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A new metric for the comparison of permittivity
models in terahertz time-domain spectroscopy

Melanie Lavancier, Nabil Vindas-Yassine, Juliette Vlieghe, Theo Hannotte, Jean-François Lampin, François
Orieux, and Romain Peretti

Abstract—We present a robust method, as well as a new metric,
for the comparison of permittivity models in terahertz time-
domain spectroscopy (THz-TDS). In this work, we perform an ex-
tensive noise analysis of a THz-TDS system, we remove and model
the unwanted deterministic noises and implement them into our
fitting process. This is done using our open-source software,
Fit@TDS, available at : https://github.com/THzbiophotonics/Fit-
TDS. This work is the first step towards the derivation of
uncertainties, and therefore the use of error bars. We hope that
this will lead to performing analytical analysis with THz-TDS,
as results obtained from different setups will be comparable.

Finally, we apply this protocol to the study of a α-lactose
monohydrate pellet in order to give more insight on the molecular
dynamics behind the absorption peaks. The comparison with
simulation results is made easier thanks to the probabilities
derived from the metric.

Index Terms—Electromagnetic modeling, refractive index,
spectroscopy, terahertz (THz) materials, terahertz metamaterials.

I. INTRODUCTION

THZ THz spectroscopy of materials, ranging from 0.1 to
10 THz (i.e. 3 to 333 cm−1, i.e. 0.1 to 10 ps), witnesses

many chemicophysical processes in solids, liquids and gases
[1], [2]. In solids, examples include dynamics of charge carrier
in doped semiconductors [3]–[5] and 2D materials [6], probing
the gap of superconductors [7]–[10], and interrogating the
phonon dynamics in molecular crystals [11]. In solutions,
molecular orientation [12], [13], the dynamics of the hydrogen
bonds networks [14] and their modification by solutes [15]
are studied. In the gas phase [16], this range is even more
selective than the fingerprint region [17] and is therefore used
to monitor chemical reactions [18].

Among THz spectroscopy techniques, terahertz time-
domain spectroscopy (THz-TDS) is well-established and offers
an extremely broad range and high dynamic range, making it
widely used in laboratories whether it be with commercial
or research setups. The measurements are made in the time-
domain, which provides information on both the amplitude and
the phase of the terahertz electric field, enabling the retrieval
of the complex dielectric spectrum. To get further chemico-
physical information, the experimental curves are fitted using
permittivity models together with wave propagation in layers
[19]. The parameters of these models give quantitative insight
into the motion and the state of the charges inside the sample,
and on the signature of a compound.

Today, there is no consensus on the fitting procedure to
follow in order to retrieve those parameters. Most of the fits are
done in the frequency domain using a least-square algorithm

on the retrieved permittivity curves from experimental time-
traces [20]–[25]. However, THz-TDS outputs a signal as
a function of time, which means that a Fourier transform
has to be applied for this fitting method. In addition to
complicated phase unwrapping, and to losing the phase for
strong absorption [26], this produces artifact-noises that can
degrade the quality of the measurement and yield misleading
results. In addition, while fitting in the frequency domain it
is very difficult to weight the function to minimize using the
signal to noise ratio (or uncertainties), therefore one cannot
compare quantitatively two models for the same material or
extract the uncertainty or error bars of the parameters of
the model. The results of this work have the potential to
unravel terahertz spectroscopy analytical full potential. In the
future, our method could be used to improve the accuracy
and precision of terahertz spectroscopy measurements, derive
errors bars and to address some of the challenges remaining in
the application of THz spectroscopy to biology and medicine
[27].

Background description

Fit@TDS is an open source software based on time-domain
fitting that has several advantages compared to other fitting
methods [28]. It provides a more precise measurement of
the thickness of the material, a higher precision on the re-
fractive index retrieved, a better interpretation of the results
and experiments, and a reliable and consistent retrieval of
material parameters using permittivity models. The fitting
process needs only two pieces of information:

1) A set of data containing the time-traces with and without
sample (Esample(t) and Eref (t)).

2) A model depending on a set of parameters pi depicting
how the sample transforms the reference pulse into the
modeled one (Emodel{pi}(t)).

