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Abstract. Over the last decade neural word embeddings have become
a cornerstone of many important text mining applications such as text
classification, sentiment analysis, named entity recognition, question an-
swering systems, etc. Particularly, Transformer-based contextual word
embeddings have gained much attention with several works trying to
understanding how such models work, through the use of supervised prob-
ing tasks, and usually emphasizing on BERT. In this paper, we propose
a fully unsupervised manner to analyze Transformer-based embedding
models in their bare state with no fine-tuning. We more precisely focus
on characterizing and identifying groups of Transformer layers across 6
different Transformer models.

Keywords: Transformer-based Language Models - Unsupervised Learn-
ing - Word Embeddings

1 Introduction

Transformer-based word embeddings provided by neural language models are
today increasingly used as the initial input to many text mining applications
where they greatly contribute to achieve impressing performance levels. This has
motivated a growing number of researchers to investigate the reasons behind this
effectiveness as part of the general effort to unlock the black box of AI models.
Since a Transformer model produces several embeddings for each word (one
for each layer of its deep architecture), it is natural to study the nature of the
embeddings learned at the different layers of the model. So far, the common way
of doing this is to feed them as input to some supervised probing tasks (text
classification, question answering, etc.) and then measure how well they perform
on these tasks. From the observed performance, and depending on the probing
task used, one may deduce, for example, that a given set of layers seems to be
good at capturing some features of language while another set seems to encode
another kind of information. While these experiments have allowed to draw some
conclusions, the observed results depend both on the tasks and the train and test
datasets, and so are not always generalizable. This observation prompted us to
explore if it could be possible to gain additional insight into the behavior of the
layers without having to rely on supervised probing tasks and external datasets.
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In this paper, we propose unsupervised techniques that completely dispense of
probing tasks, and demonstrate their interest by applying them to real datasets
and several widely used Transformer models. The contributions of the paper are
as follows:

1. We propose a set of unsupervised methods that allow to gain insights into the
nature of the embeddings available at the different layers of a Transformer
model, and how these embedding layers relate to each other. This approach,
which directly leverages the intrinsic features of the layers, is in contrast to
other studies that rely on probing tasks.

2. The experimental section shows that applying these methods on real datasets
allows to acquire new knowledge about the layers of several Transformer
models that seem to best perform on the important word clustering task.

3. Also, while most layer interpretation studies have so far focused mainly on
BERT we provide a performance comparison for 3 different models namely
BERT, RoBERTa and ALBERT, in both their base and large flavors.

2 Related Work

In the supervised learning realm, a growing body of research has been devoted to
investigating the linguistic features learned by contextual word embedding models
including LSTM-based models as in [9] and Transformer-based models like BERT
as in [12]. Both authors agree to say that early layers encode most local syntactic
phenomena while more complex semantics appear at the higher layers. In [8],
the authors evaluate the performance of contextualized word representations on
several supervised tasks and compare layers with each other, including ELMo,
BERT (base and large) and OpenAI Transformer models. They especially observe
that Transformers’ middle layers allow for a better transferability. On the other
hand, the authors in [5] observe that the early layers of BERT are more invariant
across tasks and hence more transferable. It has also been shown in [1] that,
after fine tuning BERT on Question Answering, the model acts in different
phases starting from capturing the semantic meaning of tokens in the first
layers to separating the answer token from the others in the last layers. It has
been concluded that the closer we get to the last layer, the more task specific
the representations are. This explains the results obtained in [7] which studies
the changes between pre-trained and fine-tuned BERT-base model in terms
of attention weights. A significant change in the two last layers in terms of
cosine similarity between original and fine-tuned attention weights has been
observed on 6 GLUE tasks. The authors deduced that the BERT-base’s two
last layers learn more task specific features. Several papers focus on identifying
the linguistic structure implicitly learned by the models [2,6]. For example,
Goldberg [4] evaluates how well BERT captures syntactic information for subject-
verb agreement. Ethayarajh et al. [3] try to assess how context-specific are the
representations at the different layers of ELMo, BERT and GPT-2.
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In contrast to the above studies we propose to identify coherent groupings of
layers, based on the intrinsic characteristics of the layers and not by resorting to
external probing tasks.

