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Abstract  Constitutive and damage mechanics of composite materials is discussed,

with a special attention to unidirectional metal-matrix composites.

Macroscopic thermo–elasto–visco–plastic and damage models based on

micromechanical approaches are presented that offer various modeling

capabilities between a two-phase and a multi-subvolume model. A

micromechanics analysis of transverse creep, using periodic homoge-

nization and finite elements demonstrates the role of the fiber–matrix

interphase in the creep resistance of the composite. Such a numerical

approach can be used to deliver directly the constitutive response at

the component level by a multiscale structural analysis using the FE2

imbricated finite-element method.

1. INTRODUCTION

Composite materials and structures differ from metallic ones in the

following aspects:

their low weight, and the corresponding design improvement per-

spective offered by their high specific mechanical properties;

their versatility—in many applications, the possibility to optimize

the material (volume fraction, sizes, positions, orientations of rein-

forcements) during the same design stage as the structural com-

ponent itself;

their ability to support such inserted systems as optical fibers,

piezo-electric sensors, and actuators, leading to many future

“smart structure” capabilities, for instance in active or passive

in situ health monitoring systems;
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Figure 1 Schematic of the various scales in composite materials and structures.

their cost, which is often a serious obstacle to their extensive use,

as well as the relatively unstable material sources and material
manufacturers;

their multiscale structure, showing many different successive levels,

as illustrated schematically in Fig. 1 for structural composites used
in aeronautical applications—this is one of the difficulties in the

mechanical analysis associated with the use of composites; metals
also have several levels of microstructures, but at lower scales, and
with a much more random organization;

their damaging processes, during manufacturing and during opera-

tion: in metals initiation of any microcrack of some size could have

a significant impact on the remaining lifetime, leading often to an
accelerated process under load; contrarily, in composite structures

the microcracks can appear very early, leading to a certain deteri-
oration of mechanical properties, but without really affecting the
component lifetime—damage in that case is one of the mechanisms
by which the heterogeneous material accommodates the applied

strain.

In this paper the two last aspects mentioned above will be illustrated
and discussed in terms of modeling methodologies, as applied to uni-

directional metal-matrix composites (MMCs). The specific structural
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applications underlying the developed methods are the bling components
(bladed rings) that should replace in some aerojet engines the classical
technologies for compressor and turbine discs. The material in the cor-

responding experimental studies is a SiC/Ti MMC, but many aspects

of the methods are still applicable to other classes of metallic compos-

ites (at least long fibers). In 2 we present a micromechanics-based set

of constitutive and damage equations, exploiting Dvorak’s transforma-

tion field analysis (TFA) method (Dvorak 1992, Dvorak and Benveniste
1992), which offers several variants for the damage-growth modeling—in
the matrix, in the fiber, and at the fiber–matrix interface. The models

are set in such a way that they can be considered and exploited as

macroscopic constitutive laws. Section 3 summarizes a specific study of
creep behavior of the composite (essentially transverse creep), in which
is shown the duality between the matrix elasto–visco–plasticity and the
interfacial damage, in order to explain experimental results of creep tests

realized under vacuum.
Other aspects are treated elsewhere, for instance the component inelas-

tic and damage analysis, based on a true “multiscale analysis”, the FE
2

method, using imbricated finite-element models in order to replace the
macrolevel constitutive equations directly (Feyel 1999).