This modeled pulse is defined as the convolution between
the transfer function of the experiment and the time trace of
the reference:

Emodel{pi}(t) = T{pi}(t) ∗ Eref (t) (1)

With T{pi} the transfer function of the experiment calculated
with:

T̃{pi}(ω) = ta/sts/a
exp (−jñ{pi}ωd/c)

1 + ra/srs/a exp (−2jñ{pi}ωd/c)
(2)

Where ta/s and ts/a correspond to the transmission co-
efficients (a meaning ”air” and s meaning ”sample”), ra/s
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and rs/a correspond to the reflection coefficients, ñ{pi} is
the modeled complex refractive index of the sample and d its
thickness.

Then, an optimization algorithm is used in order to mini-
mize the following error function:

t=tmax∑
t=0

(Emodel{pi}(t)− Esample(t))
2dt (3)

The result given by this function changes according to
the values that the model parameters take. The goal of the
optimization algorithm is to find the parameters that minimize
it using a least-square algorithm, which is widely used in THz-
TDS data processing. However, as for other fitting methods,
the permittivity model used for the fit is an ideal noiseless
one. Indeed, the common approximation made is that the
experimental noise is a Gaussian white noise, which won’t
impact the fit. Thus, when the signal includes any noise
correlated to the signal, the algorithm mistakenly incorporates
it into the analysis, potentially confusing it with genuine signal
attributes. As a result, such algorithm struggles to distinguish
between accurate and inaccurate models, as explained in [29],
[30]. This becomes a problem when analyzing all sorts of
samples. For example, the model chosen in the case of gases
could change the shape of the absorption lines in the spectrum,
leading to different interpretations as the broadening can be
caused by collisions or by the Doppler effect. In liquids, and
particularly for water, the question is even more important
as there is no consensus on the correct model in the THz
range. Several models are discussed, hence different physical
interpretations, so it is necessary to quantitatively interpret the
difference and better understand the pros and cons of each
model.

Moreover, today, one of the main challenges of THz-TDS
is to answer analytical problems [19]. Yet, if the derivation
of error bars for the refractive indices is provided in several
software [31], the methodology is not provided in the docu-
mentation. Therefore, such error bars only rarely appear in the
published papers from the THz community on these topics.
This prevents us from fully addressing analytical problems
and therefore spreading the technique. This starts by the fact
that, so far, the experimental noise is not correctly taken into
account during the fitting procedure as raised by [29]. We will
start by presenting their main results that provide a method to
overcome this issue, with the hypothesis that the noise has to
be non-deterministic to be applied.

So, to take noise into account during the fitting process,
we need to enter new information. When the input noise
is convoluted by the transfer function (see equation 1), its
contribution is found in all of the Fabry-Perot echoes in the
sample time-trace. This is used by the maximum likelihood
estimator method explained in [29]. For this method, there
is an additional step of creating a noise correlation matrix
that contains information about the noise both in the reference
and sample time-traces including also information about the
correlations. The creation of the first estimator for the noise
correlation matrix is explained in the appendix section.

Now, it is possible to use a least-square algorithm to
minimize an error function taking into account this noise

correlation matrix (NCM) as all of the information on the
noise is present. This new error function is [29]:

Q(pi) = [r(pi)]
T r(pi) (4)

Where

r(pi) = [Mnoise(pi)]
− 1

2 [(Emodel(pi)−Esample)] (5)

and Mnoise(pi) is the noise correlation matrix, Emodel(pi) is
the vector containing the fitted time-trace data points, Esample

is the vector containing the experimental sample time-trace
data points.

With this error function, the software is only fitting the data,
not the artifact-noises. A further advantage to compare two
models between one another is the ability to use the Akaike
criterion [29]:

AIC(pi) = Q(pi) + 2Npi (6)

where Npi is the number of free parameters in the model.
The smaller the result, the better the model. Moreover, this
way, the optimal model is the one that has the best fit while
not being over-parameterized. It is also useful to derive a
probability from the criteria in order to have a quantitative
comparison, where exp ((AICmin −AICi)/2) is proportional
to the probability that the ith model minimizes the quantity of
information. This equation is the last one from [29], and has
certain limitations. Indeed, their method relies on a Monte
Carlo study that cannot be applied on real setups using a
mechanical delay line. We would have to record a large num-
ber of accumulated time-traces consecutively (their example
shows in their case of low time sample numbers 50 time-
traces, but one needs to remember that it requires more time
traces than the number of points in it for the covariance matrix
to be invertible), which is impossible for stability reasons
on mechanical systems. Moreover, their transfer function is
equal to 1, meaning that they don’t have a sample inside
their simulated experiment, they only compare two reference
time-traces. Finally, they suppose that experimental noise is
non-deterministic and artifact free, which is not true for real
samples, as we will see in the rest of the article.