3 Unsupervised Methods for Layer Analysis

Deep Transformer models may have dozens of layers (see Table 3). In order to
better understand their behavior we argue that it is useful to compare them, and
try to identify groups with similar characteristics.

3.1 Matrix and Vector Representation of Layers

In this section, we propose several alternative (matrix- and vector-based) repre-
sentations for a Transformer layer, thus allowing to study their correlations from
multiple points of view. Given a dataset of n words, and a Transformer model
with b layers and embedding dimension d, the dataset can be represented by b
different matrices Xy, ..., X, of size n X d, where each matrix X, corresponds
to the dataset at the /-th layer. An alternative way of representing a layer /¢ is
by averaging the rows of its X, matrix, leading to a vector representation v, of
the layer. Additional intermediate data structures are then computed from these
initial representations (Table 1). The pseudo-code in Algorithm 1 describes in
detail how these data structures are created and used during the analysis process.

Table 1: Definitions and notations

Symbol Description

n Number of words of the dataset.

d Number of dimensions: 768 for base models and 1024 for large ones.
b Number of layers: 12 for base models and 24 for large ones.
Xy Matrix of size (n x d): data matrix of layer ¢ (cf. Figure 1).
Xyi The ith row of X,.

Sy Matrix of size (n X n): corresponds to the square matrix of Xg.

\'7 Vector of size d: computed for a layer ¢ as the average of rows of Xy.
ry Vector of size n: similarity ranks of words regarding vy,.

Transformer Model

- fion ™ "m =
™ R
jo ith row
5 r
Word Embeddings
{th datamatrix X,

ith sample:
... runs from the heel to the calf ...

Flg 1: Construction of the data matrices from contextual word embeddings
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Algorithm 1: Unsupervised Process of Layers’ Analysis

Input: a dataset D of n words; a Transformer model M with b layers and

embedding dimension d; a clustering algorithm C; a ranking function rank.

Step 1. Build matrix and vector representations of layers, for each £ =1...b:
Xy + vertical stacking of the n word embeddings provided by the fth layer

S¢ + X, X7

Vo Zl X¢;, where xg; is the ith row of X,

ey; < cosine similarity between the word vectors x¢; and ve, 1t =1...,n
re; + rank(eg),i=1....n

Ry(X¢, X)) = —traceSexSp) 00 =1,...,b

\/t'race(sz) Xtruce(S?,) ’

n 2
6 " (rei—ryr;)

p(re,re) = ==l £,0/ =1,...,b where p is the Spearman coefficient
Step 2. Identify groups of layers

Visualize the R, and Spearman coefficients as heatmap matrices.

V « vertical stacking of the b vectors vy, £ =1...b

clusters + C(V)

Visualise clusters
Step 3. Interpret the groups identified in step 2.

3.2 Measuring the Correlations between Layers

In this section and the following one, we propose unsupervised methods for
comparing the layers against each other the goal being to exhibit layers that
share some characteristics.

When using a matrix representation for the layers (the X, matrices of Table
1), an appropriate correlation measure is the R, coefficient [10] which can be
used in order to visualize the layers’ similarities and distinguish any possible bloc
structures. The R, coefficient can be interpreted as a non centered squared coef-
ficient of correlation between two given data matrices X, and Xy (cf. Algorithm
1). This proportion varies between 0 and 1 and the closer to 1 it is, the better
is X4 as a substitute for X, (and vice-versa) to characterize the n samples of
the dataset. In order to draw a similarity tendency across layers, we compute for
each layer ¢ an Average-R,, which corresponds to the mean of R, values between
the layer ¢ and the rest of the layers. The heatmap representation of these values
allows to spot groupings of layers.

