1P1(C) of length 1 tangent vectors to S2. In this
description, oriented Möbius circles on P1(C) (that is, the circles of the
conformal geometry of P1(C)) lift naturally to oriented great circles on S3 =
SU(2). Also, closed immersed curves without self-tangencies lift to classical
links (that is, links in the 3-sphere).

In §4, we present another model of the Riemann sphere, together with
models of the hyperbolic plane and of hyperbolic 3-space. A model of the
Riemann sphere is obtained using algebra, namely, fields and ring homo-
morphisms. In this model, the point at infinity of the complex plane is
represented by F1, the field with one element. The notion of shadow num-
ber is introduced, as a geometrical way of viewing the cross ratio. The
hyperbolic plane appears as a space of ideals equipped with a geometry nat-
urally given by a family of lines. In this way, the hyperbolic plane has a
very simple description which arises from algebra. The cross ratio is used
to prove a necessary and sufficient condition for a generic configuration of
planes in a real 4-dimensional vector space to be a configuration of complex
planes. We then introduce the notions of compatible (or J-conformal) Rie-
mannian metric and we prove the existence and uniqueness of such metrics
on homogeneous Riemann surfaces with commutative stabilizers. We de-
scribe several models of spherical geometry (surfaces of constant curvature
+1), and of 2- and 3-dimensional hyperbolic spaces in terms of the complex
geometry of surfaces. We then study the notion of J-compatible Riemannian
metrics. An existence result of such metrics is the occasion to characterize
homogeneous Riemann surfaces up to bi-holomorphic equivalence.

In §5, we reduce generality by assuming that the surface S is an open
connected and path-connected non-empty subset of the real plane R2. Fun-
damental results appear. For instance, the theorem saying that two open
connected and path-connected non-empty subsets of the real plane R2 are
diffeomorphic, a consequence of the Riemann Mapping Theorem. This the-
orem says that any nonempty open subset of the complex plane which is
not the entire plane is biholomorphically equivalent to the unit disc. The
Riemann Mapping Theorem generalized to any simply connected Riemann
surface (and not restricted to open subsets of the plane) is the famous Uni-
formization Theorem. It leads to the type problem, which we consider in
§7.

The next section, §6, is concerned with some aspects of branched cov-
erings between surfaces. A classical combinatorial formula associated with
such an object is the Riemann–Hurwitz formula. It leads to some natural
problems which are still unsolved. A combinatorial object associated with
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a branched covering of the sphere is a Jordan curve that passes through all
the critical values and which we call a Speiser curve. Its lift by the cov-
ering map is a graph we call a Speiser graph, an object that will be used
several times in the rest of the survey. A theorem of Thurston which we re-
call in this section gives a characterization of oriented graphs on the sphere
that are Speiser graphs of some branched covering of the sphere by itself.
Thurston proved this theorem as part of his project of understanding what
he called the “shapes” of rational functions of the Riemann sphere. In the
same section, we introduce a graph on a surface which is dual to the Speiser
graph, often known in the classical literature under the name line complex,
which we use in an essential way in §7. We reserve the name line complex
to another graph.

The type problem, reviewed in §7, is the problem of finding a method
for deciding whether a simply connected Riemann surface, defined in some
specific manner (e.g., as a branched covering of the Riemann sphere, or as a
surface equipped with some Riemannian metric, or obtained by gluing poly-
gons, etc.) is conformally equivalent to the Riemann sphere, or to the com-
plex plane, or to the open unit disc. We review several methods of dealing
with this problem, mentioning works of Ahlfors, Nevanlinna, Teichmüller,
Lavrentieff and Milnor. Besides the combinatorial tools introduced in the
previous sections (namely, Speiser graphs and line complexes), the works on
the type problem that we review use the notions of almost analytic function
and quasiconformal mapping.

In the last section, §8, combinatorial tools are used for other approaches
to Riemann surfaces, in particular, in the theory of dessins d’enfants, in
applications to knots and links and in the theory of slalom polynomials. Two
different stratifications of the space of monic polynomials are presented.

2 Rigidity of geometric structures

In this section, we give several examples of locally rigid structures on sur-
faces. A classical example of a non-locally rigid structure is a Riemannian
metric on any manifold of dimension ≥ 2.

2.1 Volume, symplectic and contact forms

Moser’s theorem says that only the total volume of a smooth volume form on
a connected compact manifold matters, namely, two volume forms of equal
total volume are isotopic. More precisely:

Theorem 2.1 (J. Moser [75]) Let M be a compact connected oriented
manifold of dimension n equipped with two smooth volume forms ω0 and
ω1 of equal total volume. Then there exists an isotopy ϕt, t ∈ [0, 1], satisfy-
ing ϕ∗t (tω1 + (1− t)ω0) = ω0. In particular, we have ω0 = ϕ∗1ω1.
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Proof Clearly ω1 = fω0 for some positive function f , since for any p ∈ M
and for any oriented frame X1, · · · , Xn at p we have ω0(X1, · · · , Xn) > 0
and ω1(X1, · · · , Xn) > 0. It follows that t 7→ ωt = tω1 + (1− t)ω0 is a path
of volume forms that connects the form ω0 to the form ω1 and we have

d

dt

∫
[M ]

ωt =

∫
[M ]

d

dt
ωt

=

∫
[M ]

ω1 − ω0 (differentiating the formula for t 7→ wt)

= 0 (since the two forms have the same volume).

Thus, the de Rham cohomology class [ω1 − ω0] vanishes on the connected
manifold M , therefore there exists a smooth (n − 1)-form α with dα =
ω1 − ω0. Hence,

d
dtωt = dα.

In order to construct the required isotopy ϕt satisfying (ϕt)
∗ωt = ω0, we

need a time-dependent vector field Xt whose flow ϕXt induces the isotopy ϕt
and such that the equality (ϕXt )∗ωt = ω0 holds. Differentiating, using the
Cartan formula and the fact that dωt = 0, yields

0 =
d

dt
(ϕXt )∗ωt = (ϕXt )∗(d(iXtωt) + dα) = (ϕXt )∗(d(iXtωt + α)).

The family of vector fields X = (Xt)t∈[0,1] defined by iXtωt = −α satisfies
the above equation. The equation iXtωt = −α has, for a given (n− 1)-form
α, has a unique solution, since for each t ∈ [0, 1], ωt is a non-degenerate
volume form. Therefore the family of forms (ϕXt )∗ωt is constant, hence
(ϕX1 )∗ω1 = ω0 as required.

The above result also holds for a symplectic form, that is, a closed non-
degenerate differential 2-form, at the price of a stronger assumption. The
proof works verbatim. Thus we get:

Theorem 2.2 (J. Moser) Let M be a compact connected oriented mani-
fold of dimension n equipped with two symplectic forms ω0 and ω1 of equal
periods, i.e., with equal de Rham cohomology classes. Assume that the forms
are connected by a smooth path ωt of symplectic forms with constant periods,
i.e., for all t ∈ [0, 1], [ωt] = [ω0] in H2

dR(M). Then there exists an isotopy
ϕt, t ∈ [0, 1], with ϕ∗tωt = ω0. In particular, ω0 = ϕ∗1ω1.

The so-called “Moser trick” works as a “simplification by d” in the equa-
tion diXtωt = −dα and it amounts to noticing that for a volume form ω and
for an (n− 1)-form β the equation iXω = β has a unique solution X.

From symplectic structures, we pass to contact forms and contact struc-
tures.
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A contact form α on an n-dimensional manifold M is a pointwise non-
vanishing differential 1-form such that at each point p in M the restriction
of (dα)p to the kernel of αp is non-degenerate.

A contact structure on M is a distribution of hyperplanes in the tangent
bundle TM given locally as a field of kernels of a contact form.

Moser’s method also works, even more simply, without “trick” and with-
out extra stronger assumption, for families of contact structures and it gives
another proof of the Gray stability theorem for contact forms [39]:

Theorem 2.3 (J. W. Gray [39]) Let (α)t∈[0,1] be a smooth family of con-
tact forms on a compact manifold M . Then there exists a t-dependent vector
field Xt on M with flow ϕt and kernel(ϕ∗tαt) = kernel(α0). In particular,
there exists a family of positive functions (ft)t∈[0,1] such that for all t ∈ [0, 1],
ϕ∗tαt = ftα0.

Proof A measure for the variation of the kernel [αt] of αt is the restriction
α̇t|[αt] of α̇t = d

dtαt to the kernel [αt]. By the non-degeneration of the
restriction dα|[αt], there exists a unique t-dependent vector field Xt in the
distribution (that is, the family of subspaces) [αt] with α̇t|[αt]+ iXtdαt|[αt] =

0. Hence the kernels of ϕ∗tαt do not vary since d
dtϕ

∗
t [αt] = ϕ∗t (α̇t|[αt] +

iXtdαt|[αt]) = 0.

For more applications, see [71]. The use of a proper exhaustion allows
us to extend the above theorem to pairs of volume forms on connected non-
compact manifolds of equal finite or infinite total volume.

Furthermore, the above proofs work also in a relative version: if the
forms coincide on a closed subset A, then the time-dependent vector field
Xt vanishes along the subset A and generates a flow that fixes the subset
A. The Darboux type rigidity theorems for volume, symplectic and contact
forms follow:

Theorem 2.4 (Local Darboux rigidities) Let ω be a volume or a sym-
plectic form, and let α be a contact form on an n-, 2n- or (2n+1)-manifold
M respectively. Then at each point of M there exists a coordinate chart
(x1, · · · , xn) or (x1, · · · , xn, y1, · · · , yn) or (x1, · · · , xn, y1, · · · , yn, z) respec-
tively such that the volume form is expressed by ω = dx1 ∧ · · · ∧ dxn, the
symplectic form by ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn and the contact form by
α = dz − y1dx1 − · · · − yndxn.

Remark The classical Darboux theorem holds in the setting of symplec-
tic geometry, see [29]. This theorem says that any symplectic manifold of
dimension 2n is locally isomorphic (in this setting, it is said to be symplec-
tomorphic) to the linear symplectic space Cn equipped with its canonical
symplectic form

∑
dx∧dy. As a consequence, any two symplectic manifolds

of the same dimension are locally symplectomorphic to each other.
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2.2 Almost complex structures

An almost complex structure J on a differentiable surface S is an endo-
morphism of the tangent bundle of S satisfying J2 = −Id. More precisely,
J = {Jp | p ∈ S} is a smooth family of endomorphisms of tangent spaces
Jp : TpS → TpS such that at each point p ∈ S, we have J2

p = −IdTpS .
The standard example is (R2, J) where J is the constant family of endo-
morphisms given by the matrix ( 0 −1

1 0 ). This corresponds to the plane C
equipped with multiplication by i.

The following proof is not based upon the above method.

Theorem 2.5 Local J-rigidity in real dimension 2. Let J be an almost
complex structure on a surface S. Then at each point p ∈ S there exists a
coordinate chart (x, y) such that J( ∂

∂x) =
∂
∂y holds.

Proof (Sketch) First construct, using a partition of unity, an almost com-
plex structure J0 on the torus T = R2/Z2 such that the structures J and
J0 are isomorphic when restricted to open neighborhoods U of p on S and
U0 of 0 on T . Let ω be a volume form on T and let gω,J0 be the associated
Riemannian metric gω,J0(u, v) = ω(u, J0(v)). Let f be the real function on
T satisfying f(0) = 0 and solving the partial differential equation

d(df ◦ J0) = −kgω,J0
ω,

where kgω,J0
is the Gaussian curvature of the metric gω,J0 . By the Gauss–

Bonnet Theorem,
∫
T kgω,J0

ω = 0, therefore the equation admits a solution
by Fourier theory. Now use the Gauss curvature formula:

kg
e2fω,J0

ω = kgω,J0
ω + d(df ◦ J0) = 0.

The metric ge2fω,J0 has constant curvature 0, therefore (T, J0) is bi-holomorphic
to C/Γ for some lattice Γ (a 2-generator discrete subgroup), which shows
the statement for a local chart at 0 ∈ (T, J0), and hence also for a local
chart at any p ∈ (S, J).

For a detailed proof of Theorem 2.5, see [8, p. 114-117]. This theorem
shows that every almost complex structure on a differentiable surface S
determines in a unique way a holomorphic structure in the usual sense (that
is, a structure defined by an atlas of local charts with values in C and
holomorphic local changes).

Exercise 1: Give a proof of Theorem 2.5 using Moser’s trick.

Historical note The first definition of an almost complex structure is
due to Charles Ehresmann who addressed the question of the existence of a
complex analytic structure on a topological (resp. differentiable) manifold
of even dimension, from the point of view of the theory of fiber spaces;
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cf. Ehresmann’s talk at the 1950 ICM [33]. Ehresmann mentions the fact
that H. Hopf addressed the same question from a different point of view.
He notes in the same paper that by a method proper to even-dimensional
spheres he showed that the 4-dimensional sphere does not admit any almost
complex structure, a result which was also obtained by Hopf using different
methods. See also McLane’s review of Ehresmann’s work [82]. Ehresmann
and MacLane also refer to the work of Wen-Tsün Wu [111, 112], who was a
student of Ehresmann in Strasbourg.

Remark The Nijenhuis tensor is an obstruction to local integrability of J-
fields in higher dimensions, where Theorem 2.5 does not hold in the general
case, see [8, p. 124-125]. Real dimension 2 is very special!

2.3 Almost complex structures on n-spheres

The existence and integrability of J-structures in dimension 2 is very special.
We mentioned that the 4-sphere S4 does not admit any J-field (Ehresmann
and Hopf), but the 6-sphere does.

Clearly only spheres of even dimension can carry J-fields. Adrian Kirch-
hoff, in his PhD thesis (ETH Zürich 1947) [55] established a relationship
between two non-obviously related structures on spheres S2n and S2n+1 of
different dimensions; we report on this now.

Recall that a parallelism on a smooth n-manifold is a global field of
frames, that is, a field of n tangent vectors which form a basis of the tangent
space at each point.

Theorem 2.6 (Kirchhoff [56]) The sphere Sn, n ≥ 0, admits a J-field if
and only if the sphere Sn+1 admits a parallelism.

Proof The case n = 0 is special: the tangent space TS0 is of dimension 0,
therefore J = IdTS0 is a J-field and S1 admits a parallelism.

“Only if” part for n > 0: In V = Rn+2 with the standard basis e0, e1, · · · , en+1,
let Sn be the unit sphere in the span [e1, · · · , en+1]. Let Sn+1 be the unit
sphere of V . Assume that J is a J-field on Sn. Let L : Sn+1 → GL(V ), v 7→
Lv, be the continuous map satisfying Lv(e0) = v, v ∈ Sn+1, defined as
follows:

• First, for v ∈ Sn, seen as the equator of Sn+1, we set
Lv(v) = −e0, Lv(e0) = v,
Lv(u) = v + Jv(u− v), u ∈ [v, e0]

⊥.

• For v ∈ Sn+1, we can write v = sin(t)e0+cos(t)v′, v′ ∈ Sn, t ∈]−π, π[.
We then set
Lv = sin(t)IdV + cos(t)Lv′ .
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We have Lv ◦Lv = −IdV for v ∈ Sn, hence Lv = sin(t)IdV + cos(t)Lv′ ∈
GL(V ) for v ∈ Sn+1, since the eigenvalues are sin(t)± cos(t)i. Observe that
Te0S

n+1 = e0 + [e0]
⊥ and [e0]

⊥ = [e1, · · · , en+1]. The differential (DLv)e0 :
Te0S

n+1 → V at e0 of Lv maps the space Te0S
n+1 onto an affine space of

dimension n + 1 in TLv(e0)V that intersects transversely the ray [v]. Then,
for v ∈ Sn+1, the images (DLv)e0(e1), · · · , (DLv)e0(en+1) ∈ TvV define a
frame in TvS

n+1 = v + [v]⊥ by the projection parallel to [v] onto v + [v]⊥.
“If” part: Work backwards.

Ehresmann in his ICM talk [33] mentions Kirchhoff’s results [55].
In fact, by a celebrated result of Jeffrey Frank Adams [1], only the spheres

S1, S3, S7 admit a parallelism. This implies that S4 does not admit any J-
field and S6 does. Adams’ result was obtained several years after Kirchhoff’s
result.

The question of the existence of a complex structure on S6 is still wide
open. How the Nijenhuis integrability condition for a J-field on S6 translates
into a property of framings on S7 is the subject of a recent paper [65].

We end this section on rigidity by a word on exotic spheres: Any two
differentiable manifolds of the same dimension are locally diffeomorphic.
But such manifolds may be homeomorphic without being diffeomorphic.
The first examples of such a phenomenon are Milnor’s exotic 7-spheres [73].
In later papers, Milnor constructed additional examples.