Hence, in this article, we are going to go further as we will
adapt the method to a real THz-TDS setup and experiment
and demonstrate that we now have a new metric to compare
models by deriving their probability. It is important to notice
that, to build the noise correlation matrix, the deterministic
part of the noise has to be either modeled or removed. This
means that we will start by doing an extensive noise analysis
of our setup to remove deterministic noises. Then, we will
implement the new error function in our fit@TDS software
as well as the Akaike criterion. Our errors will be quantified
and can be compared not only within our own setup but also
across different TDS setups. Finally, as a validation example,
we will use the improved software to analyze a lactose sample.
This is the ”perfect” sample because of its use as a benchmark
for THz-TDS setups, its availability and its complexity. Our
goal is to give new capacities to the THz-TDS and to improve
the quality of the retrieved information, such as being able to
know if a spectral line is homogeneously or inhomogeneously
broadened.
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Fig. 1. THz-TDS setup and its sources of experimental noise.

II. MOST OF THE NOISE IS DETERMINISTIC

We begin by clarifying the terminology used throughout
the manuscript to describe various types of noise encountered
in time-domain terahertz spectroscopy. In line with the gen-
eral definition by Tuzlukov [32], we consider noise as any
unwanted modification that the signal undergoes during cap-
ture, storage, transmission, processing, or conversion. Conse-
quently, anything beyond the authentic signal itself falls under
the classification of noise. Still, it’s essential to recognize that
not all noise sources are equivalent. Among the different types
of noise, we define:

• Artifact-noise: This category encompasses misleading
disturbances originating directly from the experi-
mental methodology employed. Specifically, in our
experiments, artifact noise manifests as correlated
feature, even in the absence of a terahertz signal at
the detector.

• Deterministic noise: This noise, including the artifact-
noise, displays consistent, repeatable behavior. When
any noise has a non-zero average value, we refer to
that component as the deterministic part of this noise.

• White noise: This ideal noise type exhibits a flat fre-
quency spectrum up to a certain frequency exceeding
the signal’s highest frequency.

• Correlated noise (Non-white noise): This type deviates
from the flat characteristic of white noise, indicating
correlations between its frequency components.

Experimental noise is the combination of different types
of noises, such as dark noise or delay noise. The causes are
numerous : fluctuations of the femtosecond laser intensity,
vibrations in the delay line, noise in the bias of the photo-
conductive antennas, reflections within components, noise in
the trans-impedance amplifier, or influence of the temperature
on the optical fibers as illustrated on figure 1. The sample
can also be seen as a source of noise, or more generally non-
reproducibility, as it may differ from the model due to its
inhomogeneity, its scattering properties, or simply because of
the temperature variations of its environment during the exper-
iments. Uncorrelated Gaussian white noises can be minimized
by increasing the number of averaging when data is collected

but averaging during a long time can lead to other artifact-
noises or drifts due to the variations in the environment so
that a compromise has to be made. Moreover, other noises
are correlated to the signal or determined by the signal and
thus independent from the averaging and cannot be minimized
by accumulation during the experiment but should instead be
modeled.

There are many different contributing noises in our ex-
periments. While some noises in our experiments may be
uncorrelated and unpredictable, it’s essential to analyze each
type individually before assuming this applies to all. This
approximation is valid for noises like thermal noise, Johnson
noise, Shot noise, amplification noise, or laser noise because,
regardless of their specific characteristics, the errors in THz-
TDS experiments consistently exceed their individual contri-
butions when appropriately averaged. However, other noises
contribute more to the experimental noise and these are the
ones we are going to analyze here to make sure that they
are non-deterministic and that we will be able to apply the
method from [29]. It is important to keep in mind that the
noise profiles are extremely dependent on the setup.

• Dark noise: We call ”dark noise” the random signal that
is generated by the detector and amplifier. Even when no
THz (or IR) pulse is shone onto the detector, some charge
carriers exist in the semiconductor and hole-electron pairs
can be created, generating a small current leading to this
dark noise. This noise is not deterministic and its ampli-
tude decreases as we increase the averaging number. In-
deed, its noise spectral density goes from 5.10−6µV

√
Hz

for 50 averages to 5.10−7µV
√
Hz for 5000 averages,

which correspond to 4.10−5µV
√
Hz∗

√
acc. As expected

it does not depend on the time window scanned. In
conclusion, it influences the fitting process, as it will be
present in the Fabry-Perot echoes, but does not invalidate
the fit methodology because of its amplitude and the fact
that it is non-deterministic and uncorrelated. Therefore,
it complies with the hypothesis.