The vector representation of the layers (the v, vectors) allow for other
possibilities. They can be used as input to a clustering algorithm (this will be
described in sections 3.3 and 4.3). But they can also serve as a basis for measuring
the correlations between layers. For each layer ¢, we first compute the cosine
similarity of its vector v, with all the word vector xg;. A ranking vector ry is then
computed where ry; is the ranking assigned to word ¢ by layer £. Since for two
layers ¢ and ¢’ r, and ry contain word ranks, a suitable measure of comparison is
the Spearman correlation coefficient p that measures the rank correlation between
two variables. From the p values between each pair of layers we can construct a
heatmap matrix of size b x b which, as with the matrix of R, values, also allows
to identify groupings of layers (cf. Algorithm 1).
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3.3 Clustering Layers

The next step of the study is to perform a cluster analysis to confirm the
potential groups using the techniques described in the previous section. The data
samples are the b layers of a given model where each layer ¢ is represented by its
corresponding average vector vy. In theory, any kind of clustering algorithm could
be used at this stage. In practice, since the number of layers is relatively low and
the number of cluster is unknown (although the techniques of the previous section
can give an estimate of it), we often used Agglomerative Hierarchical Clustering
(AHC) methods in our experiments. The hierarchical arrangement of the samples
provided by the dendrograms indeed allows for a better interpretation of the
clustering results as will be shown in the experiments section.

3.4 Interpreting Layers

In order to provide a more qualitative analysis of layers’ behavior, we use the
vector representation ry and visualize the ranking of the first m words regarding
their similarity to v,. We can also deepen our analysis of layers by using the
interpretation abilities offered by dimension reduction techniques such as the
Principal Component Analysis (PCA). When applying PCA on the X, matrices,
the samples are the word representations and the features represent the dimensions
of the embeddings. The cos? measure denotes the correlation between a principal
component and a given dimension (feature). It also measures the quality of
representation of the feature, which allows us to select only the features that are
more influential for interpretation.

4 Experiments

In this section, we first apply the process described in Algorithm 1 to several
word datasets, in a step by step manner. Then, in order to validate the above
methods and better understand the results they provide, we cluster our word
datasets and evaluate each layer in terms of clustering performance. To achieve
that, we perform word clustering experiments on the X, matrices. Each clustering
run provides a partition containing the cluster label of each word. To evaluate
the partition obtained with each layer, we rely on a standard external measure
for assessing clustering quality, namely Normalized Mutual Information (NMI)
measure [11].

4.1 Datasets and Models Used

The datasets of size n used in the experiments are described in Table 2. The first
dataset, referred to as UFSACS, is extracted from the UFSAC dataset [13] which
consolidates multiple popular datasets annotated with WordNet (such as SemEval
and SensEval) into a uniform format. The examples are manually divided into
three topics: Body, Botany and Geography. The second dataset, UFSAC4, is
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a slightly more difficult dataset since it includes a fourth class (words related
to Information Technology) and is augmented with some polysemous examples
(such as ”lobes” which appears in Body and Botany with different contexts).
The third dataset yahood4, is extracted from the Yahoo! Answers dataset [14]
by manually selecting sets of words for each category and some corresponding
contexts.

Table 3 describes the 6 pre-trained Transformer-based embedding models
used for the experiments, without any fine-tuning.

Table 2: datasets description: k denotes the Table 3: Transformer models’ de-
number of clusters. scription.
datasets ‘ n ‘ k ‘ clusters’ sizes ‘b‘ d ‘vocab size
body: 266 1227
UFSAC3 | 583 | 3 oy <89, 8e0: 220, BERT-base-cased 28,996
botany: 90
- 12| 768
ursaca | eo1 A body: 275, geo: 227, RoBERTa-base 50,265
botany: 99, IT:90 ALBERT-base-v2 30,000
finance: 150, BERT-large-cased 28,996
ahood | 528 4 science-maths.: 152,
Y computers-internet: 144, RoBERTa-large |24/1024| 50,265
music: 82 ALBERT-large-v2 30,000

4.2 Investigating the Correlations between Layers

For comparing the layers with each other, we experimented with the R, coefficient
and the Spearman’s rank correlation coefficient (cf. Section 3.2) . Figure 2 shows
the similarities computed between the layers of each model in terms of the R,
coefficient which uses the matrix-based representations of the layers. As a result

BERT-base RoBERTa-base ALBERT-base
- - o~ —

N

2345678910012

ALBERT-large

BERT-large

.\4

1 131 1357 911131517192123 3579 11131517192123

Flg 2: R,-coefficient based layer-wise similarity computed between UFSAC4’s data matrices Xg.

of the way in which Transformer models operate, one would expect that a layer is
similar to the one following it. This is indeed what is observed globally in Figure
2. However, when taking a closer look, some interesting remarks can be made:

— Several rectangular blocks can be spotted. This is confirmed by the curve of
the average R, value which is drawn on top of the heatmaps. Clearly there
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are breakpoints separating groups of layers that share common characteristics
in terms of affinities with other layers.