2. DEVELOPMENT OF A SET OF
MICROMECHANICS-BASED
CONSTITUTIVE EQUATIONS

For the inelastic and damage modeling of composite materials, within

a micromechanics based approach, we have various possibilities:

the tools using averaged quantities in each constituent, similar to
those employed for random microstructures, with Eshelby-based

operators: in this context localization rules are often based on a
secant or tangent writing of the local constitutive equations;

the more-or-less analytical models based on a mixture of tan-

gent and initial elastic operators, such as the ones developed
by Voyiadjis and co-workers (Voyiadjis and Kattan 1993) or by

Baptiste (Guo et al. 1997);

the class of model developed by Aboudi and co-workers (Aboudi
1985, Pindera and Aboudi 1988), which defines a geometrically
more-or-less sophisticated unit cell, with local fields approximated

through a weak compatibility of constituent elasticity equations;

the transformation field analysis (TFA) developed by Dvorak
(Dvorak 1992, Dvorak and Benveniste 1992), which introduces a
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systematic way of defining concentration and influence tensors, but
writing a purely elastic rule, treating plastic strain and thermal

expansion as eigenstrains of the same nature.

We decide to concentrate on the last type of approach, because it

continues to treat elasto–plasticity (or elasto–visco–plasticity) of con-
stituents through the correct strain partitioning. Moreover, within a

single and consistent methodology, it offers various refinement possibil-
ities, from the two-subvolume model (two-phase model) to the multi-

subvolume model, which eventually degenerates to the finite-element
periodic unit cell.

2.1. Thermo–elasto–visco–plastic model

The model is built up by combining two kinds of equation. The first
is the constitutive equation of each constituent:

in which s denotes the subvolume numbering (there are possibly several

subvolumes for each phase), Ls is the initial elastic stiffness operator,
and the functional will not be defined more precisely—all kinds of
local constitutive equations can be used, with internal state variables

symbolized here as “ISV”. The thermal expansion can be isotropic

or not.

The second kind of equation is the localization rule that relates over-

all to local quantities, taking into account field interactions with eigen-
strains. Using TFA, we have for the local strain in the subvolume s:

where is the average strain (in which cr denotes

the volume fraction of subvolume r), As and Dsr being respectively
the elastic strain concentration tensor and the influence tensor (between

subvolume r and subvolume s). Averaging in (1) leads to the overall
elastic constitutive equation

where with B the stress concen-

tration tensor and L the overall elastic stiffness defined

by L = = The reciprocal formulation can also be defined
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Figure 2 Correction with the asymptotic tangent stiffness for various macroscopic

strain rates (volume fraction 35%).

consistently for the stress localization (not needed here). In the case of

a two-phase composite system, with one subvolume each, the opera-

tors As, Bs can be obtained from the Eshelby tensor, either through

the Mori–Tanaka method (Mori and Tanaka 1973) or through the self-

consistent method. The influence tensors are also easily determined

for the two-subvolume model, with exact closed-form relations (Dvorak
1992).

When using a more sophisticated model, with several subvolumes per
phase, the initial elastic concentration tensors As, Bs and the influence
tensors Dsr are determined once, by a prior set of numerical analyses

(using for instance periodic homogenization and finite-element method,

as indicated in Dvorak et al. 1994 or Pottier 1998).
Considering the overly stiff results generally obtained for the two-

subvolume model (see Suquet 1997, Zaoui and Masson 1998), we have

proposed an asymptotic correction method (Pottier 1998, Chaboche
et al. 2000) that modifies the localization rule into

where the 4th-rank tensors Kr are determined by identification of the
rate form of (5) with its “tangent” format  in which the tan-

gent concentration tensor is determined from the knowledge of the
asymptotic tangent stiffness of each subvolume, directly related with
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the linear kinematic hardening model used in the matrix. More details
are given in (Chaboche et al. 2000).

The improvement of using this correction factor instead of the original

TFA is illustrated in Fig. 2 for the transverse traction at three overall
strain rates (the matrix is visco–plastic) by comparison with a peri-

odic unit cell finite-element calculation similar to the ones that will be
reported in 3. Other comparisons are reported elsewhere (Chaboche

et al. 2000).