• THz-dark noise: By analogy with the definition of dark
noise, we call ”THz-dark noise” the signal recorded by
the THz-TDS in the absence of detection of the THz
pulse. The THz-dark noise A corresponds to the laser
being shined on the receiving antenna but not on the
emitting antenna, and the THz-dark noise B to the laser
being shined on both antennas but the THz beam is
blocked by an absorber and cannot reach the receiver.
As we can see in figure 2.b, there are two components to
this noise: a statistical noise varying when we replicate
the experiment and an artifact-noise that is reproducible.
The statistical noise is similar to the dark noise but with a
higher amplitude. The artifact-noise depends on time (e.g.
on the delay line position) and its amplitude contribution
is most important at low frequencies, below 200 GHz,
that is below the frequency limit of the system. Hence, it
is of utmost importance to remove this artifact-noise, as
it does not go through the sample, otherwise it is easy to
mistake it for real physical features when it is added to
the pulse signal. A way to remove this noise would be to
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Fig. 2. (a) Dark noise (no optical excitation on both photo-conductive
antennas) recorded with two different averages, its contribution decreases
when the averaging increases, independently of the time window. (b) THz-
dark noise (no optical excitation on the emitter) recorded with two different
averages, its contribution decreases when the averaging increases. However,
it is a deterministic signal that depends on the chosen time window. (c) The
two types of THz-dark noises, in blue without excitation on the emitter, in
pink with optical excitation on the emitter and an absorber between the two
antennas. (d) Remaining noise after removing the contributions of the THz-
dark noise and fixing the delay. A zoom between −5 ps and 5 ps is provided.

move the delay line to the emitter arm of the THz-TDS
instead of the receiver one. However since we address
the issue of noise for the broad use of THz-TDS we
propose a way to deal with this noise without touching
the system using signal processing. We implemented a
high-pass filter into fit@TDS in order to get rid of the
unwanted part of the data. This filter is a smooth step
function, with the following formula:

y[n] = 0.5 + 0.5 tanh (
(f [n]− fcut)α

fcut
) (7)

Where f is the frequency, fcut the cut-off frequency
(200 GHz in our case), and α the sharpness of the
filter, set at 10 here. This can be adjusted to each setup
according to the company’s claims considering the fre-
quency range. With a cut-off frequency of 200 GHz, the
constant component of the noise is no longer there and the
remaining THz-dark noise signal, have, after this filtering,
a contribution of the same order of magnitude as the
dark noise. In conclusion, this perturbation is no longer
deterministic and thus complies with the hypothesis after
the filtering.

• Delay noise : When recording the same time trace
repeatedly, it appears that there is a small delay between
each pulse of the order of a few femtoseconds, smaller
than the pulse sampling time. We attributed it to a
drift of the temperature in the optical fibers. Then, the
measured delay corresponds to the average of the time
drift during the time the spectrum was recorded. This
small delay can lead to imprecision when retrieving the
refractive index and/or the thickness of a sample. In order
to lessen its contribution to the experimental noise, we
implemented a feature in fit@TDS that allows the user to
readjust two pulses so that there is no more delay between
them. However, this feature should be used carefully to
avoid overfitting. Typically, Fabry Perrot echoes should
be present in the time trace to use it.

The other sources of noise cannot be recorded separately.
The only possibility is to find out what is left of the noise when
all of the previous ones have been fixed. For this evaluation,
we take 5 measurements of a reference, that is with both
antennas excited by the femtosecond laser and no absorber
inside the setup. Then, we use the high pass filter with a 200
GHz frequency cut-off and readjust the average delay between
the pulses. Finally, we subtract each of the 5 signals to the
mean. Figure 2.d shows that there is still a small noise left,
which is not deterministic but correlated to the signal.

This noise corresponds to a sum of contributions coming
from the other sources of noise in the setup, such as delay drift
(we only adjusted the mean time drift), shot noise and laser
power fluctuations. This combination of noises is correlated
to the signal as seen on figure 3. It means that noise at
one particular time contains information about the noise at
neighboring times. We use a phenomenological model to fit
this leftover noise in order to remove its influence on the data.