3 The first compact Riemann surface

ARiemann surface is a complex 1-dimensional real manifold, or a 2-dimensional
manifold equipped with a complex 1-dimensional structure, that is, an at-
las whose charts take values in the Gaussian plane C, with holomorphic
transition functions.

In this section, we shall deal with the simplest Riemann surface, the
Riemann sphere.

3.1 The Riemann sphere

The familiar round sphere in 3-space, together with its group of rigid mo-
tions, can be seen as a holomorphic object: its motions are angle-preserving.
It is also a one-point compactification of the field of complex numbers. We
shall see that this construction as a one-point compactification can be gen-
eralized to an arbitrary field.

First we ask the question:
Why do we need the Riemann sphere?
The statement: “Every sequence of complex numbers has a convergent

subsequence” is very true, indeed true for bounded sequences. The state-
ment is salvaged without this assumption if we introduce a wish object w
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with the property that every sequence of complex numbers, for which no sub-
sequence converges to a complex number, converges to w. In this way, from
the familiar Gaussian plane C, we gain a new space, C ∪ {w} in which the
above statement improves from very true to true. This topological construc-
tion is the familiar one-point compactification of non compact but locally
compact spaces.

Very true is also the statement: “The ratio a
b is well defined as long as

(a, b) ̸= (0, 0)”. Again the statement becomes true if we introduce by wish
a new object w /∈ k with a

0 = w, a ̸= 0. This algebraic construction applies
to any field k, and not only C.

In both constructions the object w appears as a newcomer, an immigrant,
with a special restricted status.

It is Riemann who gave an interpretation of the new set X = C ∪ {w}
together with a very rich structure Σ on it, for which the new element
gains unrestricted status. In short, the automorphism group of (X,Σ) acts
transitively on this space, that is, the space X is homogeneous.

The above topological construction also shows that the newcomer w is
above any bound, so from now on we use the symbol ∞ for w.

Here is another construction of an infinity, valid for any field.
Let k be a field. An element λ ∈ k can be interpreted as a linear map

a ∈ k 7→ λa ∈ k. Its graph Gλ ⊂ k×k is the vector subspace {(a, λa) | a ∈ k}
of dimension 1 in k × k. So we get an embedding ι : λ ∈ k 7→ P1(k) of the
field k in the projective space P1(k) of all 1-dimensional vector subspaces in
k × k. The vector subspace G = {(0, b) | b ∈ k} is the only one which is not
in the image of the embedding ι.

The element λ can be retrieved from Gλ as a slope: indeed, for any
(a, b) ∈ Gλ, if (a, b) ̸= (0, 0) then a ̸= 0 and λ = b

a .
So the missing vector subspace G corresponds to the forbidden fraction

1
0 = ∞ and can be called G∞.

In the case where k = R, this is the well-known embedding of R in
the circle of directions up to sign. Extending ι : k ∪ {∞} → P1(k) by
ι(∞) = G∞ gives the interpretation of k ∪ {∞} as the projective space
P1(k). Each linear automorphism A of the k-vector space k2 induces a self-
bijection GA of k ∪ {∞} = P1(k). If the matrix of A is the 2 × 2-matrix
( a b
c d ) ∈ GL(2, k), then GA(Gλ) = Gλ′ with λ′ = aλ+b

cλ+d . The transformation

G ∈ P1(k) 7→ GA(G) ∈ P1(k) or λ 7→ aλ+b
cλ+d is called a fractional linear or

Möbius transformation. Note that in particular GA(G∞) = a
c .

Given a general field k, an important structure on P1(k) is provided by
a 4-point function which we shall study in §4.3.

At this stage, we restrict to the case k = C. The above construction
of P1(k) for an arbitrary field k gives the familiar construction of P1(C) =
(C2−{0})/C∗, where C∗ denotes the multiplicative group of nonzero complex
numbers.
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The set C ∪ {∞} = P1(C) carries many structures. First, there is the
structure of a differentiable manifold given by the following atlas: We set
U0 = P1(C)\{G∞} and U∞ = P1(C)\{G0}. Observe that U0 = {Gλ | λ ∈ C}
and that every G ∈ U∞ is of the type G′

σ = {(σb, b) | b ∈ C} for σ ∈ C.
Define maps z0 : U0 → C by z0(Gλ) = λ and z∞ : U∞ → C by z∞(G′

σ) =
σ. Both maps are bijections. For G ∈ U0 ∩ U∞ the two maps are related;
indeed, z0(G)z∞(G) = 1. It follows that the system ((U0, z0), (U∞, z∞)) is an
atlas for a manifold structure with coordinates functions (z0, z∞). Its quality
is hidden in the quality of the coordinate change. For G ∈ U0∩U∞, from the
above implicit relation it follows that z∞(G) = 1/z0(G), z0(G) = 1/z∞(G).
This coordinate change is differentiable; therefore C ∪ {∞} = P1(C) is a
smooth manifold with charts in the Gaussian plane C.

The smooth 2-dimensional real manifold C∪ {∞} = P1(C) is diffeomor-
phic to the unit sphere in the three-dimensional real vector space R3. More
precisely, the coordinate change ϕ∞,0 : C∗ = z0(U0) → z∞(U∞) = C∗ is
given in terms of the natural coordinate z on C∗, by ϕ∞,0(z) = 1/z. The
smooth map ϕ∞,0 : C∗ → C∗ is moreover holomorphic, so the above atlas
provides C ∪ {∞} = P1(C) with the structure of a Riemann surface. This
Riemann Surface is the Riemann Sphere.

Let U be an open subset of the Gaussian plane C. Riemann defined
a map ϕ : U → C to be holomorphic without using an expression that
evaluates the map at given points. The idea is the following. The real
tangent bundles TU and TC come with a field mi of endomorphisms. (The
notation mi stands for “multiplication by i”.) The value mi,p of the field
mi at the point p is the linear map mi,p : TpU → TpU, u 7→ iu. To be
holomorphic by Riemann’s definition is given by the following property of
the differential:

(Dϕ)p(mi,p(u)) = mi,ϕ(p)((Dϕ)p(u)).

In words, this means that the differential Dϕ is C-linear.
Riemann’s characterization of holomorphic maps together with the local

J-Rigidity Theorem 2.5 allows us to define a Riemann surface (S, J) as a
real 2-dimensional differentiable manifold S equipped with a smooth field of
endomorphisms J : TS → TS of its tangent bundle satisfying J◦J = −IdTS .

The Riemann Sphere is the first example of a compact Riemann surface.
The most familiar non-compact Riemann surface is the Gaussian plane C.
Another most important Riemann surface is the unit disc in C. This is also
the image of the southern hemisphere by the stereographic projection from
the North pole onto a plane passing through the equator. This projection
is holomorphic. The importance of the unit disc stems from the fact that
it is equipped with the Poincaré metric, which makes it a model for the
hyperbolic plane.
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3.2 The group SU(2) and its action on the Riemann sphere.

Now that we are familiar with the Riemann sphere, we study a group action
on it.

Let < u, v >Herm be the usual Hermitian product on C2. This is the
complex bilinear form on C defined by < u, v >Herm= u1v̄1 + u2v̄2. The
Hermitian perpendicular L⊥ to a complex vector subspace L is again a
complex vector subspace.

The group of determinant 1 linear transformations of C2 that preserve
< u, v >Herm is the group SU(2) consisting of all matrices of the form
( a b
−b̄ ā ), (a, b) ∈ C2, aā + bb̄ = 1. This group acts on the Riemann sphere

by Möbius transformations, in fact, by rotations. The map ( a b
−b̄ ā ) 7→ (a, b)

defines a diffeomorphism SU(2) → S3 and induces a Lie group structure on
the sphere S3.

The group SU(2) acts transitively by conformal automorphisms on the
Riemann sphere P1(C). The stabilizer of L = {(λ, 0) | λ ∈ C} in SU(2) is
the group ( a 0

0 ā ), a ∈ C, aā = 1, which is isomorphic to the group of complex
numbers of norm 1. The quotient construction induces a Riemannian metric
on

P1(C) = SU(2)/StabSU(2)(L).

A marked element in P1(C) is a pair (L, u) where u = (a, b) ∈ C2, aā +
bb̄ = 1 and L = [u] = {λu | λ ∈ C}. Note that this representation is
redundant since u determines L = [u].

The group SU(2) acts simply transitively on marked elements in P1(C).
The involution L 7→ L⊥ extends to marked elements: map (L, u) =

(L, (a, b)) first to u⊥ = (b̄,−ā) and next to (L⊥, u⊥) with L⊥ = [u⊥].
A marked element (L, u) determines a path in P1(C) by Lu : t ∈ [0, π] 7→

Lu(t) = [cos(t)u + sin(t)u⊥], which in fact is a simple closed curve. Its
velocity at t = 0 is a length 1 tangent vector Vu ∈ T[u](P1(C)). Observe that

Vu = V−u and Viu = −Vu. The path Lu lifts to H⊥
u : t ∈ [0, π] 7→ H⊥

u (t) =
cos(t)u+ sin(t)u⊥ ∈ S3, which is a geodesic from u to −u perpendicular to
the foliation on S3 by the Hopf circles Hv = {v′ ∈ S3 | v′ = λv}, v ∈ S3.
Hopf circles Hv map to points, and geodesics H⊥

u map to simple closed
geodesics in P1(C).

The map ±u ∈ S3/{±Id} = P3(R) 7→ Vu ∈ T (P1(C)) induces a bijection
onto the length 1 vectors to P1(C). Observe that SU(2) acts almost sim-
ply transitively on length 1 tangent vectors to P1(C). The quotient group
PSU(2) = SU(2)/{±Id} acts simply transitively on length 1 tangent vectors.
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4 All three planar geometries and hyperbolic 3-
space simultaneously

4.1 A stratification of the Riemann sphere arising from al-
gebra

Bernhard Riemann was aware of the (Riemann) sphere being the complex
plane union a point at infinity. His point of view on complex analysis was
very geometric. In this section, we wish to describe an incarnation of the
Riemann sphere which arises from algebra. For more details on this model,
see [8, Chap. 3, §3.1] and [9, Chap. 1, §8.3].

The starting object is the set Σ of surjective ring homomorphisms from
the ring R[X] of polynomials in one unknown X with real coefficients to
a field F . On the set Σ we introduce two equivalence relations. The first
relation, ∼, declares f : R[X] → F and f ′ : R[X] → F ′ to be equivalent if
there exists a field isomorphism ϕ : F → F ′ with f ′ = ϕ ◦ f .

The relation f ∼ f ′ holds if and only if the ideals kernel(f), kernel(f ′)
in R[X] are equal.

The second relation, ∼X , requires f ∼ f ′ and moreover f(X) = f ′(X)
holds in R[X]/kernel(f) = R[X]/kernel(f ′).

Up to field isomorphism, there are only three fields, F , that are hit by a
surjective ring homomorphism f : R[X] → F , namely, the fields C, R and F1

where F1 is the field with one element, that is, the field where 0 = 1 holds.
The field F1 corresponds to the ideal ρ = R[X] consisting of the whole ring,
which is prime, maximal but not proper.

Exercise The two fields R, F1 have only the identity as automorphism and
the field C = {a+ bi | a, b ∈ R} only two automorphisms as R-algebra, but
as many field automorphisms as the power set of the real numbers.

In the following we will describe the quotient sets Σ/ ∼, Σ/ ∼X together
with natural structures on these sets.

All ideals in R[X] are principal, that is, any such ideal is generated by
a single element (it is obtained by multiplication of such an element by an
arbitrary element of the ring). Kernels of f ∈ Σ are prime ideals, that is, the
quotient of R[X] by such an ideal is an integral domain (the product of any
two nonzero elements is nonzero). Thus, we have three kinds of kernels of f ,
namely, ρ = (1) = R[X], (X − a), a ∈ R, and ((X − a)2+ b2), a, b ∈ R, b > 0.
Therefore the set Σ/ ∼ is identified with C+ ∪ R ∪ {ρ}. Here we use the
notation C± = {a+ bi | a, b ∈ R,±b > o} for the upper/lower half planes.

The kernel of the ring homomorphism f is not sufficient in order to
describe its class in Σ/ ∼X if kernel(f) = ((X − a)2 + b2). One needs
moreover to specify a root a+ bi ∈ C+ or a− bi ∈ C−. Thus the set Σ/ ∼X

is a disjoint union of 4 strata Σ/ ∼X= C+ ∪ C− ∪ R ∪ {ρ}.

15



The fields C,R,F1 = {0} are realized as sub-R-algebras in C, so an alter-
native description of the set Σ/ ∼X is the set of R-algebra homomorphism
from R[X] to C.

We shall see that the set R = Σ/ ∼X and its strata carry a rich panoply
of structures. The set R = C+ ∪ C− ∪ R ∪ {ρ} is identified with the Rie-
mann sphere C∪ {∞}. Structures, such as the Chasles three point function
(defined below) on R ⊂ R, or the hyperbolic geometry on C+, will appear
naturally. Naturally means here that the construction that leads to the
structure commutes with the R-algebra automorphisms of R[X]. For in-
stance, it commutes with the substitutions that consist in translating X to
X − t, t ∈ R, or with stretching X to λX, λ ∈ R∗. The ideal (X − a) maps
to the ideal (X − a− t) by translation and to (X − a

λ) by stretching.
A first example is the Chasles 3-point function Ch(A,B,C) on the stra-

tum R consisting of the ideals (X − a), a ∈ R, defined as follows: Given
three distinct such points, A = (X − a), B = (X − b), C = (X − c), define
Ch(A,B,C) = b−a

c−a .
In words, Ch(A,B,C) is the ratio of the monic generators of B and C

evaluated at the zero of the monic generator of A.
The next example is the 4-point function cross ratio cr(A,B,C,D): for

4 distinct points A = (X − a), B = (X − b), C = (X − c), D = (X − d),
define cr(A,B,C,D) = Ch(A,B,C)Ch(D,C,B) = b−a

c−a .
c−d
b−d . In words, this

is Chasles evaluated at the first three points times Chasles evaluated at the
last three points in the reverse order. It is truly a remarkable fact that the
cross ratio function extends to a 4-point real function on P1(R) and to a
4-point complex function on P1(C) = C ∪ {ρ} if one transfers the above
wishful calculus with w = ∞ to ρ.

The multiplicative monoid R∗[X] of polynomials which do not vanish at
0 has also automorphisms that do not directly fit with the interpretation
as polynomials with unknown X. In particular, they are not ring automor-
phisms, but monoid automorphisms. A main example is the twisted palin-
dromic symmetry : perform on a polynomial P (X) the substitution X → −1

X ,

followed by stretching with factor (−X)degree(P ). (The palindromic symme-
try is said to be twisted, because of the minus signs.) Then the ideal (X−a)
maps to the ideal (−X(−1

X − a)) = (1 + aX) = (X + 1
a). The Chasles func-

tion restricted to R∗ does not commute with the symmetry a 7→ −1
a , but

the cross ratio commutes. (This property is among the ones that make the
cross ratio more natural than the Chasles 3-point function.) This symme-
try, which is an involution, extends to a fixed point free involution σP of
R ∪ {ρ} = P1(R). Remarkably, the symmetry σP commutes with the cross
ratio cr. In this sense, cr is more natural than Ch.

The above operations of real translation and stretching, i.e., substituting
X − t for X or λX for X with t ∈ R, λ ∈ R∗, together with the twisted
palindromic symmetry induce bijections of the set {(X − u)(X − ū) | u ∈
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C+} of monic polynomials of degree 2 without real roots. Composing these
bijections generates a group G. It is a remarkable fact that this group
is, as an abstract group, isomorphic to the group PGL(2,R). It is also a
remarkable fact that the abstract group PGL(2,R) carries a unique structure
of Lie group. So there is also a topology on G, which allows us to define
the subgroup G0 ⊂ G as the connected component of the neutral element
in the Lie group G = PGL(2,R). The group G0 is isomorphic to the group
PSL(2,R).

The fixed point free involution σP on P1(R) = R ∪ {ρ} = ∂C̄+ extends
to C+ by putting σP(u) =

−1
u for an involution with i as unique fixed point.

The group G0 acts transitively and faithfully on the above strata C±
and on R ∪ {ρ}. From this action one gets a topology on the strata and
also, as we will explain, a geometry on C+. It is also remarkable that this
geometry, in fact, the planar hyperbolic geometry, can also be explained in
a more elementary way in term of the interpretation as ideals.

The action of G0 on C+ is the so-called modular action of PSL(2,R) on
C+. Thinking of an element g ∈ G0 as a real 2× 2 matrix of determinant 1
up to sign, ±( a b

c d ), the action on u ∈ C+ is given by (g, u) 7→ au+b
cu+d .