— One can observe a significant decrease of average similarity on the three last
layers with the last layer sometimes having a distinctive behavior.

— ALBERT models and especially ALBERT-large are very different from the
other models in terms of layer-wise similarity 2.

Additional insights can be gained from the Spearman correlation coefficients
computed on pairs of layers using their ranking vectors r, (Figure 3).

- BERT-base RoBERTa-base

ALBERT-base

12|
1234567809101112 234567809101112

RoBERTa-large ALBERT-large

23211917151311 9 75 3 1

i
17357 911131517192123

1357 911131517192123

357 911131517192123

Flg 3: Layer-wise agreements using Spearman correlation coefficient: the agreement coefficient
between two layers £ and £’ is the Spearman correlation coefficients p calculated between r;, and r,/.

These coefficients allow to refine the observations made on Figure 2, we can
notice an even bigger difference between the 1st layer and the rest of the network
in terms of correlation for BERT-base, moving from p = 0.82 between layers 1
and 2 to p = 0.95 between 2 and 3. Overall, Figure 3 reveals a certain block
structure with groups {1}, {2, 3,4} and {5, 6,7, 8}. Finally, another break can be
observed between layers 11 and 12 where p = 0.88 while it was p = 0.94 between
layers 10 and 11 leading to two new groups {9,10,11} and {12}. The same kind
of block structure can also be observed when looking at the other models.

4.3 Identifying Clusters of Layers

In order to have another look at the possible groupings of layers, we perform an
AHC and draw the associated dendrograms (cf. Section 3.3). Figure 4 shows the
results obtained using the Ward and Average linkage criteria, used respectively
with the euclidean and cosine distances. If we look at the results for BERT-base
that are obtained using the Euclidean distance, we can see that the clusters are
close to the groupings suggested by the methods of Section 4.2 (compare with
the top-left heatmap in Figure 3), with the exception of layer 12 which strangely
seems to be close to layer 1. This can be explained by the fact that we use the
euclidean distance, which tends to be sensitive to the amplitude of data. If we
look at BERT-base’s box plots in Figure 5, it can be seen that the variance of
the last layer is very close to that of the 1st layer. To confirm that this wrong

3 This could be explained by the parameter sharing technique used to train the ALBERT model,
which consists of duplicating the same parameters for all layers [5]
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assignment was due to an amplitude issue, we experimented with the same AHC
algorithm using a cosine distance (known to be insensitive to vector magnitude)
with the ”average” linkage strategy. With this configuration, the 1st layer is even
more separated from the following ones and as expected, the last layer is much
less close to the 1st and is assigned to a separate cluster, which is coherent with
the previous observations (Section 4.2). This intuition is confirmed when looking
at RoBERTa-large, for which we don’t have the problem of differing variances
across layers (Figure 5) and hence presenting almost the same groupings using the
two distances. Overall, clustering the layers leads to the following observations:

— As shown in Figure 4 for BERT-base, the 4th layer is merged with the {2, 3}
cluster before the 1st layer, which confirms the break between the first layer
and the following ones. In fact, the first layer is, for most models, isolated in
its own cluster. This behavior is visible in Figure 2 and even more in Figure
3 where the 1st layer (1st row) has darker colors than its following neighbors,
which indicates lower correlation values compared to the other layers.

— For RoBERTa-large we can also see that the 1st layer joins the 2nd only after
layers 3 and 4 (especially in the Cosine version). The last layer is also isolated,
joining a cluster only at the 3rd merge of the AHC. The rest of the clusters
generally contain successive layers (like {5,6,7}). When cutting at the second
merge level we end up with the following partition {1}, {2, 3,4}, {5,6, 7},
{8,9,10}, {11,12,13,14}, {15,16,17}, {18,19,20, 21}, {22,23}, {24}.

BERT-base (Cosine) RoBERTa-large (Cosine)

0.20 ‘

0.40!
0.15 ‘
0.10 0.20 l
0.05 ‘ ]
[ !