Once this final step has been done, we can see on figure 3,
that most of the noise has been eliminated. There is only a
small contribution left. We found that this signal corresponds
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Fig. 3. Experimental noise recorded on our Menlosystems THz-TDS setup
after having removed the contribution from other sources of noise and the
term proportional to the signal derivative. A zoom between −5 ps and 5 ps
is also provided.

to the flickered noise, which is non-deterministic. To use the
method proposed by [29], based on a Monte Carlo algorithm,
ones needs to know the evolution of noise variance as a
function of time. This corresponds to the envelope of this final
noise. Therefore, the corresponding noise correlation matrice
can be retrieved to use the new error function during the fitting
process. We insist on the fact that this study allowed us to
remove unwanted correlated noise, but it is a first approach.
Indeed, to stay close to the experiment and avoid other artifact-
noises due to long measurement times, we only took five
measurements, and there is also improvement to be done on
our acquisition software that does not allow to record the
spectra one by one at this moment (which complicates the
correction of delay drifts). Moreover, we will work in the
future on a cleaner modeling of these noises, namely on the
leftover noise fitted with a phenomenological model. Here,
our main ambition is to clean the THz-TDS data in order to
improve the extraction of model parameters.

III. THE SHAPES OF THE LACTOSE ABSORPTION PEAKS

The monohydrate-crystallized form of lactose, called α-
lactose monohydrate, is widely used in THz-TDS thanks to its
easily recognizable absorption peaks at 0.53, 1.19 and 1.37
THz. Moreover, due to its availability and low cost, lactose
samples are a ”textbook case”, and often used to test THz
spectroscopy equipment [33], serve as a ”first-try” sample in
minor-volume detection techniques [28], [34], and are used
as a mixture compound in approving methods for content
quantification [35]. Despite the abundance of literature on the
subject, lactose remains a challenging material for analysis
due to its polymorphic nature, which complicates accurate
simulation of this molecular crystal. Theoretical explanations
of lactose’s terahertz (THz) spectrum are notably scarce,
relying primarily on gas-phase Density Functional Theory
(DFT) calculations that focus on individual lactose molecules
rather than crystalline structures, thus overlooking collective

Fig. 4. Time-trace and spectrum of the reference (i.e. the THz pulse goes
through the holder without pellet inside) and the sample. The time-trace
measurement was actually made on a larger time range (between −80 and
120 ps but it is zoomed in for visibility.

vibrations. Recent investigations [36] have contributed to this
area by comparing DFT simulations of crystal structures across
various lactose polymorphs, aligning them with experimental
data using boundary periodic conditions [37]. However, an
overlooked aspect is that lactose samples, often in compressed
powder form, introduce defects and a degree of disorder that
warrants further study.

Experimental section

The lactose powder (α-lactose monohydrate) was purchased
from Sigma-Aldrich Co. Ltd. (≥ 99.9% total α-lactose basis
including less than 4% β-lactose) and was pressed into a pellet
(there was no dilution) with a 13mm diameter and 600 µm
thickness. The measurement was made with a commercial
Terasmart setup by Menlosystems, shown in figure 1, placed
inside a nitrogen-purged box. The laser frequency repetition
is 100MHz. To the two collimating lenses with a 50mm
focal length we added two focusing lenses with the same
focal length since the diameter of the pellet is smaller than
the diameter of the THz collimated beam. The sample was
placed in the middle of the setup, held inside a home-made
metallic holder. The reference was taken with the same holder
without any pellet inside. In order to build the noise correlation
matrices, we took two consecutive measurements in both
cases. A time trace of the reference and one of the sample
and their corresponding spectra are shown in figure 4. The
oscillations we see on the lactose time trace are due to the
Fabry-Perot echoes inside the pellet as well as the absorption,
visible under the form of a peak on the spectrum.
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The fitting process

The first step after having acquired the data is to do the
pre-processing explained in the previous section. Since we
have two consecutive measurements of the reference and
two consecutive measurements of the sample, we infer the
envelope of the remaining noise for each set by subtracting
the two and applying the high-pass filter, correcting the delay
and fixing the noise proportional to the signal and its second
derivative. From the two signals left (one for the reference
and one for the sample), we build a noise correlation matrix
(NCM) following the protocol explained in [38] and in the
appendix section. This NCM will then be used as input in
fit@TDS during the fitting process.