2.2. Various damage modeling approaches

In terms of delivering a micromechanics-based overall constitutive

equation of composite materials, three approaches could be used, depend-
ing on the kind of deterioration that develops:

If microcracks are large enough compared with the heterogeneous
microstructure (fiber size) we could proceed in two steps: define

first an effective homogeneous behavior of the undamaged compos-

ite, then input microcracks in it and deliver the overall behavior of

the damaged material via a second micro-to-macro analysis. This
is the method implicitly used in laminate composites when intro-

ducing transverse cracking as a meso-damage in the ply volume

elements (Allix et al. 1990).

If microcracks are small enough, in the matrix or in the fiber, com-

pared with the fiber size, we can use a continuum damage mechan-
ics (CDM) methodology in each of these phases, then first modify

the initial local constitutive equations through a micromechanics-

based effective stress concept, and second, make the micro–macro

averaging of the composite with its damaged constituents. This is

for example the method used by Voyiadjis (Voyiadjis and Kattan

1993) for modeling damage in MMCs.

If microcracks and fiber are of the same size, especially when the
crack develops at the fiber–matrix interface, none of the above

approaches is acceptable (i.e. there is no scale separability). One
simplification consists in approximating the presence of an inter-

face crack by a transverse stiffness reduction in the fiber (Guo et al.

1997). It is also the solution adopted in the direct simplified model

developed below. A better approximation is sought by generaliz-
ing the TFA method, with a large number of subvolumes, includ-

ing interphase subvolumes. We present below the corresponding

model, called the generalized eigenstrain model.
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Figure 3 Direct simplified model and finite-element computation for transverse ten-

sile loading–unloading: case of an elastic matrix.

Direct simplified model (DSM). We consider only two phases—
the matrix and the fiber—and assume a CDM approach to introduce a

damage ds in each phase (either a scalar or a tensorial variable). Now
the constitutive equation is modified as

The visco–plastic strain rate depends on damage, as well as the elas-

tic stiffness . Figure 4 explains the principle of the direct simplified
model. Knowing damage ds after integration (i), we define (e) the effec-
tive damaged elastic stiffness (not expressed here). Using closed-
form Eshelby solutions and the Mori–Tanaka scheme, we can define the
effective strain concentration tensor . For a two-phase system, we

know explicitly the corresponding from and (Dvorak 1992).
The localization rule (l), Eqn. (3) (with and instead of and

Dsr), delivers from the controlled overall strain E. Then, we obtain

successively by the elastic constitutive equation (ce) and  by aver-

aging (h).

In this model, the localization tensors have to be defined at each time

step of a given loading. It is the reason that the model cannot be gener-

alized to a refined discretization (more than two subvolumes). Figure 3
gives an example of comparison between this direct simplified model and

a complete analysis of a unit cell by finite-element and periodic homoge-
nization. This is a theoretical example of transverse tension–compression

of a unidirectional elastic metal-matrix composite. The matrix is elas-
tic, the fiber is elastic damageable, and damage deactivation is taken
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into account (closure of microcracks under compression). The compar-

ison appears as excellent in that case, as well as in the case where the

visco–plasticity of the matrix is taken into account.

Generalized eigenstrain model (GEM). This model is devel-

oped in order to refine the discretization. Subvolumes are used in order
to refine the discretization, to describe the interphase behavior (with

damage) and the stress redistributions in the matrix. The model uses

only the initial (undamaged) concentration and influence tensors of TFA,
obtained initially by a number of elastic finite-element calculations. Its
key specificity is to transform the elastic changes due to damage into an

additional eigenstrain. We replace (6) by

where the damage strain is given as

Figure  4.    Flowchart  of  the  two  damage  models.
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Figure 4 indicates the corresponding flowchart of the model. It uses the

following localization equation in place of (5):

We remark that the approach is also able to take into account the vari-

ations of the elastic stiffness with temperature (without modifying As,

Dsr). Its flexibility and its comparison with experiments appear to be

very satisfactory. When applied in the particular case of two subvol-
umes, the GEM and DSM models deliver exactly the same stress–strain
response.