. 3 =
201 9 105 6 7 8 1 2 3 4 0051617242223 18192021 1 111213148 9105 6 7 2 3 4

BERT-base (Euclidean) RoBERTa-large (Euclidean)
80.00

0.00

20.00 60.00

40.00

10.00
20.00

0059105 6 7 8 121 4 2 3 000 5161724222318 192021 11121314 8 9105 6 7 1 2 3 4

Flg 4. Dendrograms obtained with AHC from the set of layers where each layer is represented by
v; a d—dimensional vector computed on UFSACA4.

In Figure 5, we use the vector representation vy to draw box plots to analyze the
distribution’s evolution of layers over the network. We first observe that the three
models present different behaviors in terms of variance with from the smallest to
the largest: RoBERTa, BERT and ALBERT. Despite that, all distributions are
centered around zero with the lower and upper boundaries being quite symmetric.
Besides, for BERT (base and large), we can observe a certain break at the last
layers (progressive increase followed by a sudden drop) corresponding to the
breaks of similarity observed in Figures 2 and 3.

4.4 Qualitative Interpretation

Table 4 shows the first m = 30 words that are the closest to the v, representations
of a selection of layers (due to space limitations) of BERT-base for the UFSAC4
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20 BERT-base Y BERT-large 20 RoBERTa-base
Y O L g
AN 5 8 A bl
”°%%%%%%%%%%%% R R LT I i i
-10) 10 IR 10
2093335678002 02 7 6 s 02 a6 802w 0T23456780910012
20 RoBERTa-large ALBERT-base 20 ALBERT-large
* 20) *
10 10 10
o o] ol
10 -1.9) -1.0
20
207536 8 10 12 14 16 18 20 22 24 334567890002 202 4 6 § 10 12 14 16 18 20 22 2

Fig. 5: Evolution of box plots (without outliers) over layers: each layer is represented by its average
vector vy of the UFSAC4 dataset.

dataset. Confirming the insights provided by the previous rank-based comparisons
between layers as well as the clustering experiments, one can note a significant
break between layer 1 and its immediate neighbors. Layers 2, 3 and 4 resemble
each other more than they resemble layer 1, and share more words such as axons,
sclera and scrotum. The correlation scores displayed on top of each pair of layers
in Table 4 confirm this visual inspection. Between layers 5 and 8 (not shown
here), we observed a continuous shift of words in the sense that a limited number
of words appeared and disappeared from a layer to another, with the vanishing of
Botany words from the 5th layer. More new words start to appear on the 9th layer

Table 4: Ranking of the words (colored according to their topic) that are closest to v, representa-
tions the BERT-base layers for the UFSAC4 dataset. The first row contains the pairwise Spearman
correlation coefficient.

p=0.82 p=0.95 p=0.94 p=0.93 p=0.94 p=0.88
1 2 3 4 9 10 11 12
cerebellar cerebellar cerebellar bronchial adenoids adenoids anus penis
bulbs kernels bronchial cerebellar atrium cerebellum eardrum eardrum
perennials maxillae sclera molars hipbones anus penis anus
orchids bronchial bronchioles cranial anus 3ermuda armpit ribs
bronchioles sclera clavicles axons cerebellum atrium cortical cortical
lymphocyte  cerebellum cerebellum arterioles armpit eardrum Bermuda  sphincter
mo 5 deserts cranial SC ) gyral armpit cerebellum clitoris
rootstocks clavicles molars bronchioles Bermuda penis atrium pelvic
bronchial axons axons clavicles sinus gyral skull bulbar
clavicle bronchioles arterioles cerebellum sphincter sphincter lgyptian calf
leaflets arterioles brachial follicle eg Armenia breastbone skull
follicle molars maxillae epidermis clitoris clitoris adenoids armpit
arteriovenous hindbrain axon axon brachial pelvic pelvic peritoneum
occipital interface cervical brachial breastbone hipbones Bavaria palmar
maxillae bulbs rootstocks scrotum incisors breastbone clitoris  cerebellum
cheekbone scrotum kernels cervical skull calf Armenia Carpal
cerebellum cranial scrotum cheekbone eardrum skull gyral gallbladder
cranial pods interface hindbrain hepatic sinus sphincter distal
epidermis sphincter cerebrum maxillae brain arteriovenous liver leg
mucosa pylorus deserts peritoneum arcuate Egyptian calf wrist
clavicles rootstocks epidermis 1i cheekbone eg peritoneum hips
pods follicle eye 3avaria sinus gut
herbaceous sphincter muscles cortical membrane bronchial
brachial peritoneum bones arcuate Syria anal
metatarsal axon hindbrain rootstocks rump body bulbar scrotum
kernels glomeruli saliva atrium liver liver arcuate brachial
arterioles peritoneum cheekbone lumbar cilia CN eg fibula
pylorus lymphocyte triceps cerebrovascular| Armenia hepatic hipbones Bermuda
metatarsus arteriovenous cerebrovascular gyral ribs rump palmar liver
molars occipital arteriovenous kernels dental cardiovascular hips basal