The modular action of G0 on C+ extends to the projective action of
G = PGL(2,R) on ∂C̄+ = P1(R) and also to the projective action of the
complex group PGL(2,C) on P1(C).

The hyperbolic geometry on C+ can also be defined in terms of ideals in
the following rather elementary way.

Points are the elements of C+. The monic generator of the corresponding
ideal may be denote by Pu(X) = (X − u)(X − ū) .

The notion of line is introduced using convex combinations. More pre-
cisely, given two distinct points u, v, the line Lu,v through them is defined
as follows:

Denote by Pt,u,v(X) = tPu(X)+ (1− t)Pv(X), t ∈ [0, 1] the convex com-
bination of the polynomials Pu(X), Pv(X). Note first that any polynomial
obtained in this way is monic. Let Iu,v =]mu,v,Mu,v[ be the maximal inter-
val on which Pt,u,v(X) has no real roots. Note that [0, 1] ⊂ Iu,v ̸= R (one
may start by checking that for t = 0 and t = 1 there are no real roots). This
implies that the cross ratio δ(u, v) = cr(mu,v, 1, 0,Mu,v) is a positive real
number > 1. If Re(u) = Re(v) define Lu,v = {w ∈ C+ | Re(w) = Re(u) =
Re(v)}. If Re(u) ̸= Re(v) let c ∈ R be the zero of Pu(X)−Pv(X) and define
Lu,v = {w ∈ C+ | |w − c|2 = Pu(c)}.

With such a definition, the axiom of hyperbolic geometry saying that
for any two distinct points there is a unique line passing through them is
trivially satisfied.

Exercise For a better understanding of this construction of the hyperbolic
plane, please check that the root of Pt,u,v(X) travels along Lu,v for t ∈ Iu,v
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in case Re(u) ̸= Re(v). Note that Lu,v is a half circle in C with centre in
R ∪ {ρ}.

The hyperbolic Riemannian metric gu is the Hessian at u of the function
v ∈ C+ 7→ D(u, v)2.

In this model, we can define the hyperbolic distance between u and v
as D(u, v) = 1

2 log(δ(u, v)). We can make a relation with the model of the
hyperbolic plane that uses the Hilbert metric. In this way we have all the
ingredients of hyperbolic geometry based on elementary algebra, that can
be taught at high-school.

Remark The above twisted palindromic map σ : R[X] → R[X] induces an
involution on R∗[X], the complement of the hypersurface of polynomials
that vanish at 0. Therefore, σ is a birational involution and the above
constructions would generate subgroups G, etc. in the Cremona group of
birational transformations of P1(C). Thus, the artefact of defining σP can
be avoided. Even better, the geometry of Cremona groups is hyperbolic.
For the Cremona group, see [21, 22, 26, 30, 94, 106, 113].

4.2 A note on the field with one element

The importance of the field with one element F1, which was interpreted in
the above construction of the Riemann sphere as the point at infinity of the
complex plane, was first highlighted by Jacques Tits in his paper [104]. In
this paper, Tits proposed the development of a geometry over the field F1

which would be the limit of geometries over the finite fields Fq, where Fq

denotes the field of cardinality q = pn where p is a positive prime. Note that
if we make n tend to 0 in the notation Fq, q = pn, we obtain F1, which is an
indication of the fact that the field Fq may be considered as a deformation
of the field F1. One may also make an analogy with the fact that a limit
n → 0 is used in quantum topology for a geometric interpretation of the
TQFT calculus of Turaev, Viro, Kauffman, etc. (The analogy is vague, but
this is the nature of analogies.)

After Tits introduced his idea of studying a geometry over the field F1,
many works were done on this theme. For instance, Manin, in his lectures
on the zeta function [70], proposed the study of a “Tate motive over a one-
element field”. In the paper [28] titled Fun with F1 by Connes, Consani
and Marcolli, the field F1 becomes an actor in an approach to the Riemann
hypothesis.

4.3 The Riemann sphere and shadow numbers

Let V be a 2-dimensional vector space over a field k. If k has 3 or more
elements, then the space P1(k) of lines through the origin in V has at least
4 elements. We wish to define in a geometric way the cross ratio of a figure
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L1, L2, L3, L4 consisting of 4 distinct lines in V . This is done in the form of
two exercises.

Exercise 1: Do the following: Identify V = L1 ⊕ L4 with the Cartesian
product of L1 and L4, and let ϕi be the linear map from L1 to L4 that has
Li as graph, i = 2, 3. Define cr(L1, L2, L3, L4) as the stretch factor of the
linear map ϕ−1

3 ◦ ϕ2 : L1 → L1. This is represented in Figure 1, in which we
start with the point X on L1, with Y its image by ϕ2 and Z the image of
Y by ϕ−1

3 .
Please check now that if the lines are defined using a basis e, f and

“numbers” ai ∈ k ∪ {∞}, i = 1, 2, 3, 4 such that e + aif ∈ Li, then the
formula cr(L1, L2, L3, L4) =

a2−a1
a3−a1

a4−a3
a4−a2

holds.
In this way, we recover the usual formula for the cross ratio.

In the above construction of the cross ratio, the use of a Cartesian prod-
uct and graphs of maps suggest that parallel lines are essential. This is
not the case. For instance, the construction also works inside a Euclidean
triangle with vertices ABC, as in the following exercise, which asks for a con-
struction of the cross ratio which is a projective version of the construction
in Exercice 1, which is affine (it uses the notion of parallels):

Exercise 2: Let f2, f3 be interior points of the side BC of a triangle ABC,
put f1 = B, f4 = C. Let Li, i = 1, 2, 3, 4, be the segments connecting the
vertex A with fi.

Define ϕ2 : L1 → L4 as follows: Connect X ∈ L1 by a segment with C
which insects L2 in X ′. The half-line [B,X ′) intersects L4 in Y = ϕ2(X).
Define in the same way ϕ3. Now ϕ−1

3 ◦ ϕ2 : L1 → L1 is not linear, but with
fixed point A. Define the cross ratio cr(L1, L2, L3, L4) to be the stretch
factor of the differential at A of the map ϕ−1

3 ◦ ϕ2. The construction is
represented in Figure 2, where, like in Figure 1, X is a point in L1, Y its
image by ϕ2 and Z the image of Y by ϕ−1

3 .

It is important to observe that cr(L1, L2, L3, L4), in planar Euclidean
geometry, does not depend upon the position of the side BC. This property
does not hold in spherical or hyperbolic geometry. In spherical geometry
there is a preferred choice for the side BC, namely, such that the triangle
becomes bi-orthogonal. This was already done by Menelaus of Alexandria!

This construction also works for a configuration in general position of 4
linear subspaces E1, E2, E3, E4 of dimension 2 in a real vector space V of
dimension 4. The invariant is now an element Λ(E1, E2, E3, E4) ∈ GL(E1).
One may use this to prove the following:

Theorem 4.1 The four Complex Lines Theorem. Let A = (E1, E2, E3, E4)
be a generic labelled configuration of planes in a real 4-dimensional vector
space V . There exists a linear complex structure J : V → V with J(Ej) = Ej

(which means that each Ej is a complex line) for every i = 1, 2, 3, 4 if and
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Figure 1: Figure for Exercise 1
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Figure 2: Figure for Exercise 2
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only if
Trace(Λ(A))2 < 4Det(Λ(A))

or if Λ(A) is a multiple λIdE1 of the identity IdE1, for some λ ̸= 1.

The proof is contained in p. 73 of ??
Theorem 4.1 should be seen in the setting of the following general ques-

tion: Given a 4-dimensional real vector space V and a quadruple of 2-
dimensional planes (E1, E2, E3, E4) in V satisfying some properties, does
there exist an almost complex structure J : V → J making (V, J) = C2 such
that (E1, E2, E3, E4) are complex lines?

The usual formula for the cross ratio with numbers is memo-technically
speaking a headache. A more geometrically-rooted name would be more
satisfying. We propose shadow number: the shadow issued from a light
bulb of four concurrent lines lying in a plane on a plane shows the same
number. The proof uses the above special property in Euclidean geometry
and becomes simplified if one uses the above geometric definition. If the
name should remember a person, then perhaps Leonardo da Vinci num-
ber, for Leonardo studied central projections and perspectivities about 500
years ago [67], or Menelaus number, for Menelaus studied shadows in spher-
ical geometry about 2000 years ago. See [83] for the use by Menelaus of
the invariance of the cross ratio in spherical geometry. Menelaus used this
result in the proof of Proposition 71 of the Spherics,1 and later medieval
commentators, in an effort to provide full proofs of some of this and other
difficult propositions in Menelaus’ Spherics, highlighted this invariance as a
new proposition, in order to explain a proof in the Spherics; see Proposition
3.2 in [83] and [85, p. 356-360].

The group PGL(2,C) of linear transformations of C2 acts on the Rie-
mann sphere R (see §4.1), since this group acts on complex lines through
the origin of C2. From the geometric definition of the shadow number, it
follows that this number is PGL(2,C)-invariant:

λpqts = λAp,Aq,At,As, A ∈ PGL(2,C).

The shadow number is a 4-point function defined on the complement of
the general diagonal in the Riemann sphere R:

λ : R4 \Diag(R) → C

where Diag(R) is the subset of quadruples (p, q, t, s) ∈ R4 of points in R
with #{p, q, t, s} < 4. Using the above formula one checks that the function
λ is holomorphic with meromorphic extension to R4.

1Menelaus was extremely concise in his Spherics, and the proofs of some of the propo-
sitions in this work are very difficult to follow. This is why several results of the Spherics
[85] were later explained and commented on by Arab mathematicians of the Middle Ages,
after the Greek mathematical schools were desintegrated. Regarding this particular propo-
sition, see the two papers [83, 84]
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Exercise 3: For p, q, t a triple of distinct points, study the partial function
f : s 7→ λpqts. What are the level sets of f, |f |, f ± f̄?

Exercise 4: Reconstruct the complex structure J of R from the shadow
function λ.

Exercise 5: For a 4 point function f : R4 \Diag(R) → C, define Aut(R, f)
to be the group of bijections A : R → R satisfying f ◦ A = f . Consider the
cases f = λ or f = |λ| or f = λ± λ̄. Show that PGL(2,C) = Aut(R, λ) and
Aut(R, |λ|) = Aut(R, λ± λ̄).

4.4 J-compatible metrics

In this section, (S, J) is a differentiable compact connected surface equipped
with a complex structure J : TS → TS. A Riemannian metric g on S is
called conformal with J if for every point p ∈ S the map Jp : TpS → TpS
is gp-orthogonal. Thus, two metrics g, g′ conformal with J differ pointwise
by a positive factor: g′ = fg for some function f . A J-calibrated volume
form ω on S, i.e., a differential 2-form satisfying ωp(u, Jpu) > 0, p ∈ S, u ∈
TpS, u ̸= 0, gives by gp(u, v) = ωp(u, Jpv) a Riemannian metric conformal
with J whose associated volume form is precisely ω. All metrics g conformal
with J are obtained in a unique way from such a construction by taking for
ω the oriented volume form ω(u, Ju) = g(u, u) of the Riemannian metric g.

In conclusion, given J , the space of Riemannian metrics conformal with
J is parametrized by the cone of J-calibrated volume forms. In this way,
the uniqueness is not only up to multiplying by a constant factor.

We wish to strengthen the notion of being “conformal with J” for metrics
and gain back uniqueness or controlled non-uniqueness up to multiplying by
a constant factor. This will be achieved first for Riemann surfaces (S, J)
that are homogeneous, i.e., whose group Aut(S, J) acts transitively on S,
such that moreover the stabilizers of points are compact.

The group Sim(M, g) of a connected Riemannian manifold is the group
of diffeomorphisms that multiply the metric by a constant factor. Such
diffeomorphisms are called similarities.

Theorem 4.2 Let (S, J) be a homogeneous Riemann surface with commu-
tative stabilizers. Then there exists a Riemannian metric g conformal with
J such that Sim+(S, g) = Aut(S, J). The Riemannian metric g is unique
up to multiplication by a constant factor.

Sketch of proof The list of homogeneous connected Riemann surfaces up
to bi-holomorphic equivalence is short:

1. The Riemann sphere R;
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2. R \ {∞};

3. R \ {0,∞};

4. the infinite family of elliptic curves C/Γ;

5. C+ = {fa+bi | a, b ∈ R, b > 0}.
In this list, only the Riemann sphere R has non-compact and non-

commutative stabilizers—the stabilizer of a point is the affine group of C.
Thus, we do not need to consider this surface.

The second surface in the list is bi-holomorphic to C. The Euclidean
metric gz(u, u) = uū is up to multiplication by a constant factor the only
metric whose bi-holomorphic equivalences are similarities. Note that its
group of isometries is a strict subgroup of the group of similarities. It is not
commutative. So we also do not consider this surface.

The third surface in the list is the image of the covering map z ∈ C 7→
e2πiz ∈ C∗ with deck transformations z 7→ z+k, k ∈ Z. These deck transfor-
mations are isometries of the Euclidean metric, therefore they define a metric
g on C∗ which is locally Euclidean. This metric g is defined by gz(u, u) =

uū
zz̄ .

Note the triple equality Sim(C∗, g) = Iso+(C∗, g) = Aut(C∗, J).
A similar discussion holds for the family of elliptic curves. In this case,

instead of the mapping exp : C → C∗ = C/Z, one considers a mapping
expω : C → C/Gr(1, ω) where Gr(1, ω) is the group of translations generated
by the complex numbers 1 and ω.

The group G = PSL(2,R) acts transitively on C+ by z ∈ C+ 7→ az+b
cz+d ∈

C+. The stabilizer of i is the compact group Stab(i) = PSO(2). The
Killing form k(H,K) = Trace(HK) on the Lie algebra Lie(G) induces on
C+ = G/Stab(i) a Riemannian metric which is conformal with J = mi

(“multiplication by i”). Again a triple equality of groups holds.
The interpretation of z = a + bi ∈ C+ as a ring homomorphism fz and

as an ideal ((X − a)2 + b2)) (see §3.1) gives an elementary insight for the
above explanation by Lie group theory.

Given z ̸= z′, define the curve Lz,z′ = zt, t ∈]a−(z, z′), a+(z, z′)[ by the
following: put z = a + bi, z′ = a′ + b′i, then z, z′ are the roots in C+ of
the polynomials Pz = x2 − 2ax + a2 + b2, Pz′ = x2 − 2a′x + a′2 + b′2. Let
]a−(z, z′), a+(z, z′)[ be the maximal open interval containing the interval
[0, 1] such that for all t ∈]a−(z, z′), a+(z, z′)[ the convex combinations of
polynomials Qt = tPz + (1 − t)Pz′ have no real roots. Define Lz,z′ as the
path of roots in C+ of the polynomials Qt.

If a = a′, then the curve Lz,z′ is the real half-line perpendicular to the
real axis through z and z′. If a ̸= a′, then the curve Lz,z′ is the semi-circle
through z, z′ with center on the real axis, hence perpendicular to the real
axis.

The quantity D(z, z′) = 1
2 log(λa−(z,z′),a+(z,z′),0,1) defines a metric on C+,

which is PSL(2,R)-invariant. The curves Lz,z′ are length minimizing, hence
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geodesics. More precisely, the expansion of D(z, z+u)2 at the point z gives
the leading second order term gz(u, u) = uū

Im(z)2
and defines a Riemannian

metric. From this, we can recover the hyperbolic metric on C+, see [9,
§8.3].

In conclusion, from the formulae ω(u, v) = g(u, Jv) and ω(u, Jv) =
g(u, v), each of the volume form ω and the metric g is determined from the
other one and from the almost complex structure J . The same formulae
determine J from ω and g because the 2-forms ω and g are non-degenerate.

In fact, more generally, the motto is that in the triple of structures on
surfaces (volume form ω, Riemannian metric g, almost complex structure
J) on R2n, two elements determine the third one. The result is that there
are fruitful interactions between symplectic geometry, Riemannian geometry
and complex geometry. This is expressed in a spectacular manner in Gro-
mov’s 1985 paper in which he introduced pseudo-holomorphic curves [44].
This introduced also notions of “positivity” and of “compactness” in the
three geometrical settings. One result is that the stabilizers of w and g in
GL(2n,R), if they are related by a J as above, coincide and form a maximal
compact subgroup.

4.5 Spherical geometry

The differential sphere is present as the Riemann sphere R. Spherical ge-
ometry is still missing. The group PGL(2,C) acts transitively on (R, JR).
The stabilizer Stab(∞) is the group z 7→ λz+ t, λ ∈ C∗, t ∈ C. Again by Lie
theory, each maximal compact subgroup U of Aut(R, JR) defines a spherical
metric gU on R that is conformal with JR.