In the literature, the lactose absorption peaks are usually
modeled by a single Lorentz oscillator. However, since there
are different dynamics behind each peak, there is no reason
why they should all have the same shape. Therefore, our goal
is to use our new metric to compare Lorentz and Voigt models
for each peak, which will give us more information on the
microscopic structure of the sample. Indeed, an ideal crystal
would have Lorentz absorption peaks, but defects inside the
structure broaden the peaks, creating the need for a Voigt
model. Their formula are given in equations 8 and 9.

χLorentz(ω) =
∆ϵω2

0

ω2
0 − ω2 + jωγ

(8)

χV oigt(ω) =
1√
2πσ

∫ ∞

−∞

exp (−(ω−ω′)2

2σ2 )∆ϵω2
0

ω′2
0 − ω′2 + jω′γ

dω′ (9)

= χLorentz(ω) ∗
1√
2πσ

exp (
−ω2

2σ2
) (10)

Where ∆ϵ is the strength of the oscillator, ω0 is the center fre-
quency of the Lorentz oscillator, γ is the width of the Lorentz
oscillator and σ is the width of the Gaussian broadening.

We fitted our data peak by peak, from the ones that have the
most energy to the ones that have less energy. As explained
previously, we used the Akaike criterion to determine which
model to choose at every step. Indeed, if the value of the
criterion alone does not give much indication, it allows us
to compare models : a lower Akaike criterion means a better
suited model. Moreover, it also includes a penalty term that is
an increasing function of the number of estimated parameters.
The penalty discourages overfitting, which is desired because
increasing the number of parameters in the model almost
always improves the goodness of the fit. The first step of
the fitting process is to run a fit without any model in order
to have a base criterion. If the fit was perfect, the Akaike
criterion would be equal to the number of points (in our case
6.0e+ 03). When no model is entered (only a constant value
for the permittivity and a value for the thickness of the pellet),
the fit is far from perfect and the value of the criterion is
6.1e+08. Now, our goal is to reduce this criterion and, more
importantly, to find the model that reduces it the most. We
found that there was a need to fit the broad high frequency
losses first. Thus, we decided to fit it phenomenologically
with a continuum model (see equation 11), which reduced

the Akaike criterion to 2.5e + 08. The continuum model
compensates for all absorption losses since no peaks have been
added yet, but its parameters will adjust as the fitting process
progresses.

χ(ν) = χLorentz(ν)∗

[1− (1− ν

ν1
− nu2

2ν21
). exp(− ν

ν1
)].

H(ν − ν0, 1) (11)

Where ν is the frequency, ν1 = k
h , h is Planck constant, k is a

continuum constant, and H is the Heaviside function, meaning
that H(ν − ν0, 1) = 1 when ν ≥ ν0.

Now, we can focus on the two main absorption peaks of
lactose. In table I we showcase the results for the peaks that
absorb the most, which are located at 0.53 and 1.37 THz. In
all cases, the criterion has been reduced significantly, which
proves the need to fit these two absorption peaks. The two
bottom configurations are the ones that possess the lowest
Akaike results, which means that they are the best suited
models (between the ones that we have tested). However, we
ended up choosing the Lorentz model for the second peak
because of the fact that the width of the Gaussian in the Voigt
model is really small (0.1 GHz) thus negligible considering
the frequency resolution (5 GHz).

The parameters of the continuum are now: ∆ϵ = 0.588,
ω0 = 3.389 THz, γ = 2.207 THz. The next steps are to
add absorption peaks one by one until the criterion does not
decrease anymore.

A. The final fit

To continue taking the experimental noise into account, it is
important to keep in mind that the delay noise and the leftover
noise still have to be modelled. During the pre-processing
of the data, we only fixed them for the two consecutive
measurements of the reference, and then of the sample. What
we correct is the average value of the drift between two
measurements, which means that if we look at two different
measurements there is no reason why this value should be
the same. As a result, we have to incorporate it in our fit as
well. However, if we add these parameters too soon in the
fitting process, they tend to compensate other losses. Hence,
it is important to follow the magnitude of the Akaike criterion.
Each feature should be added in decreasing magnitude order.