like Bermuda, sinus and hepatic with an increasing number of Geography words,
until layer 11 inclusive. Layer 12 includes new words that do not appear before
like ribs, Carpal and gallbladder and fewer number of Geography words. Overall,
the qualitative analysis seems to be in good agreement with what was observed
with the previous methods. For example, it seems to attest to the existence of
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five groups of layers in the standard BERT-base model, namely {1}, {2, 3,4},
{5,6,7,8}, {9,10,11} and {12}.

4.5 Quantitative Interpretation Using Dimension Reduction

In this section, relying on PCA, the objective is to go further in the unsupervised
analysis of embeddings at different layers. Figure 6 presents visual representations
provided by PCA applied to the X, matrices of each layer. First, on the projections
of samples, one can observe a significant enhancement of the separability of
samples between the layers 1 and 2 whereas it is almost the same between 2 and
3. We noticed another difference between layers 4 and 5 with a sort of rotation
of samples along with a higher increase of variance explained by the two first
components. The separability remains more or less stable until layer 11 inclusive
and deteriorates in the 12th layer, which also knows a significant increase of
explained variance. These differences in separability indicate that the extremities
of the network are not only different, but may be much less efficient. Concerning
the correlation circles, we notice more differences between layers 1 and 2 than
between 2 and 3, this confirms that the 1st layer constitutes a singleton. We also
observe a shift across layers with many dimensions that appear in few consecutive
layers and then disappear (like 643 appearing in the 2nd layer and disappearing
in the 5th layer). Another significant break is observed at the last layer, where
dimensions like 223 and 636 disappear while being important for layers 9,10 and
11. These observations reinforce our previous groupings for BERT-base.

Layer 01 ‘ i - Layer 02

- BODY 125 K 4

~BOTANY  £89 | 1555 050
GEO L4z 7355 .
4 383 0.45
: o.

1T 26

Dim2 (2.7%)

Dim1 (60).1)
Layer 12

L
o

BODY
+ BOTANY
GEO

DIm2 (3.6%)
Dim2 (4.6%)

Dim1 (6.1%) ' Dim1 (9.4%)

Flg 6: PCA on BERT-base’s data matrices Xe, £ = 1,...,b - Projections (left): coordinates of
words on the two first principal components colored w.r.t. their topic. - Correlation circle (right):
only the 20 dimensions that are most correlated with the two first components are displayed.

4.6 Results Validation Using a Clustering Performance Metric

In this section, we provide numerical results assessing the layer-wise performance
on word clustering using NMI scores (Figure 7) on clustering partitions obtained
with K-means applied to X, matrices. In doing so, we aim to validate the layer
groups that have been identified in the previous sections. The main question we
try to answer is: Do the previously identified groups share characteristics in terms
of clustering performance? This study also gives us an idea of the transferability
of each layer and each model for the unsupervised task of word clustering. By
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separating layers into groups based on the NMI scores they achieve, one can find
clusters of layers that quite resemble the breakdown suggested by the dendograms
in Section 4.3 (compare the values in Table 5 with the corresponding dendograms
depicted in Figure 4). For BERT-base, in the same way as layer 1 is isolated in
its own singleton cluster, its NMI score is also the worst. The group formed by
1, 2 and 3 achieves values between 0.78 and 0.88, while the best performers are
the layers from 5 to 8. Performance then decreases, with a marked drop at the
last layer, again in agreement with the grouping patterns observed in Figures
3 and 4. The same observations extend to RoBERTa-large where the cluster
{5,6,7} contains the best performing layers. We also clearly see a breaking point
of performance between the 1st layer and the following, and another one (more
acute) at the last layer. These breaking points are visible in Figures 2 and 3. In