A perhaps more elementary approach is the following: Let IR be the
space of fixed-point free involutions that preserve the shadow function λ :
R4\Diag → C. For two distinct involutions A,B, the composition C = A◦B
has two fixed points p, q. Let Cp, Cq be the determinants of the differentials
DpC,DqC at p, q. Define the distance D(A,B) by

D(A,B) =
1

2
log((Cp + Cq)/2).

The space (IR, D) is a model for hyperbolic 3-space. The infinitesimal ver-
sion gIR of the metric D is a Riemannian metric on IR. For each A ∈ IR, the
half-rays from A define a diffeomorphism ϕA from the infinitesimal sphere
SA with center A to R. The map ϕA is conformal and carries the spherical
metric of SA to a metric gA on R which is conformal with JR. Think of
SA as the unit sphere in (TAIR, gIR,A). The group Iso(R, gA) is a maxi-
mal compact subgroup in Aut(R, JR) = PGL(2,C). Moreover the equality
Sim(R, gA) = Iso(R, gA) holds.
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We think of the Riemann sphere R as the space of 1-dimensional vector
subspaces in V = C2 (§3.1). A positive Hermitian form on V is a real
bilinear map h : V × V → C satisfying for u, v ∈ V, λ ∈ C

• h(λu, v) = λh(u, v),

• h(u, v) = ¯h(v, u),

• h(u, u) > 0 for u ̸= 0.

A positive Hermitian form on V defines by L ∈ R 7→ L⊥ ∈ R a fixed-
point free involution Ah of the Riemann sphere R that preserves the shadow
function λ. Here, associated with the complex line L = tu, t ∈ C, u ∈ V, u ̸=
0, is the complex line L⊥ = {v ∈ V | h(v, u) = 0}. Two positive Hermitian
forms that differ by a positive factor give the same involution.

Moreover the stabilizer in Aut(R) = PGL(2,C) is a maximal compact
subgroup in Aut(R). Similar forms have the same stabilizers and all maximal
compact subgroups correspond to a unique form.

If two lines L,L′ in R are neither perpendicular nor equal, they give
by L,L′, L⊥, L′⊥ a quadruple of complex lines. The expression D(L,L′) =
λL,L′,L′⊥,L⊥ defines a function on R × R with values in R+ ∪ {+∞}. The
preimage of 0 is the diagonal, the set of pairs (L,L′) with L′ = L, and the
preimage of +∞ the set of pairs with L′ = L⊥. Its infinitesimal version
along the diagonal, i.e., at L ∈ R the Hessian of L′ 7→ D(L,L′) at L′ = L,
defines a Riemannian metric on R which is similar, even isometric, to the
spherical geometry of Gaussian curvature +1 in dimension 2.

4.6 Models for hyperbolic 3-space and metrics of constant
positive curvature on the sphere

Even though the 3-dimensional hyperbolic space H3 does not admit a com-
plex structure, its automorphism group is that of a complex manifold and
is itself a complex Lie group, since we have

Iso+(H3) = Authol(P1(C)) = PGL(2,C).

We have the following four models of the hyperbolic 3-space H3 that
arise from the complex geometry of surfaces; the first two models are geo-
metric (they are defined in terms of group actions) whereas the other two
use algebra:

1. The space of fixed-point free shadow-preserving involutions of R.

2. The space of Riemannian metrics on R that are conformal with JR
and similar to the spherical metric.

3. The space of similarity classes of positive Hermitian forms on C2.
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4. The space of maximal compact subgroups in PGL(2,C) (which is the
automorphism group of the oriented hyperbolic 3-space).

The first model already appeared in §4.5, where we constructed the
spherical geometry of the Riemann sphere. This is the sphere we called
IR there. To get another point of view on this model, consider first the
well-known Poincaré model of the hyperbolic space H3 as a unit ball sitting
in 3-space, with boundary the Riemann sphere R. For each point p in H3,
an involution of R is defined by assigning to each point in R the intersection
with the sphere of the line passing through this point and p. To see that we
get a model of H3, use the Hilbert metric model of this space.

For the second model, we also consider the Poincaré unit ball model of
the hyperbolic space, with boundary the Riemann sphere R. For each point
ofH3, we take the diffeomorphism which sends the infinitesimal round sphere
(or a sphere in the tangent space) at that point to the boundary at infinity of
the space, using the geodesic rays that start at this point. This is a conformal
mapping. (One may prove this by trigonometry.) The mapping sends the
conformal metric of the infinitesimal sphere to a metric on the sphere sitting
at the boundary of the hyperbolic space. This construction commutes with
the isometries of H3. It gives a 3-dimensional space of metrics in the same
conformal class on P1(C). Thus, the hyperbolic 3-space H3 appears as a
space of metrics of curvature +1 on P1(C). In other words, H3 appears
as a space of special metrics, i.e., as a moduli space, namely, the space of
Riemannian metrics g of Gaussian curvature +1 on R that are moreover in
the conformal class of JR. Alternatively, the hyperbolic 3-space H3 appears
as the space of volume forms ω on R such that the Riemannian metric
defined by g(u, v) = ω(u, JRv) is a metric of Gaussian curvature +1.

For the third model, recall that a positive Hermitian form on C2 is a
Riemannian metric on R4 such that one can measure the angle between two
lines in this space. This model was explained in §3.2 above.

The fourth model is equivalent to the 3rd because the group PGL(2,C)
acts on the space in question with stabilizer the automorphism group of the
oriented hyperbolic 3-space, that is, the group PGL(2,C) quotiented by its
maximal compact subgroup.

An explicit way of interconnecting the above models for the hyperbolic
three-space H3 is as follows.

Think of S2 as the unit sphere in R3 with its induced spherical metric
together with the corresponding conformal structure, the space R ⊕ C, for
the Euclidean norm ||(t, z)||2 = t2 + zz̄.

The stereographic projection with pole (0,−1) maps by

(0, z) 7→ (
1− zz̄

1 + zz̄
,

2z

1 + zz̄
)

the factor {0}×C conformally to S2. This projection extends to an (oriented)
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diffeomorphism
St : R = C ∪ {∞} → S2

and equips by pullback the Riemann sphere with a Riemannian metric of
Gaussian curvature +1.

Given an ordered triple of distinct points (a, b, c) in R, the shadow func-
tion gives by

p ∈ R \ {c} 7→ Shabc(p) = (0, cr(a, p, b, c)) ∈ {0} × C ∪ {∞}

a mapping such that the composition Stabc ◦ Sh extends to a conformal
diffeomorphism µabc : R→ S2.

By pullback we obtain a family gabc of Riemannian metrics of curvature
+1 on R. Two such metrics gabc and ga′b′c′ are related by an oriented
isometry if and only if the composition µabc ◦ µ−1

a′b′c′ is an oriented isometry
of S2.

Now remember that the group of holomorphic automorphisms of R is
isomorphic to PGL(2,C) and acts simply transitively on triples of distinct
points. So each triple (a, b, c) is obtained in a unique way as (a, b, c) =
Mabc(a0, b0, c0) from a chosen triple (a0, b0, c0) by applying a well-defined
element Mabc ∈ PGL(2,C). The above condition that the metrics gabc
and ga′b′c′ are related by an oriented isometry translates into the fact that
Ma′,b′,c′ ◦M−1

a,b,c ∈ PU(2,C) and so it proves that the hyperbolic 3-space H3

is parametrized by the symmetric space PGL(2,C)/PU(2,C).
From the above discussion, some basic ingredients of the geometry of H3

can be seen, such as the following:

• Ideal points are the points of R.

• Given a ̸= c in R, the points on the line Lac from a to c are the metrics
µa,b,c where b varies over R \ {a, c}.

• For p ̸= q ∈ H3, represented respectively by metrics µp, µq and volume
forms ωp, ωq on R, these points lie on Lac where the points a, c are the
extrema of

ωp

ωq
.

4.7 Models for the hyperbolic plane

The hyperbolic plane H2, like the 3-dimensional hyperbolic space H3, has
also several interpretations in terms of the complex geometry of surfaces. A
standard interpretation of H2 is that it is the space of marked elliptic curves.
We propose three other incarnations of this plane:

1. The hyperbolic plane H2 is the space of ideals HI with its geometry
naturally given by a family of lines L((X−a)2+b2),((X−a′)2+b′2). Indeed, the
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plane HI comes with a natural complex coordinate z : HI → C+ = {a +
ib, b > 0}, defined by

z((X − a)2 + b2)) = a+ bi.

The coordinate z is a bijection with

Z : a+ bi 7→ ((X − a)2 + b2)

as inverse. Thus, Z(a+ bi) is the interpretation of the number a+ bi as an
ideal. See the details in §4.4 above.

2. The hyperbolic plane is the space HJ of almost complex structures
J on R2 (that is, endomorphisms of R2 satisfying J2 = −Id) equipped with
coordinates (x, y), and a volume form ω = dx∧dy, and where J is calibrated
by the inequality ω(u, Ju) > 0 for all u ∈ R2.

Another way of seeing this is the following. We start by defining a
map: Fix : HJ → C+, so that a point in the space HJ has a coordinate
z(J) = Fix(J) ∈ C+ where Fix(J) is the fixed point of J for its homographic
action on C+.

More explicitly, the matrix of J in the basis (1, i) is of the form (
a/b ∗
1/b −a/b

)

where h ∈ R and b > 0 (use the fact that the trace is zero), and ∗ is obtained
from the fact that the determinant of the matrix is equal to 1. Such a matrix
acts on the upper half-plane with exactly one fixed point, and we assign to
J this fixed point. It is possible to write explicitly the coordinates of this
fixed point in terms of a and b.

Consider the map

z(( h ∗
k −h )) =

h

k
+
i

k

where k > 0 and ∗ = 1+h2

−k is a complex coordinate. This is again a bijection,
with inverse

Z : a+ bi 7→ (
a/b ∗
1/b −a/b

), b > 0,

and there is an interpretation of the number a+bi, b > 0 as a linear complex
structure.

The incarnation HJ is very helpful for the construction of hyperbolic
trigonometry. Only High-school/Freshman knowledge is required in this
construction.

This incarnation HJ is also very helpful for the study of the space of
complex structures J(TS) on a given surface. As a first example, the sur-
face HJ itself has a complex structure. A tangent vector at J ∈ HJ is an
endomorphism K of R2 such that the equation

(J +K)2 = J2 + J ◦K +K ◦ J +K2 = −IdR2
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holds at first order in K. Therefore the tangent space TJHJ at J of HJ is the
vector space of endomorphisms K that anti-commute with J . The map K ∈
TJHJ 7→ J ◦K ∈ TJHJ is a canonical complex structure JHJ

on HJ which
induces a complex structure on the infinite-dimensional manifold J(TS).
This space J(TS) is canonically path-connected. Indeed two structures J0, J1
are connected by the path that for p ∈ S is a geodesic in the space of linear
complex structures on the oriented real vector space TpS. The fact that the
space J(TS) is contractible now follows, since these canonical paths depend
continuously upon endpoints.

3. The bijective coordinates z on HI ,HJ transport the geometries to
a common geometry on C+. The coordinate z : HJ → C+ is (JHJ

,mi)-
holomorphic. The model C+ with its conformal structure and hyperbolic
metric, equipped with its action by the modular group PSL(2,R), is a very
appreciated model of the hyperbolic plane.

5 Uniformisation

5.1 Riemann’s uniformisation of simply connected domains

Theorem 5.1 (The Riemann Mapping Theorem [88]) Let Ω be a non-
empty open connected and simply connected subset of the complex plane
which is not the entire plane. Let z0 be a point in Ω and v a nonzero
vector at z0. Then, there is a unique holomorphic bijection f from Ω to the
unit disc D such that f(z0) = 0 and df(v) is a complex number which is real
and positive.

Note that the inverse of a holomorphic bijection is also holomorphic
(think of a holomorphic function as an angle-preserving map). Therefore
the map f is biholomorphic.

Outline, after Riemann’s proof, see [50] This proof works in the case
where Ω is an open subset of the plane bounded by a Jordan curve (a simple
closed curve). We outline this proof.

We wish to find a biholomorphic mapping f : Ω → D which sends γ = ∂Ω
to S1 = ∂D.

Suppose that such a mapping f exists. Separating the real and imaginary
parts, we set

f(z) = u(x, y) + iv(x, y).

Applying a translation, we may assume that z0 = 0, therefore, f(0) = 0.
Applying a rotation, we may also assume that the vector of coordinate (0, 1)
at 0 is sent by f to a vector pointing towards the positive real numbers.

30



Such a map f , it is exists, is unique, since any holomorphic automor-
phism of the disc which fixes the origin is a rotation, and a rotation that
fixes a direction is the identity.

Since f is a bijection between Ω and the unit disc, the point z = 0 is
the unique solution of the equation f(z) = 0. Furthermore, the differential
(or the complex derivative) of f at 0 is nonzero, otherwise f would be
non-injective in the neighborhood of zero. Thus, the function f(z)/z is
holomorphic on Ω. Since it does not take the value 0, a branch of its complex
logarithm can be defined. Hence, there exists a holomorphic function H(z)
on Ω such that

f(z)

z
= eH(z).

In polar coordinates we can write z = r(x, y)eiθ(x,y), which gives

f(z) = zeH(z) = r(x, y)eiθ(x,y)eH(z).

Separating the real and imaginary parts of H as H(z) = P (x, y) +
iQ(x, y), we get

log f(z) = log r(x, y) + iθ(x, y) + P (x, y) + iQ(x, y),

which we can write as

log f(z) = log r(x, y) + P (x, y) + i(θ(x, y) +Q(x, y)).

Notice that the function log |f | is identically zero on ∂Ω, since points z
on this curve satisfy |f(z)| = 1.

Furthermore, the function log |f | is the real part of the holomorphic
function log f , therefore it is harmonic at every point of Ω.

Now given a harmonic function defined on the simply connected subset
Ω of the plane, there exists a unique holomorphic function which has this
function as a real part. (The usual way to find this function is to use
Cauchy’s theory of path integrals.)

Reasoning backwards, the problem of mapping Ω to the unit disc can be
solved if we can find a function P which is harmonic on Ω and which takes
the values − log r on γ = ∂Ω.

In this way, Riemann reduced the problem of finding a holomorphic
mapping from Ω to D to a problem of finding a harmonic function on Ω
with a prescribed value on ∂Ω. To find such a function, he appealed to the
so-called Dirichlet method, which consists of considering the functional I
defined on the space of differentiable functions P on Ω by:

I(P ) =

∫
Ω
(
∂P

∂x

2

+
∂P

∂y

2

)dxdy.

A function which realizes this infimum is harmonic.
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Remarks 1.— Riemann also used the Dirichlet principle in his existence
proof of meromorphic functions on general Riemann surfaces, obtaining
them from their real parts (harmonic functions). It was realized later that
the Riemann Mapping Theorem and the existence of meromorphic functions
are equivalent.

2.— A modern proof of the Riemann Mapping Theorem goes as follows
(see Thurston’s notes[103]): Given a simply connected open strict subset Ω
of the complex plane and a point z0 in Ω, consider the set of functions

F = {f : Ω → D, holomorphic, injective, f(z0) = 0 and f ′(z0) > 0},

equipped with the topology of uniform convergence on compact sets. The
desired conformal mapping is the mapping f in this family that maximizes
the modulus of the derivative |f ′(z0)|. The existence of such a mapping
uses the fact that for any family of holomorphic functions which is uni-
formly bounded on compact sets, every sequence has a subsequence which
converges uniformly on compact sets to a holomorphic function (this is Mon-
tel’s theorem).

We shall call a Riemann mapping a biholomorphic mapping that sends
the unit disc to a simply-connected subset of the plane (which we sometimes
call a domain). This is the inverse of the mapping f : Ω → D that we just
considered.

For a general domain Ω, the Riemann mapping is not explicit. In some
special cases, there are explicit formulae, e.g., when Ω is the upper half-
plane, or a band in the plane (a region bounded by two parallel lines), or
an angular sector (a connected component of the union of two intersecting
Euclidean lines in the plane), or a domain bounded by two arcs of circle, or
a sector of a disc, or a rectangle in the Euclidean plane, or a regular convex
polygon, or a regular star polygon, or the interior of an ellipse or a parabola,
and a few other cases. These examples and others are studied in the book
by G. Julia [50].