After having fitted the two main absorption peaks as well
as the high frequency absorption, according to the Akaike
criterion, the noise terms can be added to the fitting process.
Finally, due to theoretical considerations [36], we decided to
replace the Lorentz model for the 1.37 THz absorption peak by
a doublet (which was observed in DFT simulations), as well as
the 1.8 THz peak and fitted them. The probability derived from
the Akaike criteria for models with and without the doublet
confirm that the model without doublet is less probable than
the one with it.

The final model parameters are given in table II. The final
Akaike criterion achieved is 2.0e+06, which is strongly lower
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TABLE I
THE OPTIMIZED PARAMETERS FOR THE POSSIBLE MODELS FOR THE FIRST TWO ABSORPTION PEAKS OF LACTOSE.

Model ϵ∞ ∆ϵ ω0 γ σ Akaike criterion Relative probability
(THz) (GHz) (GHz)

1st peak: Lorentz 2.614 0.050 0.530 25.20 6.3e+ 06 10−2.0e4

2nd peak: Lorentz 0.029 1.370 47.52
1st peak: Lorentz 2.616 0.050 0.530 25.20 6.3e+ 06 10−2.0e4

2nd peak: Voigt 0.029 1.370 47.50 9.246
1st peak: Voigt 2.611 0.049 0.530 23.32 3.820 6.2e+ 06 1

2nd peak: Lorentz 0.029 1.370 47.36
1st peak: Voigt 2.611 0.049 0.530 23.32 3.820 6.2e+ 06 10−0.5

2nd peak: Voigt 0.029 1.370 47.36 0.1

TABLE II
THE OPTIMIZED MODEL PARAMETERS OF LACTOSE. OTHER RETRIEVED INFORMATION IS: ϵ∞ = 2.739 ; THICKNESS OF THE PELLET IS 599.5µm
(COHERENT WITH THE MEASURED ONE); AVERAGE DELAY IS −17.5 FS ; COEFFICIENTS OF THE NOISE PROPORTIONAL TO THE SIGNAL AND ITS

DERIVATIVES ARE a = 3.393e− 05 AND b = 6.944e− 04 ; FINAL AKAIKE CRITERION IS 2.028e+ 06.

Feature Model ∆ϵ ω0 γ σ
(THz) (GHz) (GHz)

1st peak Voigt 0.046 0.531 23.17 4.280

3rd peak Voigt 3.822e− 03 1.195 43.88 0.837

2nd peak Doublet(Voigt) 3.839e− 03 1.264 316.0 3.670
0.029 1.370 46.56 10.47

4th peak Doublet (Voigt) 9.764e− 06 1.767 1.138e− 03 695.5
5.379e− 03 1.818 104.97 6.362

5th peak Doublet(Voigt) 5.962e− 03 2.527 10.68 49.28
0.067 2.594 51.05e− 07 1.417e+ 03

6th peak Voigt 0.085 2.901 0.274 889.2

7th peak Voigt 0.119 3.409 44.04 475.7
High frequency absorption Continuum 0.184 0.258 5.460

than the base criterion. However, we have not yet reached a
”perfect” fit, and it could certainly be improved by a better
modeling of the noise and a more accurate model for the high
frequency losses. Moreover, we do not take into account the
scattering or the fact that the incident beam is not perfectly
perpendicular to the studied sample. Finally, the fabrication
of the pellet itself has an impact on the measured data and
thus the model, because of the metamictisation due to the
applied pressure for instance. Therefore, both the modeling
and the experiment could be improved to lower the Akaike
criterion. Still, the results obtained match the data available in
the literature [39], [40]. Indeed, [39] find that the peaks are
located at 0.54THz, 1.20THz, 1.38THz, 1.82THz, 2.54THz,
2.87THz, and 3.29THz.

The fitted spectrum, as well as the real and imaginary parts
of the refractive index are shown in figure 5. Above 2.6 THz,
the fitted curve strays from the experimental data, which is
expected since they become noisier. Moreover, the absorption
peaks are wider, which can mean that the Lorentz and Voigt
model do not describe the dynamics correctly any more and
another model may be more appropriate. With more input from
simulations we would be able to adjust this part of the fit.

The primary objective of this study was to demonstrate
the capacity of our method to extract physical parameters
using models capable of accommodating variations in shape.
Consequently, we chose to assess the models individually,
refraining from conducting direct statistical comparisons be-
tween them. It is worth noting that our current research
represents an initial phase in the development of our model,
and the distinctions drawn within this paper should not be

regarded as definitive. In future investigations, we anticipate
conducting direct statistical comparisons between the models
to ascertain whether the observed disparities hold statistical
significance, thereby confirming that these differences are not
merely the result of random chance.