Table 5: NMI scores on blocks of layers with UFSAC4 - The first table corresponds to BERT-base
and the second to RoBERTa-large. The groups obtained based on word clustering performance fairly
closely correspond to the groups that had been spotted using correlation and cluster analyses.

¢ | 01]02 03 04|05 06 07 08|09 10 11 |12

NMI|0.64/0.78 0.81 0.88]0.9 0.94 0.9 0.92]0.91 0.91 0.88]0.83
¢ | 01|02 03 04|05 06 07|08 09 10|11 12 13 14|15 16 17|18 19 20 21 |22 23|24
NMI|0.51]0.57 0.55 0.61|0.81 0.87 0.9(0.7 0.64 0.62|0.63 0.62 0.61 0.62|0.61 0.55 0.53|0.51 0.48 0.41 0.41|0.58 0.57|0.38

addition, these observations allow us to confirm some findings presented in the
supervised study [8] showing that BERT models achieve their best performance
on the intermediate layers. We also extend this observation to RoBERTa with
fewer well performing layers, situated more earlier in the network. More generally,

10 Base models - UFSAC3 Large models - UFSAC3 Base models - UFSAC4
0, e ————. 1.0 e o —.
,7\ —~ 7 — = —
’ ) i \ 0.75 f
= f7[ ------- “N| = /.7/ ............ \___», = Z \/- ~~~~~~~ | = BERT
205 205 T\ = 0.50 — RoBERTa
R Ea R 2T o~ — LBk
\ 0.25] .
\ ~.
P 0.0 U NZ T~
2 4 6 8 10 12 2 4 6 8 10121416 18202224 2 4 6 8 10 12
Large models - UFSAC4 Base models - yahoo4 Large models - yahoo4
1.0 o N S~ e~
P, ’ 0.75] —=> S \
. f‘;f/)(\ ___________ “ \-\ - s |7 <'\-\ o | = \'\»\_-—cx—}- )
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Flg 7: NMI scores obtained by the word clustering on the X, data matrices for each layer £.

on both base and large versions, BERT outperforms the three other models,
followed by RoBERTa and far away by ALBERT. This is surprising considering
that ALBERT is supposed to outperform BERT and RoBERTa when fine-tuned
on supervised tasks. We then show that in a no fine-tuning configuration, BERT
word embeddings are of higher quality (BERT-large is the only model to achieved
the perfect score on UFSAC3). Finally, ALBERT is the only model for which
the base version is better than the large one. Moreover, both versions present
very poor results on word clustering (especially the large version) and we can
notice a better (but still poor) performance with the first layers. One possible
explanation is that ALBERT"s layers start to be task specific from the beginning
of the network, particularly in view of the architecture of ALBERT where all
parameters (including attention parameters) are shared across layers.
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5 Conclusion

Knowing more about contextualized word embeddings and what can really be
expected from them is an important topic. This paper provides a novel way
of analysing Transformer embeddings, based on unsupervised methods, more
specifically a correlation and cluster analysis of the layers. Applying these methods
to real datasets made it possible to spot precise groups of layers (e.g. 5 groups
of layers in BERT-base and 9 in RoBERTa-large) which subsequently proved to
fairly closely match the groups obtained when grouping layers based on their
clustering performance. This suggests that the proposed method, when applied
to a dataset is capable of identifying in advance groups of layers that are likely
to best or worst perform on the clustering task. This study also allowed to
bring out major differences between Transformer models on the important text
clustering task, for example the specificity of ALBERT, which is most likely due
to its different network architecture, or the fact that BERT seems to outperform
RoBERTa on the clustering task. Future path for research is to further investigate
these differences as well as the potential of dimension reduction techniques on
contextual word embeddings, an issue that deserves to be the subject of further
study, allowing in particular to highlight the potential redundancies present in
the Transformer networks.
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