There are also results that concern the boundary behavior of the Rie-
mann mapping. The first name associated with such a boundary theory is
Carathéodory. He proved that if the boundary of the domain Ω is a Jordan
curve, then the Riemann mapping extends continuously to a homeomor-
phism from the unit circle to the boundary of the domain. He also proved
that in the general case the Riemann mapping extends continuously to the
unit circle if and only if the boundary of the domain is locally connected (but
this extension is generally not a homeomorphism). There are also measure-
theoretic results and questions. For instance, in the case where the domain
is bounded by a rectifiable curve γ, an extension of the Riemann mapping
exists and sends any subset of measure zero (resp. of positive measure) of
γ to a subset of measure zero (resp. of positive measure) of the circle. This
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was proved by Luzin and Privaloff [68] and by F. and M. Riesz [86]. One can
also mention here the following result of Fatou [36]: If a function f defined
on the unit disc is holomorphic and bounded, then, at almost every point t
on the unit circle |z| = 1, the value of f at a sequence of points converging
to that point on a path which is not tangential to the unit circle has a limit.
For an exposition of related results, see Chapter II of Lavrentieff’s book [64].
These results are useful in the modern developments of complex dynamics,
in particular in the study of the conformal representation of the complement
of the Julia set of a polynomial.

5.2 Uniformization of multiply connected domains

It is natural to search for generalizations of the Riemann Mapping Theorem
for multiply connected open subsets of the plane. The first natural question
is whether there exist canonical domains onto which they can be mapped
biholomorphically, in analogy with the fact that the disc and the plane are
canonical domains for simply connected domains. It is known that two
open subsets of the complex plane that have the same connectivity are not
necessarily conformally equivalent. For instance, two circular annuli (that is,
annuli bounded by two concentric circles) are conformally equivalent if and
only if they have the same modulus, that is, if and only if the ratio of their
outer radius to their inner radius is the same. Thus, there are no canonical
domains for multiply connected open subsets of the plane. However, there
are figures which may be considered as “standard” domains for such subsets,
and we now discuss some of them.

One of the oldest works on this question was done by Koebe, who studied
in his papers [59], [60] and others conformal mappings of multiply connected
open subsets of the plane onto circular domains, that is, multiply connected
domains whose boundary components are all circles (which may be reduced
to points). He proved that every finitely connected domain in the plane is
conformally equivalent to a circular domain. The question of whether there
is an analogous result for open subsets of the plane with infinitely many
boundary components is still open. This question is known under the name
Kreisnormierungsproblem, or the Koebe uniformization conjecture. Koebe
formulated it in his paper [61]. The reader interested in this question may
refer to the paper [23] by Ph. Bowers in which the author surveys several
developments of this conjecture, including related works on circle packings
by Koebe, Thurston and others. See also ??.

H. Grötzsch, in his paper [41], works with two classes of domains which
were considered by Koebe:

1. Annuli with circular slits. These are circular annuli from which a
certain number (≥ 0) of circular arcs (which may be reduced to points)
centered at the center of the annulus, have been deleted.
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2. Annuli with radial slits. These are circular annuli from which a certain
number (≥ 0) of radial arcs (which may be reduced to points) have
been removed. Here, a radial arc is a Euclidean segment in the annulus
which, when extended, passes through the center of the annulus.

The unit disc slit along an interval of the form [0, r] (r < 1) was employed
by Grötzsch in [41] as a standard domain and is known under the name
Grötzsch domain. Teichmüller, in his paper [101], calls a Grötzsch extremal
region the complement of the unit disc in the Riemann sphere C∪ {∞} cut
along a segment of the real axis joining a point P > 0 to the point ∞.

Another “standard model” for doubly connected domains is the Riemann
sphere slit along two intervals of the form [−r1, 0] and [r2,∞) where r1 and
r2 are positive numbers. Such a domain is called a Teichmüller extremal
domain by Lehto and Virtanen [66, p. 52]. In his paper [101], Teichmüller
uses these domains in the study of extremal properties of conformal annuli.
In the same paper, he works with other “standard” domains, e.g., the cir-
cular annulus 1 < |z| < P2 cut along the segment joining z = P1 to z = P2,
where P1 and P2 are points on the real axis satisfying 1 < P1 < P2 [101,
§2.4]; see the discussion in Ahlfors’ book [14, p. 76].

5.3 Uniformization of simply connected Riemann surfaces

It is natural to consider conformal representations of surfaces that are not
subsets of the complex plane. A wide generalization of the Riemann Map-
ping Theorem is the following, proved independently by Poincaré and Koebe:

Theorem 5.2 (Uniformization theorem) Every simply connected Rie-
mann surface can be mapped biholomorphically either to

1. the Riemann sphere (elliptic case);

2. the complex plane (parabolic case);

3. the unit disc (hyperbolic case).

In each of these cases, the conformal biholomorphism from the model
space onto the open Riemann surface is usually called a uniformizing map.
Such a map associated to a Riemann surface is well defined up to com-
position by a conformal homeomorphism of the source. This implies that
the mapping is determined in the first case by the images of three distinct
points, in the second case by the image of two distinct points, and in the
third case by the image of one point and a direction at that point.

If the Riemann surface is a simply connected open subset Ω of the com-
plex plane which is not the entire plane, then it is necessarily of hyperbolic
type (this is the Riemann Mapping Theorem). Uniformizing maps for such
surfaces have been particularly studied.
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For a proof of the uniformization theorem based on a historical point of
view, see the collective book [92]. For another point of view on uniformiza-
tion (“uniformization by energy”), see [8, Chapter 10].

There are several open questions on the behavior of the uniformizing
maps of simply connected surfaces equipped with Riemannian metrics. Lavren-
tieff, in his paper [63], adresses the question of the Lipschitz behavior of a
uniformizing map f : D → Ω. More precisely, he asks for conditions on the

surface Ω so that for any pair of points x, x′ ∈ D, the ratios dD(x,x
′)

dS(f(x),f(x′)) and
dS(f(x),f(x

′))
dD(x,x′) are bounded or unbounded (the distance in the disc being the

Euclidean distance). To the best of our knowledge, this problem is still not
settled.

6 Branched coverings

6.1 The Riemann–Hurwitz formula

The notion of branched covering between surfaces was conceived by Rie-
mann. It will be used at several places in the rest of this chapter. We shall
review in particular a theorem of Thurston on branched coverings of the
sphere in relation with the question of the topological characterization of
rational maps (§6.3). Branched coverings also appear in the study of the
type problem (§7.2) and in the theory of dessins d’enfants (§8.1).

A map f : S1 → S2 between two topological oriented surfaces is said to
be a branched covering if it satisfies the following:

1. for some discrete subset {ai}i∈I ⊂ S2, the map f restricted to f−1\{ai}
is a covering map in the usual sense;

2. for each point x ∈ S1 which is the inverse image by f of a point ai ∈ S2
for some i ∈ I, there exists an orientation-preserving homeomorphism
ϕ : U → D between an open neighborhood U of x and an open neigh-
borhood D of 0 in C satisfying ϕ(x) = 0, and an orientation-preserving
homeomorphism ψ : V → D between an open neighborhood V of ai
and D satisfying ϕ(ai) = 0, such that the mapping ψ ◦ f ◦ ψ−1 de-
fined on D coincides with the restriction of the map z 7→ zk from the
complex plane to itself, for some integer k ≥ 1.

The integer k in the above statement depends only on the point x and is
called the branching order of f at x. If k = 1, then f is a local homeomor-
phism at x. If k > 1, then we say that x is a critical point of the covering
and that f is branched at x. A point ai which is the image of a critical point
is called a critical value. The degree of the branched covering f is the usual
degree of the covering induced by f on the surface f−1 \ {ai}, that is, the
cardinality of the pre-image by f of an arbitrary point in S2 \ {ai}. This
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degree is also equal to the sum of the branching orders of the points in the
pre-image of an arbitrary point ai. The degree of a branched covering is 1
if and only if this covering is a homeomorphism.

A meromorphic function on a Riemann surface defines a branched cov-
ering from this surface to the Riemann sphere. (Here, the adjective “mero-
morphic” can be replaced by “holomorphic” since the value ∞ is, from the
complex structure, a point like any other point on the Riemann sphere.)
Every connected compact Riemann surface S admits a branched covering
f : S → R over the Riemann sphere R, with the conformal structure on
S induced by lifting by f the conformal structure of the sphere. (This is
one form of the so-called Riemann’s Existence Theorem.) Special cases of
branched coverings that we shall discuss below are the Belyi maps??: holo-
morphic maps from a compact Riemann surface to the Riemann sphere with
at most 3 critical values (see §8.1).

The question of the topological characterization of analytic functions
among the maps from a surface onto the Riemann sphere was known under
the name Brouwer problem and it has many aspects, see the comments in
[99, p. xv]. A theorem of Stöılov says that if S is a topological surface,
then a continuous mapping from S to the Riemann sphere is a branched
covering if and only if f is open (i.e., images of open sets are open) and
discrete (i.e., inverse images of points are discrete subsets of S, that is, each
point is isolated in S). Furthermore, for each continuous mapping satisfying
this property, there exists a unique complex structure on S such that this
mapping is conformal [99, Chap. V].

René Thom was interested in such questions. In his paper [102], he solves
the following problem:

Given n complex numbers (which are not necessarily distinct), does there
exist a polynomial of degree n+ 1 with these numbers as critical values?

Thom also considers the real analogue. At the end of his paper, he
formulates the general problem:

Given a C∞ function f : R2 → R2 with only isolated critical points, can
we transform it, by diffeomorphisms of the source and of the target, into a
holomorphic function?

Thurston proved a fundamental result on the topological characteriza-
tion of certain rational maps of the sphere, more precisely, he gave a char-
acterization of postcritically finite branched coverings of the sphere by itself
(branched coverings in which the forward orbits of the critical points are
eventually periodic) that are topologically conjugate to rational maps. See
[103] and the exposition in [25].

If S1 and S2 are compact surfaces, there is a classical combinatorial
relation that is satisfied by any branched covering S1 → S2, namely, the
following:

Proposition 6.1 (Riemann–Hurwitz formula) For any branched cov-
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ering S1 → S2 between compact surfaces, we have

χ(S1) = d · χ(S2)−
∑

(k(p)− 1),

where χ denotes Euler characteristic, and where the sum is taken over the
critical points in S1, k(p) being the branching order at p, for each critical
point p.

Sketch of proof Consider a triangulation of S2 whose set of vertices con-
tains the set of critical values, and lift it to a triangulation of S1. The
formula follows from an Euler characteristic count.

A famous problem, called the Hurwitz problem, asks for a characteriza-
tion of pairs of compact surfaces equipped with data satisfying the Riemann–
Hurwitz formula that can be realized by branched coverings, see e.g., [80, 81].

A different kind of realization problem for branched coverings was for-
mulated and solved by Thurston, see §6.3 below. It uses an object we call a
Speiser curve which we introduce in the next subsection.

6.2 Speiser curves, Speiser graphs and line complexes

Let S be a Riemann surface which is a branched covering ψ : S → R of
the Riemann sphere R with finitely many critical values a1, . . . , aq ∈ R,
q ≥ 2. It is understood in such a setting that the complex structure of S
is induced from that of R, that is, the map ψ is holomorphic. We draw
on R a Jordan curve γ passing through the points a1, . . . , aq in some cyclic
order chosen arbitrarily and we rename these points accordingly. We equip
this curve with the natural induced orientation. We call this curve a Speiser
curve. (About the name, see the historical note below on Andreas Speiser.)
The curve γ decomposes the sphere into two simply connected regions U1

and U2, each having a natural polygonal structure with vertices a1, . . . , aq
and sides (a1a2), (a2a3), . . . (aqa1). The pre-image of γ by the covering map
ψ is a graph Γ which we call a Speiser graph.2 It divides the surface S
into cells that are also equipped with natural polygonal structures, each one
projecting either to U1 or to U2. A point in the pre-image of some point
ai ∈ R, i ∈ I, may be unbranched; at such a point, there are only two
polygons glued. At a branch point of order m− 1 in the pre-image of some
ai (with m ≥ 2), there are 2m polygons glued.

Now, we construct a graph in R which is dual to the Speiser curve γ.
We start by choosing two points P1 and P2 in the interior of U1 and U2

repectively. Then, for each edge (aiai+1) of γ, we join P1 to P2 by a simple
arc that crosses γ at a single point in the interior of this edge, in such a

2In the literature, sometimes the name “Speiser graph” is used for what we call here
“line complex” (which is the name Nevanlinna uses). We reserve the name “Speiser graph”
for this lift of the Speiser curve, that we shall use below.
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way that any two such simple arcs intersect only at their extremities. The
union of these arcs constitutes a graph dual to γ. Its lift by ψ−1 is a graph
G embedded in S, called the line complex 3 of the covering.

The line complex G is a homogeneous graph of degree q: each vertex is
adjacent to q edges. Choosing a black/white coloring for the two points P1 or
P2, every vertex of G is naturally colored using these two colors (depending
on whether it is a lift of P1 or of P2). Thus, the line complex is bicolored,
that is, its vertices can be colored using only two colors and no edge joins two
vertices of the same color. A common notation for black and white vertices,
for line complexes, is ×, ◦ (see Figures 3 and 4, borrowed from [78]).

The connected components of the complement in S of the line complex
G are called the faces of G. Around each vertex of the line complex G there
is always the same number of faces, appearing with their indices, in the
cyclic order, a1, . . . , aq. The image of each face of G by the covering map ψ
contains a unique branch value ai in its interior. Such a face has a natural
polygonal structure which it inherits from its image in R. This polygon may
be of three types:

1. A polygon with an even number 2m of sides: such a polygon contains
a critical point of finite order equal to m− 1 (the example in Figure 4
contains polygons with 2 and 4 sides);

2. A polygon with an infinite number of sides: such a polygon is un-
bounded in S (the three examples in Figure 3 contain such polygons);

3. a bigon: such a polygon contains an unbranch point over an ai (the
example in Figure 4 contains bigons).

In case 1, the face is said to be algebraic, and in case 2 it is said to be
logarithmic (the terminology comes from the theory of Riemann surfaces
associated with holomorphic functions).

Topologically, the branched covering S of the sphere is uniquely deter-
mined by the points a1, . . . , aq, the Jordan curve γ joining them and the
line complex G. The line complex in the universal cover of the punctured
surface encodes the way the various lifts of the polygons P1 and P2 (the
complementary components of the Speiser curve) fit together.

The three line complexes represented in Figure 3, with their coloring,
correspond to the universal coverings of the sphere with 2, 3 and 4 punctures.
In these cases, the surface S is simply connected and the associated line
complex is regular. More generally, the line complex associated with the
universal covering of the sphere punctured at n ≥ 2 points is an n-valent
regular graph. In terms of holomorphic functions, the line complex on the
left hand side of the figure is associated with the Riemann surface of the

3See Footnote 2.
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exponential function. Figure 4 represents the line complex of the Riemann
surface of the function f(z) = ze−z, which is branched over three points of
the sphere: the points 0 and ∞, each of infinite order, and the point 1/e, of
order one.

Figure 3: Three examples of regular line complexes with their coloring. The
associated branched coverings, restricted to the complement of the branch points,
are universal coverings of the sphere with 2, 3 and 4 punctures respectively

Figure 4: The line complex of the Riemann surface of the function f(z) = ze−z

There are sections on line complexes in Nevanlinna’s book [78], in Sario
and Nakai’s book [93] and in L. I. Volkovyskii’s comprehensive survey on
the type problem [108]. We shall return to line complexes in §7.2.

Historical note Andreas Speiser (1885–1970) was a Swiss mathematician
who studied in Göttingen, first with Minkowski and then with Hilbert.
The latter became his doctoral advisor for a few months, after the death
of Minkowski in 1909 (at age 44). Speiser defended his PhD thesis, in
Göttingen, in 1909 and his habilitation in 1911, in Strasbourg. He worked
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in group theory, number theory and Riemann surfaces, and was the main
editor of Euler’s Opera Omnia. He edited 11 volumes and collaborated to 26
others of this huge collection. Ahlfors writes in his comments to his Collected
works [16, vol. 1, p. 84], that the type problem, which we shall review in §7,
was formulated for the first time by Andreas Speiser. The latter introduced
line complexes (in a version slightly different from the one we use here) in his
papers [97] and [98]. In his paper [15], Ahlfors writes: “Around 1930 Speiser
had devised a scheme to describe some fairly simple Riemann surfaces by
means of a graph and had written about it in his semiphilosophical style”.
Ahlfors adjective is related to the fact that Speiser’s articles do not contain
formulae.

6.3 Thurston’s realization theorem

A branched covering from the sphere to itself can be iterated (composed
with itself). The postcritical set of such a branched covering is the union
of the set of critical points with its forward images by the mapping. A
branched covering is said to be postcritically finite if its postcritical set is
finite. In 1983, Thurston obtained a characterization of branched coverings
f : S2 → S2 of a topological 2-sphere that are topologically equivalent to
postcritically finite rational maps of the Riemann sphere, that is, quotients
of two polynomials (see [103] and the exposition in [25]). In 2010, while he
was considering again the question of understanding holomorphic mappings
from the topological point of view, Thurston obtained a realization theorem
for branched coverings of the sphere which we present now. The result
involves the Speiser graph associated with a branched covering of the sphere
that we defined in §6.2. We now state this result.