3. MICROMECHANICAL NUMERICAL
MODELING OF TRANSVERSE CREEP
BEHAVIOR

3.1. Experimental study

Silicon carbide–titanium MMCs will be used in the future bling tech-
nology as the reinforcement to sustain the high hoop stresses generated

by centrifugal effects. The essential characteristics (tensile strength,
fatigue, creep) have been studied mainly in the axial direction of uni-

directional composites (Ohno et al. 1994). However, transverse creep

is a condition that may be of some significance, associated with sec-
ondary centrifugal radial stresses generated by external parts and the
blades. An experimental study has been performed at ONERA, in order

to characterize the creep resistance of the composite under transverse

loads (Carrère et al. 2000).

The material is a titanium (Ti6242) matrix reinforced with long uni-

directional SiC (SCS6) fibers with a volume fraction of 35%. The spec-
imens used for the experiments are taken from an 8-ply plate manu-
factured by Snecma, using the fiber-foil technique. The behavior of the

titanium matrix is elasto–visco–plastic, the fibers are supposed to remain

elastic, and the protecting coat around the fibers (to prevent a reaction
between the titanium and the SiC) is a brittle zone where the decohesion

and damage in the transverse direction of the composite will take place.

Creep tests were performed at 500°C, under vacuum to avoid envi-
ronmental problems, for several loads (Carrère et al. 2000). Results
obtained are shown in Fig. 5 for the secondary creep rate, and can be

summarized as follows:

Below a critical stress, estimated here around 225 MPa, the creep
rate increases gradually and the lifetime is long—there is no rup-
ture even for long creep time (> 1500 h).
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Figure 5 Measured secondary creep rates of SCS6/Ti6242 at 500°C.

For applied stresses over 225 MPa, the creep rate increases drasti-

cally, leading to short failure times.

3.2. Micromechanical analysis

A micromechanical analysis based on the periodic homogenization

assumption and the finite-element method is performed in order to explain

the experimentally observed behavior. The regular position of  the fibers

Figure 6 Composite microstructure, definition of a unit cell, and axial visco–plastic

strain field after 1000 hours creep under 270 MPa.

inside the matrix, as shown in Fig. 6, allows us to select a unit cell that
defines the representative volume element of the composite.
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The constitutive behaviors considered for each constituent, fiber, matrix

and interphase, are as follows:

The fiber is elastic and transversely isotropic. Its characteristics

are given by literature data and independent measurements.

The matrix is elasto–visco–plastic, obeying a classical isotropic

cyclic constitutive equation that incorporates two back stresses,

one of which obeys the nonlinear kinematic hardening rule, the

second being linear. This constitutive equation has been deter-

mined previously from tension–compression tests performed on

pure Ti6242 over the whole temperature domain (20–870°C)

(Baroumes and Vincon 1995). The effects of viscosity observed at
high temperature are described with a power-law equation deter-

mined from relaxation (Malon 2000) and creep tests (Carrère et al.

2000).

The carbon interphase is treated using interface elements that obey

Tvergaard’s progressive debonding model (Tvergaard 1990). In

fact we use a modified model (Chaboche et al. 1997), which intro-

duces friction effects during the debonding phase, in order to elim-
inate the complete shear unloading when debonding is complete.

The model combines mode I and mode II decohesion, with a unique

damage parameter which is the maximum value

of the quadratic norm of relative mode I and mode II openings

(opening displacement divided by its value at complete debond-

ing). It uses 4 parameters (for each mode a maximum stress and

a fracture energy), in addition to the Coulomb friction parame-

ter . The mode II and friction parameters are determined by

push-out tests (Guichet 1998) and the complete numerical analy-

sis of this test. The mode I is adjusted from the transverse tensile

test. The corresponding simulations allow us to describe fairly

well all the important features: onset of decohesion before plas-
ticity takes place, progressive evolution of the unloading stiffness,
then appearance of plasticity and irreversible strains (with hys-

teretic effects under cyclic loads), interfacial closure effects when

reverse loadings are performed, etc.