IV. CONCLUSION

Time-domain fitting, in addition to being closer to the
experiment, makes the noise evaluation and standard deviation
evaluation easier and therefore a more practical way to use the
reliable method proposed in [29]. However, to analyze data
even more rigorously in THz-TDS, taking non-Gaussian noise
and artifact-noises into account during the fitting process is
of utmost importance. Hence, we have to have an extensive
knowledge of the noise arising from the setup in order to
build noise correlation matrices. By taking into account this
additional information in the pre-processing of the data as
well as during the fitting process, we ensure that the retrieved
permittivity models describe accurately the analyzed sample.
Moreover, by introducing the Akaike criterion, we are now
able to derive the relative probability of the models accuracy
and therefore it is possible to compare them quantitatively.
Furthermore, we are able to use this metric to perform a better
fit a set of data, or even to compare results from different
setups.

Still, this first approach on the noise analysis of a THz sys-
tem raises new questions, especially on the presence and origin
of the leftover noise. It is now fitted with a phenomenological
model and has to be investigated further. In the future, more
measurements should be taken using an automated process
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Fig. 5. Results of the fitting process, illustrating the parameters retrieved
in table II. A) Reference (in black), experimental lactose sample (in pink),
and fitted lactose sample (in light blue dots) time traces. In the inset is the
residual error of the fit. B) :Reference (in black), experimental lactose sample
(in pink), and fitted lactose sample (in blue dots) spectra. The number of the
absorption peaks correspond to the parameters given in table II. C) Refractive
index retrieved from experimental data and from the fitted data. D) Extinction
coefficient retrieved from experimental data and from the fitted data.

independent from any averaging done by the constructors’
software. Moreover, thanks to the implementation of the
covariance matrix and the precision matrix, more elaborate
noise estimators will be implemented.

Here, the application of this first method to the analysis of
a α-lactose monohydrate pellet gave insight on the molecular
dynamics behind the absorption peaks. The comparison with
simulation results, namely regarding the presence of the dou-
blet, is also made easier thanks to the probabilities derived
from the Akaike criterion. This shows the usefulness of this
new metric and encourages us to use the same method for
other complex samples. We hope that this study, in the spirit
of several other recent ones [19], [41], is one of the first steps
to give new capacities to THz-TDS, and will help improve the
quality of the retrieved information as it will help in setting
the error bars. Finally, we provide the open-source fit@TDS
software at : https://github.com/THzbiophotonics/Fit-TDS.

APPENDIX
CREATING THE NOISE CONVOLUTION MATRICES

After the pre-processing of the data, since we have two
consecutive measurements for the reference and two consec-
utive measurements of the sample, we retrieve the remaining
noise for each set by subtracting the two and applying the
high-pass filter, correcting the delay and fitting with the
phenomenological model.

The next step consists in retrieving the envelopes of the
remaining signals (from the reference and sample). The part
left inside these envelopes is a Gaussian noise, thus all the
information is contained in the envelope. Then, we take the
square of this envelope. Finally, we created a Matlab program
with the following steps:

1) With the two time-traces (from the reference and the
sample), we start by calculating the experimental trans-
fer function of the experiment : TF (ω) = Elactose(ω)

Eref (ω)]

2) We begin a Monte Carlo study, meaning that we repeat
the following steps a large number of times:

• We multiply each noise envelope by a random
vector, to obtain σnoise,ref (t) and σnoise,sample(t).

• For the reference, we apply the transfer func-
tion to this result in the frequency domain, and
then go back to time domain: σnoise,TFref (t) =
FT−1[FT [σnoise,ref (t)].TF (ω)] (where FT is
short for Fourier Transform). This indicates the
contribution of the reference noise in the Fabry
Perot echoes as well as in the principal pulse.

• We multiply each result by its trans-
pose in order to obtain a matrix:
Uref = σnoise,TFref (t).σ

T
noise,TFref (t) and

Usample = σnoise,sample(t).σ
T
noise,sample(t)

3) Once the Monte Carlo study over, we add all the results
to obtain the final matrices and finally add the reference
and sample noise convolution matrices: Utot = Uref +
Usample.

4) We invert and take the square-root of this matrix to
obtain the final NCM: Ufinal = [Utot]

− 1
2 .
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