Let f : S2 → S2 be a generic degree d branched covering of the topolog-
ical sphere S2. Here, the word generic means that the cardinality of the set
of critical values of f is 2d− 2 (which is the largest possible). This implies
that the cardinality of the set of critical points is also 2d− 2. Every critical
point of such a map is simple (of order 1).

Let γ be a Speiser curve associated with this covering, equipped with
its orientation, and consider its lift Γ = f−1(γ). This is a graph we called
Speiser graph. Its vertices are all of valence 4 (we do not take into account
lifts of the critical values that are not critical points).

The Speiser curve γ divides the sphere into two connected components
which are naturally equipped with polygonal structures. We color these
components in blue and white. Each connected component of the comple-
ment of Γ is sent by f to a connected component of γ, and therefore it carries
naturally a color and a polygonal structure. We call such a component a
face of S2 \ Γ. Thurston addressed the following question:

To characterize the oriented 4-valent graphs in S2 that can be obtained
by the above construction, that is, as a Speiser graph associated with some
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branched covering f : S2 → S2.
He proved the following:

Theorem 6.2 (Thurston, see [62]) Let Γ be an oriented graph on S2,
with 2d−2 vertices, all of valence 4. Then Γ is a Speiser graph of a degree-d
branched covering of the sphere onto itself if and only if:

1. each face of S2 \ Γ is simply connected;

2. for any alternating blue-white coloring of the faces of S2 \Γ, there are
d white faces and d blue faces;

3. for every oriented Jordan curve embedded in Γ and bordered by only
blue faces on the left and only white faces on the right (excluding the
corners), the Jordan disc bounded on the left by this curve contains
strictly more blue faces than white faces.

Conditions 2 and 3 are considered as balance conditions.
Thurston’s proof of Theorem 6.2 given in [62] is based on the so-called

“marriage theorem” (due to Philip Hall) from combinatorics, a theorem
dealing with finite subsets of a given set; it gives a necessary and sufficient
condition on such a family that guarantees the choice of one element from
each set such that these elements are all distinct (monogamy is the rule).
The authors in [62] ask for a better proof which would give an algorithm
for constructing arbitrary rational functions whose critical values are on the
unit circle [62, p. 255].

The Riemann–Hurwitz formula, which we recalled in §6.1, becomes in
the case at hand, i.e., the case where f is a degree-d branched cover of the
sphere by itself:

2d− 2 =
∑

(k(p)− 1).

In this formula, the sum is taken as before over the critical points p, and k(p)
is the branching order at p. (This formula follows from the fact that the Euler
characteristic of both surfaces is 1.) Written in this form, the Riemann–
Hurwitz formula says that the branching information at the various points
forms a partition of the integer 2d−2. The question of what are the partitions
that are realized by a branched covering of the sphere to itself is still open.
(Cases where the map does not exist are known to occur.)

Thurston’s result is part of his project of understanding the shapes of
rational functions, where by “shape” he means the evolution of the critical
levels of such a function (see his comments on this problem in a Math-
Overflow thread he started in 2010, titled What are the shapes of rational
functions? ).

The paper [6] which contains a stratification of spaces of monic polyno-
mials of a give degree is inspired by Thurtson’s question. See also ??
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7 The type problem

The Uniformization Theorem (Theorem 5.2) says that every simply con-
nected Riemann surface S is either conformally equivalent to the Riemann
sphere, or to the complex plane, or to the unit disc. In the first (respec-
tively, second, third) case, S is said to be of elliptic (respectively, parabolic,
hyperbolic) type. The names stem from the fact that the Riemann sphere,
the complex plane and the unit disc are ground spaces for elliptic, parabolic
and hyperbolic geometry respectively (elliptic and parabolic geometries are
alternative names for spherical and Euclidean geometries). The first case is
distinguished from the other two by topology, since in this case S is compact,
whereas in the two other cases it is not.

The type problem asks for a practical way to decide whether a given
simply connected non compact Riemann surface is of parabolic or elliptic
type.

The answer depends on the context in which the surface is defined. For
instance, the surface may be embedded in Euclidean 3-space and equipped
with the induced metric, or it may be equipped with some abstract Rieman-
nian metric, or it may be obtained by pasting smaller surfaces (Euclidean or
non-Euclidean polygons, etc.). It may also be given as an infinite branched
covering of the sphere with some data at each branching point, or it may
be obtained by analytic continuation, like the universal cover of the Rie-
mann surface of some holomorphic function. One can also imagine other
situations. The multiplicity of these cases explains the variety of ways and
techniques in which the type problem has been addressed; we shall see some
examples below.

7.1 Ahlfors on the type problem

Ahlfors emphasized at several occasions the importance of the type problem,
which was one of his main research topics during the period 1929–1941. In
his paper [13], talking more precisely about the question of deducing the
type of a Riemann surface associated with a univalent function, from the
distribution of its singularities, he writes: “This problem is, or ought to
be, the central problem in the theory of functions. It is evident that its
complete solution would give us, at the same time, all the theorems which
have a purely qualitative character on meromorphic functions.” Nevanlinna,
in the introduction of his book Analytic functions (1953), ), writes (p. 1 of
the English edition [78]): “[. . . ] Value distribution theory is thus integrated
into the general theory of conformal mappings. From this point of view the
central problem of the former theory is the type problem, an interesting and
complicated question, left open by the classical uniformization theory.”

One of Ahlfors’ earliest results on the type problem is a theorem con-
tained in his paper [12]. It gives the following condition for a simply con-
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nected surface S which is a branched covering of the sphere whose branch
values are all of finite degree, to be parabolic. See also ??.

Theorem 7.1 (Ahlfors, [12]) Let S be a simply connected surface which
is a branched covering of the sphere with all branch values of finite degree,
let p be an arbitrary point in S and let n(t) t ≥ 0 be a function defined
on S which associates with t the number of branch points, counted with
multiplicity, at distance ≤ t from p. If∫ ∞

a

dt

tn(t)
= ∞

for some (or equivalently for all) a > 0, then S is of parabolic type.

Thus, the theorem says that if the amount of branching is relatively
small, the surface is parabolic. We shall see below other results on the
type of branched coverings of the sphere that are also expressed in terms
of the growth of the amount of branching. Heuristically, one can consider
that the degree of branching measures a certain degree of negative curvature
concentrated at the branch points, and consequently, the larger the amount
of branching is, the more negative curvature is concentrated at that point;
this explains the fact that a surface with a large amount of branching is
hyperbolic.

In the setting of function theory, one also admits branch values of infinite
degree, modeled on the ones that occur in the theory of Riemann surfaces
of multi-valued analytic functions. The complex logarithm function is an
example of a multivalued function which gives rise to a branch value of
infinite degree.

In the next 3 subsections, we shall describe different approaches used by
various authors to the study of the type problem. They involve combinato-
rial, analytical and geometrical methods.

7.2 Nevanlinna on the type problem

Nevanlinna, in the papers [76, 77, 78] considered in detail the type problem
for simply connected surfaces that are branched coverings of the sphere with
a finite number of critical values. Soon after, Teichmüller dealt with the
same problem in his papers [100] and [101], disproving a conjecture made
by Nevanlinna. The fundamental tool that is used in these works is the line
complex that we recalled in §6.2.

Nevanlinna formulated a principle which amounts to formalizing the fact
that the type of a simply connected Riemann surface S which is a branched
covering of the Riemann sphere may be deduced from information on the
associated line complex. The faces of this graph (i.e., the connected compo-
nents of its complement) are in one-to-one correspondence with the branch
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points of the covering, if one discards bigons. A polygon with 2m sides is
associated with a branch point of order m − 1. Roughly speaking, Nevan-
linna’s claim is that if the amount of branching of the covering is small, the
surface is of parabolic type, and if the amount of branching is large, the sur-
face is of hyperbolic type. He showed how the amount of branching can be
deduced from the properties of the line complex. Nevanlinna writes, in [78,
p. 308]: “It is thus natural to imagine the existence of a critical degree of
branching that separates the more weakly branched parabolic surfaces from
the more strongly branched hyperbolic surfaces.” To make this precise, he
introduced the notions of mean branching and mean excess relative to the
line complex. These are analogues of the notion of global mean curvature
of a surface. We shall recall his definition.

To motivate the above principle, Nevanlinna first considered the case of a
surface S which, instead of being an infinite-sheeted covering of the Riemann
sphere, is finite-sheeted. In this case, the mean branching is simply the sum
of the orders of the branch points divided by the degree of the covering.

In this case, the mean branching can also be computed using the line
complex G. The number of vertices of the line complex is equal to twice
the number of sheets. Indeed, if d is the number of sheets in the covering,
then, using the notation in §6.2, there are d vertices which are lifts of the
point P1 and d others which are lifts of the point P2. Each branch point of
order m− 1 is in the interior of a polygonal component of S \G having 2m
sides and 2m vertices. Considering that twice the order of this branch point,
that is, 2m− 2, is evenly distributed among these 2m vertices, each vertex
of this polygon receives from the polygon itself a branching contribution
equal to 2m−2

2m = 1− 1
m . Taking the sum over the contributions coming from

all the adjacent polygons, each vertex of the line complex receives a total
branching contribution equal to

∑
(1 − 1

m), where the sum is over all the
polygons adjacent to this vertex. Dividing by the total number of vertices,
which is twice the number of sheets, gives the mean branching. Nevanlinna
uses this second way of counting the mean branching for the definition of
the mean branching in the case of an infinite covering.

Nevanlinna considered first the case of a regularly ramified surface. This
is a surface whose group of covering transformations acts transitively on the
set of branch points (therefore it acts transitively on the line complex). In
this case, the mean ramification is equal to the ramification of an arbitrary
polygonal component in the complement of the line complex. He proved:

Theorem 7.2 (Nevanlinna [78], p. 311) For a regularly ramified sur-
face, the following holds:

1. the surface is parabolic if the mean ramification is 2;

2. he surface is hyperbolic if the mean ramification is > 2;
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3. The surface is elliptic if the mean ramification is < 2;

Proof In his proof, Nevanlinna introduces a metric on each polygonal com-
ponent of the complement of the line complex in which the measure of the
angle at each vertex of such a polygon corresponding to a branch point of
order m− 1 is equal to π/m.

The excess of a polygon is equal to
∑ 1

m − q + 2 where q is as before
the cardinality of the set of critical values, which is also the number of sides
of the polygon. Since we are in the case of a regularly ramified surface,
the mean ramification is equal to the order of ramification at each branched
point.

In case 1, the angle excess of each polygon is zero and we can realize this
polygon as a regular polygon in the Euclidean plane. In case 2, the angle
excess of each polygon is negative and we can realize it as a regular polygon
in the hyperbolic plane. Case 3 corresponds to spherical geometry.

In the case of an infinitely-branched covering, the average of the branch-
ing over all the vertices of G is obtained by taking an exhaustion of this
graph by an infinite number of finite sub-graphs, and taking the lower limit
of a mean of the sum of the total branchings of the vertices [78, p. 309ff].
The conjecture is formulated by Nevanlinna as a question in [78, p. 312] in
the following terms: Is the surface parabolic or hyperbolic according as the
mean excess is zero or negative? After formulating this question, Nevan-
linna notes that Teichmüller in his paper [101], disproved the conjecture by
exhibiting a hyperbolic simply connected Riemann surface branched over
the sphere with a line complex whose mean excess is zero.

7.3 Quasiconformal mappings and Teichmüller’s work on the
type problem

In the course of proving the above result, Teichmüller used quasiconformal
mappings, and we next recall this notion.

To a differentiable complex-valued function f(z) = u(x, y) + iv(x, y)
defined on an open subset Ω of the complex plane (or on a Riemann surface),
one asssociates its complex dilatation by taking first the partial derivatives
fx = ux + ivx and fy = uy + ivy, setting

fz =
1

2
(fx − ify)

and

fz =
1

2
(fx + ify)

and defining the complex dilatation of f as

µ(z) =
fz(z)

fz(z)
.
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The (real) dilatation of f is then given by the real function

K(z) =
1 + |µ(z)|
1− |µ(z)|

and f is said to be K-quasiconformal, for some K > 0, if this function
satisfies

K(z) < K

for all z in Ω.
In practice, one allows f to be only absolutely continuous on almost

every line which is parallel to the real or imaginary axis. This is sufficient
for the partial derivatives ∂f

∂x and ∂f
∂y to exist almost everywhere.

The dilatation is then defined a.e., and the last inequality needs only to
be satisfied a.e.

A computation shows that the dilatation of f at an arbitrary point is
equal to the ratio of the major axis to the minor axis of the ellipses that are
images by the differential of the map at that point, of circles in the tangent
space centered at the origin. Therefore, a diffeomorphism f between two
Riemann surfaces is K-quasiconformal if it takes an infinitesimal circle to
an infinitesimal ellipse of eccentricity uniformly bounded by K.

The map f is quasiconformal if it is K-quasiconformal for some finite K.
This leads us to a notion of quasiconformally equivalent Riemann sur-

faces and quasiconformal structure, a weakening of the notion of conformal
structure: A quasiconformal structure on a 2-dimensional manifold is a fam-
ily of conformal structures such that the identity map between any two of
them is quasiconformal. We say that two conformal structures in such a
family are quasiconformally equivalent.

Teichmüller wrote a paper dedicated to applications of quasiconformal
mappings the type problem, see [100], titled An application of quasiconfor-
mal mappings to the type problem. In the introduction to this paper, he
writes: “Recently, the problem of determining the properties of the schlicht
mapping of [a simply connected Riemann surface] M from its line complex
has been frequently studied. So far in the foreground has been the type
problem: How can one determine, from the given line complex, if the cor-
responding surface M can be mapped one-to-one and conformally onto the
whole plane, the punctured plane, or the unit disk? One is still very far
from finding sufficient and necessary conditions.”

In this work on the type problem, Teichmüller started by showing that
two branched coverings of the sphere whose line complexes are equal are qua-
siconformally equivalent. He gave a criterion for hyperbolicity and he proved
that the type of a simply connected open Riemann surface is a quasiconfor-
mal invariant [100]. The latter result is a direct consequence of the fact that
the complex plane and the unit disc cannot be quasiconformally mapped
onto each other, a result which he proves in the same paper. In principle,
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this result reduces the type problem to a simpler problem, since quasicon-
formal mappings exist much more abundantly than conformal mappings.
To show that a surface S is parabolic (respectively hyperbolic), it suffices to
exhibit a quasiconformal homeomorphism between S and the complex plane
(respectively the unit disc).

To end this subsection on Teichmüller’s work on the type problem, let
us mention the survey [17] titled Teichmüller’s work on the type problem.

7.4 Lavrentieff on the type problem

Lavrentieff’s work on the type problem is based on the notion of “almost
analytic function” which he introduced, another weakening of the notion of
conformal mapping which is close to (but slightly different from) the notion
of quasiconformal mapping.

To state this property, let us first recall that there exist several equivalent
conditions for a differentiable function f from the complex plane to itself
(or, more generally, between surfaces) to be holomorphic, and weakening
each of them gives a weakening of a function to be holomorphic. Among
these conditions, we mention the following:

1. f is angle-preserving.

2. the real and imaginary parts of f satisfy the Cauchy–Riemann equa-
tions.

3. f satisfies ∂f
∂z = 0.

4. The Taylor series expansion of f around every point is convergent in
some open disc around this point;

5. The following notion of holomorphicity is stated in terms of almost
complex structures: Given a surface S equipped with a J-holomorphic
function, a differentiable function f : (S, J) → C is said to be J-
holomorphic if for every point p on S and for every tangent vector u
at p, we have

(df)p(Jpu) = i(df)p(u).

6. The function f possesses a complex derivative, that is, infinitesimally,
it acts by multiplication by a complex number.

Lavrentieff’s almost analyticity property is a weakening of Property 6, a
property equivalent to the fact that at each point the Jacobian matrix of f
acts on the tangent space as a rotation followed by a homothety. This is also
expressed by the fact that the map sends infinitesimal circles to infinitesimal
circles. (Thus, this property is close to the notion of quasiconformal mapping
which we recalled in §7.2.)
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In fact, in the most general case, the Jacobian matrix of a differentiable
map between tangent spaces, since it acts linearly, takes circles centered
at the origin to ellipses centered at the origin, and Lavrentieff’s property is
formulated in terms of the boundedness of the eccentricty and the directions
of these ellipses. We now state this condition in precise terms.

Definition (Lavrentieff [63]) A function f : Ω → C defined on a domain
Ω ⊂ C is said to be almost analytic if the following three properties hold:

1. f is continuous.

2. f is orientation-preserving and a local homeomorphism on the com-
plement of a countable closed subset of Ω.