The numerical simulation performed on the unit cell presented in

Fig. 6(b) follows as closely as possible the experimental procedure. The

main steps of the calculation are summarized as follows: (i) The first step

consists in determining the residual stresses induced by the manufactur-

ing process, and applying the load/temperature history undergone by

the composite (referred to as “manufacturing” in the following curves).
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(ii) The creep load is imposed, giving the response of the primary state

(referred to as “loading”), (iii) Finally, the creep test itself is simulated

(secondary stage). The third stage, directly linked to the final failure of
the specimen, is not modeled because, in this analysis, the crack initia-

tion and propagation in the matrix are not taken into account.

Figure 7 presents simulated results for two loadings: the first one,

200 MPa, below the critical stress, and the second one, 270 MPa, above

this stress. The figure shows the evolution of the damage parameter

around the interface between the fiber and the matrix, at different out-

Figure 7 Local interfacial damage evolution for creep under 200 and 270 MPa.

put times corresponding to the steps described before. It can be seen that

the manufacturing process does not induce significant damage. Once the

load is applied, damage starts and increases progressively. The compar-

ison between the damage evolution induced by the two loads shows that
for low levels, damage increases slowly (and sometimes saturates) dur-
ing the creep without breaking the interface, though for higher loads
the interface begins to break and this process continues until the com-
plete interface debonds. Additional results are discussed in (Kruch et al.
2000).

Therefore, the micromechanical analysis confirms that the matrix con-

trols the global deformation of the composite, but the load carried by

the matrix is controlled by the strength of the interface. For high stress

levels (near the critical stress), the load is carried totally by the matrix

(the interface being completely broken), leading to the failure of the com-
posite when a crack initiates and propagates in the matrix. For lower

stress levels the interfacial damage is not very important and the load
is carried partly by the fibers and the matrix, leading to long lifetimes.

The calculated secondary creep rates underestimate the experimental
ones by a signigicant factor. There are two main explanations: (1) the
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interface debonding model was determined at room temperature and

applied without change for high temperatures (taking into account only

the different thermally induced residual stresses), and (2) the titanium

matrix was identified from tests on a standard monolithic material whose

microstructure could be different from the one of the foil material used

to manufacture the composite. The anisotropic texture of the matrix is
right now analyzed at ONERA using the electron back-scattering diffrac-
tion (EBSD) technique. Numerical computations are under way, taking

into account the measured textures in the matrix visco–plastic behavior,

by using a polycrystalline aggregate model (Pilvin and Cailletaud 1990).

4. CONCLUSIONS

The considered damage modeling approaches have shown the following
capabilities for MMCs or similar composite situations:

Micromechanics-based constitutive equations using the TFA approach
are able to describe both thermo–elasto–visco–plasticity of the

matrix and the damage evolution in each constituent.

Two damage approaches—the direct simplified model and the gen-
eralized eigenstrain model—with different capabilities in terms of

degrees of freedom, are shown to be consistent with periodic homog-

enization results. Their application in true components as overall

constitutive and damage equations is underway.

The finite-element micromechanics analysis of transverse creep
loading conditions is able to predict quite well the experimen-

tal results. It assumes periodicity and uses a thermo–elasto–
visco–plastic constitutive equation for the matrix and an inter-

face debonding model for the fiber–matrix interphase (determined

independently by push-out and transverse tensile tests).

Improvements in the quantitative prediction of the secondary creep

rate is expected by taking into account the true matrix visco–
plastic behavior, including texture effects. Such an analysis is

underway, using a polycrystalline aggregate model.

A higher-level multiscale analysis of components (not presented)

has also been developed (Feyel 1999). The method uses imbri-
cated finite elements in order to replace the overall constitutive
equations in a finite-element structural analysis. This method has

the objective to deliver all the stress–strain redistributions at the

microscale, especially in regions where the two scales do interact,

very often the most critical regions of the component.
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