3. There exist two real-valued functions p : Ω → [1,∞[ and θ : Ω →
[0, 2π], called the characteristics of f , defined as follows:

• There is subset E of Ω which consists of finitely many analytic
arcs such that p is continuous on Ω \ E and θ is continuous at
each point z satisfying p(z) ̸= 1. (E might be empty.)

• On every domain ∆ ⊂ Ω \ E whose frontier is a simple analytic
curve, p is uniformly continuous. Furthermore, if such a domain
∆ and its frontier do not contain any point satisfying p(z) = 1,
then θ is also uniformly continuous on ∆.

• For an arbitrary point z0 in Ω \ E, let E be an ellipse centered
at z0, let θ(z) be the angle between its major axis and the real
axis of the complex plane, and let p(z0) =

a
b ≥ 1 be the ratio of

the major axis a to its minor axis b. Let z1 and z2 be two points
on the ellipse E at which the expression |f(z)− f(z0)| attains its
maximum and minimum respectively. Then,

lim
a→0

∣∣∣∣f(z1)− f(z0)

f(z2)− f(z0)

∣∣∣∣ = 1.

One goal of Lavrentieff’s article [63] is to show that almost analytic
functions share several properties of analytic functions. This includes a
compactness result for families of almost analytic functions with uniformly
bounded characteristics, which is a generalization of a known compactness
property that holds for families of analytic functions. It also includes a gen-
eralization of Picard’s big Theorem [63, §3]. The generalization of the same
theorem for quasiconformal mappings was already obtained by Grötzsch, see
[42].

The question of finding an almost analytic function from its characteris-
tics, which Lavrentieff solves in the same paper and which we state now, is a
form of what was later called the “Measurable Riemann Mapping Theorem”.
This is a wide generalization of the Riemann Mapping Theorem:
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Theorem 7.3 (Lavrentieff [63]) Given any two functions p(z) ≥ 1 and
θ(z) defined on the closed unit disc |z| ≤ 1 such that p and θ satisfy the prop-
erties in the above definition and such that p(z) < M for some constant M ,
there exists an almost analytic function f realizing a self-homeomorphism of
the closed disc |z| ≤ 1 and having the characteristics p and θ.

In the same paper, Lavrentieff proves the following result on the type
problem. Like Ahlfors’ theorem (Theorem 7.1) and like the theorem of Mil-
nor that we shall quote below (Theorem 7.5), Lavrentieff’s theorem reduces
the question of proving parabolicity to that of proving that a certain integral
diverges.

Theorem 7.4 (Lavrentieff [63]) Let S be a surface in the 3-dimensional
Euclidean space which is the graph of a differentiable function

t = f(x, y), x2 + y2 <∞,

whose partial derivatives ∂f
∂x and ∂f

∂y are continuous. For each r ≥ 0, let

M(r) = max
x2+y2=r2

1 + |grad f(x, y)| .

If
∫∞
1

dr
rM(r) = ∞, then S is of parabolic type.

Lavrentieff, in his paper, reduced the type problem to Theorem 7.3,
that is, to the problem of finding an almost analytic function having given
characteristics p and θ, such that for z = (x, y),

p(z) =
1

cosα(z)
,

where α(z) is the angle formed by the (x, y)-plane and the tangent plane
of S at (x, y, t) and where θ(z) is the angle formed by grad f(x, y) and the
x-axis.

7.5 Milnor on the type problem

Milnor, in his paper [74], studied the type problem for the case of a surface S
embedded in Euclidean 3-space which is complete and whose Gaussian cur-
vature depends only on the distance to some fixed point p. The Riemannian
metric induced on this surface can be written in the polar coordinates (r, θ)
as dr2 + g(r)2dθ2 where 2πg(r) is a smooth positive function that denotes
the length of the geodesic circle of radius r centered at p. The Gaussian
curvature is then given by K(r) = −(d2g/dr2)/g.

Milnor proves the following:

Theorem 7.5 For a surface S as above we have:
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1. S is parabolic if and only if for some (or equivalently for any) a > 0,
the integral

∫∞
a dr/g(r) = ∞.

2. If for an arbitrary ϵ > 0 we have K(r) ≥ −(r2 log r) for r large enough,
then S is parabolic.

3. For any ϵ > 0, we have K ≤ −(1+ ϵ)/r2 log r) for large enough r, and
if the function g(r) is unbounded, then S is hyperbolic.

Items 2 and 3 are not surprising if we consider them again from the point
of view that enough negative curvature corresponds to a hyperbolic type and
enough positive curvature corresponds to a parabolic type. An interesting
fact here is that the difference between the two cases is made by an ϵ which
can be chosen to be arbitrarily small, and in this sense the result is the best
possible in the given situation.

Milnor’s proof The proofs of Items 2 and 3 follow from Item 1 which, like
the results of Ahlfors and Lavrentieff that we mentioned above, characterizes
parabolicity in terms of the divergence of a certain integral.

For the proof of 1, Milnor introduces a new coordinate ρ =
∫ r
a ds/g(s).

In the coordinates (ρ, θ), the metric becomes

g2(dρ2 + dθ2),

and is thus conformally equivalent to the Euclidean metric. (Coordinates in
which the metric is conformal to the Euclidean metric are called isothermal,
another term which comes from the theory of heat transfer.) The exponen-
tial map (ρ, θ) 7→ eρ+iθ maps S conformally onto C. (The mapping is a
priori defined in the complement of the point p, but it extends to p because
it is bounded, differentiable and conformal in a neighborhood of p, therefore
this singularity is removable.)

Milnor, at the end of his paper, adresses the question of finding an effec-
tive criterion for deciding, for a simply connected open surface embedded in
3-space, whether it is parabolic or hyperbolic.

7.6 Probablistic approaches

There are other approaches to the type problem that we shall not touch upon
here. In particular, there is a probabilistic point of view. A classical result
in this direction says that a surface equipped with a Riemannian metric is
parabolic if and only if the associated Brownian motion is recurrent. There
is a large literature on this question, see e.g., Kakutani’s paper [54], which
appeared the same year as Teichmüller’s paper [100] on the type problem.
Kakutani gives the following criterion: Let S be a simply-connected open
Riemann surface which is an infinite cover of the sphere and let D be a
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simply connected subset of S bounded by a Jordan curve Γ. For a point ζ
in S \ D, let u(ζ) denote the probability that the Brownian motion on S
starting at ζ enters into Γ without getting out of S \D before. Then, one
of the following two cases holds:

1. u(ζ) < 1 everywhere in S \D and in this case S is hyperbolic;

2. u(ζ) is identically equal to 1 S \D , and in this case S is parabolic.

Kakutani wrote later several papers related to the type problem, see,
e.g., [51, 52, 53].

Let us also mention Z. Kobayashi’s papers on Riemann surfaces in which
he discusses the type problem; see in particular his paper [57] in which he
gives sufficient conditions under which a surface is of parabolic type, and
his paper [58] in which he presents a theory based on Kakutani’s paper
[54] and Teichmüller’s paper [101], generalizing both works. Figure 5 is ex-
tracted from Kobayashi’s paper [57]. It is reproduced here for the purpose of
showing the nobility of this kind of drawing compared to computer-drawing
everybody uses today in mathematical papers.

7.7 Electricity

P. Doyle and J. L. Snell expanded on the relation between the type problem,
Brownian motion and the propagation of an electric current on the surface,
see the paper [32] where the main underlying idea is that the unit disc has
finite electrical resistance while the plane has infinite resistance. See also
Doyle’s review in the Bulletin of the AMS, [31], in which the author reports
on the type problem for a covering of the Riemann sphere with n punctures
using the properties of the Speiser graph of the covering, surveying the
important work of Lyons–McKean–Sullivan [69] and of McKean–Sullivan
[72] on this topic. Incidentally, the author seems not to be aware of the
work of Teichmüller on these questions.

Introducing electricity in the type problem is completely in the tradition
of Riemann who, at several places in his work on Riemann surfaces uses
arguments from electricity. This occurs in particular in the two main papers
where he deals with Riemann surfaces, namely, his doctoral dissertation
[88] and his paper on Abelian functions [89]. For instance, in the Dirichlet
principle that he used in his proof of the Riemann Mapping Theorem (see
§5.3 above), Riemann considered the function f defined on the boundary of
the domain Ω as a time-dependent electrical potential, and his conclusion in
the solution to the Dirichlet problem consisted in letting the system evolve
and reach an equilibrium state. The function obtained necessarily satisfies
a mean value property and therefore is harmonic.

Historical note In the summer of 1858, Riemann gave a course titled The
mathematical theory of gravitation, electricity and magnetism [91]. Besides
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Figure 5: From Kobayashi’s paper [57] on the type problem

his mathematical papers in which he used electricity, Riemann also wrote
papers on electricity. See his unfinished paper Gleichgewicht der Electricität
auf Cylindern mit kreisförmigen Querschnitt und parallelen Axen (On the
equilibrium of electricity on cylinders with circular transverse section and
whose axes are parallel) [87] (1857) published posthumously in the second
edition of his Collected works which concerns the distribution of electricity
or temperature on infinite cylindrical conductors with parallel generatrices.
The reader interested in more details may refer to the survey titled Physics
in Riemann’s mathematical papers [79].

Remark (Higher-dimensional generalizations) One advantage of in-
troducing random walks and probabilistic methods in the theory of parabol-
icity/hyperbolicity of Riemann surfaces is that it allows this theory to be
generalized to graphs, discrete groups and higher-dimensional manifolds.
There are several works in this direction. I mention Marc Troyanov’s paper
[105] in which he discusses parabolicity for n-dimensional manifolds. More
precisely, in this paper, Troyanov surveys an invariant of Riemannian man-
ifolds which is related to the non-linear potential theory of the p-Laplacian
and which determines a property which generalizes parabolicity or hyperbol-
icity of surfaces. The key notion that this leads to is that of p-parabolicity
and p-hyperbolicity. In the generalized setting of the paper [105], the classi-
cal dichotomy parabolic/hyperbolic becomes 2-parabolic/2-hyperbolic, i.e.,
p = 2. The author focuses in particular on the relationship between the
asymptotic geometry of a manifold and its parabolicity.
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8 Uniformization: Geometry and combinatorics

8.1 Dessins d’enfants

A map on a compact oriented surface S is a bicolored finite graph Γ em-
bedded in S such that each connected component of S \ Γ is contractible.
The vertices of the graph are colored by 0, 1 and each edge joins vertices
of different colors. A connected component of S \ Γ is called a cell of the
map. A map (S,Γ) can be upgraded to a triangulation (S,∆Γ) by choos-
ing a point in each cell and connecting the chosen point by a star-shaped
system of curves to the vertices of Γ that are on the boundary of the cell.
The triangulation ∆Γ is special in that it admits a checkerboard black-white
coloring (that is, triangles meeting from opposite sides along an edge have
opposite colors). To see this, we use the symbols 0, 1,∞ to color the vertices
of the triangulation ∆Γ in such a way that the chosen points in the cell gets
the color ∞. Each triangle has vertices of different colors, hence becomes
oriented by imposing the cyclic order 0, 1,∞. Finally we color white those
triangles for which the induced orientation from S coincides with the cyclic
orientation of the vertices.

The minimal example of a map is M = (C ∪ {∞}, [0, 1]). Here, the
graph is Γ = [0, 1] with two vertices and one edge embedded in the Riemann
sphere C ∪ {∞}. This map has only one cell. Now choose the point ∞
connected by [1,∞] and [∞ = −∞R, 0] as an upgrading to a triangulation
with two triangles, the white one being the so-called upper half-plane C+.
We denote by M∞ this minimal map together with the above upgrading to
a triangulation.

Speiser graphs discussed in §6.2 are maps in the above sense, except that
the surfaces on which they are defined are not necessarily compact.

Let it be given the combinatorial data consisting of a tripleD = (S,Γ,∆Γ)
of a map Γ with its 0, 1 bicoloring on a compact surface S, together with
the upgrading to a checkerboard colored triangulation ∆Γ.

A smooth mapping fΓ : (S,Γ,∆Γ) →M∞ is well defined up to isotopy. It
sends vertices to vertices respecting colors, edges to edges, and its restriction
to the complement of the vertex set of the triangulation is a submersion.

Let JΓ be the complex structure on S obtained by pulling back the
complex structure of P1(C)\{0, 1,∞} and by extending this structure using
the removable singularity theorem.

The result is again an upgrading from the combinatorial data Γ ⊂ S
to a Riemann surface (S, JΓ) together with a holomorphic function fD :
(S, JΓ) → P1(C) having its critical values in the set {0, 1,∞}.

The set of possible combinatorial data up to isotopy is countable and the
set of Riemann surfaces up to bi-holomorphic equivalence is uncountable.
Thus, a natural question arises, namely, what Riemann surfaces appear as
an upgrading of a map. The answer is given by Belyi’s Theorem:
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Theorem 8.1 (Belyi [19]) For a compact Riemann surface S the follow-
ing are equivalent:

1. S carries a holomorphic map f : S → P1(C) with at most 3 critical
values (which can be taken, without loss of generality, to be {0, 1,∞});

2. S is bi-holomorphically equivalent to an upgraded map surface;

3. S is bi-holomorphically equivalent to a complex curve, that is, a Rie-
mann surface embedded in the projective space Pn = Pn(C) defined by
a set of polynomials with coefficients in a number field, that is, a finite
field extension of the field of rational numbers.

The implication 3 ⇒ 1 is the “easy part”; indeed, the inclusion S ⊂
Pn as an algebraic curve defined by a set of polynomials with coefficients
in a number field can be composed (with care) with projections to lower-
dimensional spaces Pn → Pn−1 until one gets a meromorphic function on
S. Using the fact that this function is itself defined on a number field, there
is a way of reducting the number of critical values to at most three.

The strength of Belyi’s Theorem can already be appreciated in the case
of genus 0 surfaces and maps having only one cell, or, equivalently, in the
case where the graph Γ is a planar tree in the Gaussian plane C. The above
construction leads in this case of a map Γ ⊂ C to a polynomial fΓ : C → C
having at most two critical values. Such a polynomial fΓ,e becomes well
defined if one marks an edge e of Γ and requires that fΓ,e sends its extremities
to 0, 1.

The study of polynomial mappings P : C → C with at most two critical
values was introduced by G. Shabat, see [95] and [96]. These polynomials
generalize Chebyshev polynomials which have only two critical values and
such that these critical points are all of Morse type. Equivalently, there is a
maximal number of such critical points.

This fact leads to an action of the absolute Galois group Gal(Q̄,Q) on
the set of isotopy classes of bicolored planar trees with marked edges. This
action is faithful and a window for observing and perhaps understanding the
absolute Galois group. See Geothendieck’s Sketch of a program [40]. We also
refer to the review made in [10] of the relevant parts of the Esquisse.

The inverse image of the interval [0, 1] by fΓ,e may look like a drawing of a
person by a child, hence the name “dessin d’enfants” given by Grothendieck
to this mathematical object whose study he promoted in [40]. For an intro-
duction to dessins d’enfants we refer to the original article [40] and to the
expositions in [38, 43, 47]. The reader interested in the relation between
dessins d’enfants and the deformation theory of Riemann surfaces may refer
to [46].

Voevodsky and Shabat in [107] considered surfaces equipped with Eu-
clidean structures with cone singularities obtained by gluing Euclidean equi-
lateral triangles along their sides. They showed that the Riemann surface
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structure underlying such a metric space, as an algebraic curve, is defined
over a number field. Cohen, Itzykson and Wolfart in [27] showed that the
same construction works using congruent hyperbolic triangles (triangles in
the Bolyai–Lobachevsky plane), instead of Euclidean.

8.2 Slalom polynomials

We shall use the notions of slalom polynomial and slalom curve and we shall
recall the definitions. For a more detailed exposition we refer to the original
article [4] and the recent book [8] by the first author.

We start with the definition of the planar tree ΓP associated with a
generic monic polynomial P of degree n + 1. This is the closure of the
union of the flowlines γ : I → C of −grad(log |P |) that satisfy the following
properties:

• P and its derivative P ′ do not vanish on the image of γ;

• the image of γ is maximal with respect to inclusion (in other words,
γ is not the restriction of a flowline defined on an interval J strictly
containing I);

• the image of γ is bounded in C, except when I is the positive real line
and where this image converges to ∞.

Consider now a rooted planar tree Γ with n + 1 edges in which one
vertex is connected to +∞ (considered as the root) by an unbounded edge.
A slalom curve Sl(Γ) of Γ is an immersed copy of the circle γ : S1 → C
having n transversal double points at the midpoints of the bounded edges
of Γ (Figure 6). The curve Sl(Γ) intersects Γ only and transversely twice at
the midpoints of the bounded edges and once at the unbounded edge such
that each bounded complementary region of the curve contains exactly one
vertex.

A slalom polynomial SlPΓ(z) for Γ is a generic monic polynomial P of
degree n+1 with |P (s)| = 1 for each zero s of P ′ such that the colored trees
ΓP and Γ are isotopic relative to +∞. Generic means in this context that
P has n+ 1 distinct roots, and that P ′ has n distinct roots.

A slalom polynomial is a generic monic polynomial P that is a slalom
polynomial for some tree ΓP .

Slalom polynomials P share the following properties with Shabat and
Chebyshev polynomials: P ′ has n = degree(P ) − 1 distinct roots and all
critical values of P have absolute value 1. Thus, the roots of P ′ are the
double points of the curve |P (z)| = 1, which is a slalom curve for the tree
ΓP .

Theorem 8.2 (Existence of slalom polynomials) Given a rooted pla-
nar tree Γ with n+1 edges as above, there exists a slalom polynomial P for
Γ.
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Proof There exists a continuous mapping ϕ : C → C that is smooth except
at the midpoints of Γ and such that

• the restriction of ϕ to the unbounded component of the complement of
Sl(Γ) is a degree n+ 1 covering map of the complement of the closed
unit disc in C;

• the restriction of ϕ to a bounded region of the complement of S(Γ) is
a diffeomorphism to the open unit disc in C that sends the vertex to
0 and half edges to radial rays;

• ϕ is holomorphic near ∞.

Figure 6: A rooted colored tree having one edge asymptotic to +∞ with a
slalom curve. The double points of this curve are the critical points of the
polynomial.

Let J be the conformal structure on C such that ϕ : (C, J) → C is
holomorphic and let U : C → (C, J) be a uniformisation of the structure J .
The composition P = ϕ ◦ U : C → C is a degree n + 1 polynomial. The
polynomial P has n+1 roots, the derivative has n roots at the points s with
U(s) being a midpoint of an edge. By adjusting the uniformisation map U
one achieves that P is monic and generic.

The flowline from +∞ ends at a root of P that we color red and which
becomes the root of EP . This red root can be changed by substituting λz to
z. This substitution turns the picture and gives 2n possibilities for attaching
the unbounded edge. Color the tree Γ with the two colors, red and blue.
Choose a disc DR that contains Γ up to a part of the real axis.

It follows that Γ and ΓP are isotopic relative to +∞, showing that all the
Cat(n) combinatorial data consisting of a rooted planar tree as above are
realized. Here Cat(n) designates the n-th Catalan number, that is, the num-
ber of distinct triangulations of a convex polygon with n+ 2 sides obtained
by adding diagonals.
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The polynomial P = PΓ is a slalom polynomial for the tree Γ.

The slalom polynomial PΓ is not unique up to holomorphic changes of
coordinates in the range and in the target. Uniqueness can be forced for
trees with maximum valence ≤ k if one imposes moreover that the critical
values are roots of unity of order depending on k. See Figure 6. For k = 3,
order four works. In Figure 6, the values 1, i,−i,−1 are the values of the
polynomial at the given points.

In the example of Figure 7, the polynomial z4+z is the slalom polynomial
of the tree D4. The Chebyshev polynomials are up to a real translation
precisely the slalom polynomials with critical values among ±1. See also [7].

Figure 7: Flowbox decomposition for P = z4 + z. The green dots are the
zeros of P ′, the saddle points of the function |P | and bifurcation points of
the vector field −grad(|P |). The zeros of P , which are the red and blue
dots, span a planar tree of Dynkin diagram D4. The flowline from +∞ (the
horizontal segment on the middle right part of the figure) ends at the triple
point of D4. The separating flowlines are marked with arrows. The flowlines
P−1(iR) are colored blue.

As in [6] one obtains a cell-decomposition of the space of monic polyno-
mials Pold of degree d and of the complement Pold \∆ of the discriminant
∆ (the set of polynomials having at least one multiple root).

Theorem 8.3 The equivalence relation ΓP ∼ ΓQ induces a stratification
with Cat(d − 1) top-dimensional strata on the spaces Pold and Pold \ ∆.
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Moreover, the top-dimensional strata are cells and have a representative by
a slalom polynomial.

For this theorem, see [7].

8.3 A stratification of the space of monic polynomials

The space of monic univariate complex polynomials Pold of degree d is a
complex affine space of dimension d. The discriminant ∆d is an important
sub-variety. A cell decomposition of Pold that induces a cell decomposition of
∆d is of interest, for instance in the study of the braid group. The following
defines an equivalence relation on Pold, whose associated equivalence classes
define a cell decomposition such that the discriminant is a union of cells, see
[6].

Define the picture Pic(P ) of a monic polynomial to be the graph Pic(P ) =
P−1(R∪ iR). Call two polynomials P,Q equivalent if the graphs Pic(P ) and
Pic(Q) are isotopic by an isotopy that preserves the asymptotes.

The picture Pic(P ) of a degree d monic polynomial is a planar forest
without terminal vertices, but with 4d edges going to ∞ asymptotic to the
rays corresponding to 4d roots of unity. The precise combinatorial character-
ization is given in [6]. The problem of showing that each possible equivalence
class is realized was solved using Riemann’s Uniformisation Theorem. The
number of top-dimensional cells is the Fuss–Catalan number 1

3d+1

(
4d
d

)
.

8.4 Rational maps, Speiser colored cell decompositions, clas-
sical knots and links.

Let f : P1(C) → P1(C) be a holomorphic map of degree d > 0. Such a map
is also called a rational map, since in the above coordinate z its expression
f(z) = P (z)

Q(z) is a ratio of two polynomials P (z) ̸= 0, Q(z) ̸= 0 of degrees

d1, d2 ≥ 0 with d = max{d1, d2}.
Let ∆(f) be the finite set of critical values of f . The restriction of f to

the complement of the set f−1(∆(f)) is a covering map of degree d. The
set f−1(∆(f)) contains the set of critical points of f . For each a ∈ P1(C),
define the defect δ(a) ≥ 0 by δ(a) = d − #f−1(a). Observe that δ(a) = 0
except for a ∈ ∆(f). The Riemann–Hurwitz formula becomes here∑

a∈∆(f)

δ(a) = 2d− 2,

as follows from computing the Euler characteristic of the domain of f ,

2 = χ(P1(C)) = dχ(P1(C))−
∑

a∈∆(f)

δ(a).
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Let β(f) = #∆(f) be the number of critical values of f . Clearly, β(f) ≤
2d− 2. Recall (§6.2) that a Speiser curve for f is an oriented simple closed
smooth curve γ in P1(C) that passes through all the critical values ∆(f).
Observe that two such curves γ, γ′ are smoothly isotopic, keeping ∆(f) fixed,
if and only if the induced cyclic order on the elements of ∆(f) agree. So
up to isotopy one has (#∆(f)− 1)! isotopy classes of curves γ through the
points of ∆(f). A Shabat polynomial or a Belyi map with three real critical
values admits up to isotopy two Speiser curves, one being P1(R) = R∪{∞}.

From a Speiser curve γ one constructs the Speiser graph as the pair
Γf,γ = (f−1(γ), f−1(∆(f))) in P1(C). The vertices are colored by the ele-
ments of the branching set ∆(f) and the edges are oriented by lifting the ori-
entation of γ. The Speiser curve γ being smooth, the curve f−1(γ) ⊂ P1(C)
is the image of the immersion ι : ∪̇kS

1 → P1(C), k ≤ d, of finitely many
copies of S1 (∪̇ denotes disjoint union). The immersion ι has no tangencies
and equi-angular multiple points at the critical points of f (see Figure 8).
Each complementary region of Pf,γ is a polygon with β(f) vertices. We
color such a polygon R by ±: by + only if the induced orientation on ∂R
agrees with the orientation of Γf,γ , in which case the colors of the vertices of
R appear in the cyclic order induced by γ. The ± coloring of the polygons
is a checkerboard coloring.

The Speiser graph Γf,γ is in fact an immersion of circles without tangen-
cies in P1(C) = S2. The immersion ι is not a generic immersion, since self-
intersection of 3 or more local branches occur. But, at all self-intersections
the local branches intersect pairwise transversely.

We recall that a divide in the sense of [3, 5] is the image of a relative
generic immersion of a finite union of copies of the unit interval (I, ∂I) in
the unit disc (D, ∂D). From a divide P , one defines a link L(P ) in S3 by

L(P ) = {(x, u) ∈ T (P ) ⊂ S3 such that ∥(x, u)∥ = 1}

where the 3-sphere S3 is seen here as the unit sphere in the tangent bundle
T (R2) of R2.

By a result of [3], if the image of the immersion defining a divide is
connected, then the associated link is fibered. The theory of links associated
with divides is closely related to singularity theory [2, 45]. In the paper [3],
the monodromy of the fibered link associated with a connected divide is
described in terms of the combinatorics of the divide.

Many constructions for divides still apply to Speiser graphs.
Let Γ̇f,γ be the set of length 1 tangent vectors to the Speiser graphΓf,γ .

Let Γ̇+
f,γ be the set of oriented length 1 tangent vectors to Γf,γ .

Recall that the 3-sphere S3 and the Lie group SU(2) are diffeomorphic
and cover by a 2 → 1 map c the space of length 1 tangent vectors to P1(C).
Hence Γ̇f,γ and Γ̇+

f,γ can be considered as subsets in P3(R) and lift to the

classical knots and links c−1(Γ̇f,γ), c
−1(Γ̇+

f,γ) in S3, which we call Speiser
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links. See Figure 8 for an example of a Speiser graph and 9 for its Speiser
link.

Figure 8: The Speiser graph Γf,γ for the Belyi map f = z3(z3+8)3

64(z3−1)3
of degree

12 and γ = R∪{∞}. The covering has three critical values, 0, 1,∞, and γ is
the Speiser curve passing through these points. The twelve regions marked
with + map to C+.

Theorem 8.4 The subsets Γ̇f,γ and Γ̇+
f,γ are links in P3(R). The lifts to S3

are classical links. Moreover, the link c−1(Γ̇f,γ) ⊂ S3 is fibered.

Proof Let θ : γ → Tγ ⊂ Tl=1P1(C) be a continuous oriented vector field of
length 1 along γ. Each component of γ \∆(f) together with the restriction
of the vector field θ lifts by c to d = degree(f) smooth arcs in Tl=1P1(C).
The dβ(f) lifted arcs are pairwise disjoint. At a critical point p of f , 2k arcs
join. The local germ of Γ̇+

f,γ at p is diffeomorphic to the germ at 0 of the

set {a ∈ C | Im(ak) = 0}. So, after a small C1 perturbation of Γ̇f,γ locally
near the critical points of f , the graph Γ̇f,γ can be deformed to a divide with
checkerboard coloring Pf,γ on S2 = P1(C). The connected components of the
complement Pf,γ are contractible and moreover Pf,γ has no self-intersection
other than double points. The construction in [3] associates the knot or
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Figure 9: The Speiser link c−1(Γ̇f,γ) for the Belyi map f = z3(z3+8)3

64(z3−1)3
of

degree 12 consisting of 6 components. Each component is a great circle on
the round S3.

link c−1(Γ̇f,γ) in Tl=1S
2 = P3(R). The fibration property as in [3] was

extended by Masaharu Ishikawa and Hironobu Naoe [49, 48] and shows that
Ṗf,γ is a fibered knot or link in P3(R) = Tl=1S

2. The same holds for its lift
c−1(Ṗf,γ) ⊂ S3 and also the link c−1(Γ̇f,γ) ⊂ S3.

The construction of the fiber surface and geometric monodromy for the
link c−1(Γ̇f,γ) ⊂ S3 as in [3] is as follows. Let Pf,γ be a small C1-deformation
of Γ̇f,γ with only double points. The links c−1(Ṗf,γ) and c

−1(Γ̇f,γ) are iso-
topic, hence equivalent as links. The main step in the construction is the
choice of a Morse function h : S2 → R having one maximum +1 in each
+-region, one minimum −1 in each −-region, and Pf,γ = h−1(0) as crit-
ical level through all saddle points. Define Fh = {Vp ∈ TpS

2 | h(p) ∈
]0, 1[, (Dh)p(Vp) = 0, ||Vp||Eucl = 1} ⊂ Tl=1S

2 = P3(R). The closure F̄h

of Fh in P3(R) is a surface with boundary spanning the link Ṗf,γ . The lift
c−1(F̄h) is a spanning surface and its interior Ff,γ a fiber surface for the link
c−1(Ṗf,γ).

On the surface F appears a system of simple closed curves: for each
maximum p of h the circle of length 1 tangent vectors in the kernel of (Dh)p,
each gradient line of h that connects a maximum to a minimum through a
saddle point of h lifts to a simple closed curve on F , and to each minimum
of h corresponds a simple closed curve built with pieces from preceding ones,
see [3]. The monodromy is a composition of the positive Dehn twists along
these curves.
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Figure 10: The divide Γf,γ for the Belyi map f = (z2+30
√
8z+264)4

216(z−
√
8)4(z+

√
8)

of degree

8 and γ = R ∪ {∞}. The black encircled region in the picture on the left is
zoom enlarged and translated in the picture on the right.

The examples of Belyi maps are taken from the papers of K. Filom [34]
and K. Filom and A. Kamalinejad [35] in which dessins on modular curves
are computed, studied and used. In the first example the divide is the union
of Moebius circles, which is not always the case. More complex components
can appear as the second example shows.

The link Lf,γ of a rational Belyi map f : P1(C) → P1(C) where the
Speiser curve γ = R ∪ {∞} can be given as follows explicitly as the closure
in S3 ⊂ C2 of the set

{ λ√
1 + bb̄

(1, b) | b ∈ C, f(b) ∈ R \ {0, 1,∞}, λ2 = f ′(b)/|f ′(b)|}

which is the union of 12d smooth arcs, d = degree(f).
The tangential lift of an oriented Moebius circle m on P1(C) to S3 =

SU(2) is an oriented great circle on S3. Indeed, by the isometric SU(2)
action, movem to be the parametrized curve s ∈ [0, 2π] 7→ m(s) = r cos(s)+
ri sin(s) ∈ C ∪ {∞}. The curve M(s) on S3 given by

s ∈ [0, 4π] 7→ 1

r2 + 1
(− sin(s/2)+ i cos(s/2),−r sin(s/2)+ri cos(s/2)) ∈ C2

is its lift. From M ′′(s) = −1/4
r2+1

M(s) follows the claim.

Let D1, D2 be closed disks in P1(C) having as oriented boundary the
Moebius circles m1,m2. If D1, D2 are complementary, the circles differ only
by orientation as do their lifts. If the boundaries ofD1, D2 touch tangentially
in one point, the lifts M1,M2 intersect in two points. If the intersection
D1 ∩D2 is open, then the lifts M1,M2 are disjoint great circles.
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Orient S3 = SU(2) as the boundary of the unit ball in C2. Assume
that M1,M2 are disjoint, so that the boundaries of D1, D2 are disjoint or
meet in two points. The linking number of the lifts M1,M2 of the oriented
boundaries m1,m2 is given by LkS3(M1,M2) = 1−#m1 ∩m2.

In our example above with 6 great circles as lifts, all 15 pairwise linking
numbers are equal to −1.
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no. 1, p. 5-23.

[6] N. A’Campo, Signatures of polynomials, in: In the tradition of
Thurston: Geometry and Topology (K. Ohshika and A. Papadopou-
los, ed.), Springer Verlag, 2020, p. 527-543.

[7] N. A’Campo, Flowbox decomposition for gradients of univariate poly-
nomials, billiards, treelike configurations of vanishing cycles for An

curve singularities and geometric cluster monodromy group, EMS Surv.
Math. Sci. 9, No. 2, 389-414 (2022).

63



[8] N. A’Campo, Topological, differential and conformal geometry of sur-
faces, Universitext, Springer, 2021.

[9] N. A’Campo, A. Papadopoulos, Notes on hyperbolic geometry, in:
Strasbourg Master class on Geometry (ed. A. Papadopoulos), pp. 1-
182, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 18,
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Comment. Math. Helv. 3 (1931), no. 1, 173-177.

[13] L. V. Ahlfors, Quelques propriétés des surfaces de Riemann correspon-
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Norm. Supér. (4) 43 (2010), No. 2, 357-364.

[22] J. Blanc, S. Zimmermann, Susanna, Topological simplicity of the Cre-
mona groups, Amer. J. Math. 140 (2018), no. 5, 1297-1309.

[23] P. L. Bowers, Combinatorics encoding geometry: The legacy of Bill
Thurston in the story of one theorem. In In the tradition of Thurston
(V. Alberge, K. Ohshika and A. Papadopoulos, eds.), Springer Verlag,
2020, p. 173-239.
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tion. In Proceedings of the International Congress of Mathematicians,
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