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Abstract We review the different facets of the phenomenon of mixing, including

its geometrical, temporal, and structural aspects. Then we suggest that

a complex mixture can be viewed as the superposition of independent

sources. Kinetics and geometry are shown to be closely linked to each

other when following the transient mixing of an isolated scalar source

in a turbulent flow. The composition law between multiple interacting

sources is established experimentally, therefore allowing one to recon-

struct any scalar field from well defined elementary contributions.

1. WHY MIXING?

Mixing1 is a subject that suffers from the Bourgeois Gentilhomme
complex. Like Monsieur Jourdain in Molière’s play (1670), scientists,

engineers, and indeed all of us often “do mixing without even knowing

it” (just think about yourself trying to prepare mayonnaise … ) .

As an operation, it consists simply in putting together two or more
initially segregated constituents and stirring, in order to attain unifor-
mity, or a new product, or the complete disappearance of one of the
constituents, etc.; mixing thus is indeed at the crossroads of many dif-
ferent areas of science. One often needs to mix elements in order to make

a new product, a homogeneous blend, or to make possible a chemical

reaction or an efficient combustion. One also needs to understand how

nature mixes or has mixed to gain information on, e.g., the size of a

pollutant spot in a valley, the rate of destruction of ozone in the atmo-

sphere, or the dynamics of the earth’s mantle. More than a fascinating

subject in itself, mixing is thus ubiquitous and a key process in many

complex man-made or natural operations.

1The text in this section is inspired from the foreword of Mixing: Chaos and Turbulence,
Chaté, H., E. Villermaux, and J. M. Chomaz (eds.), Kluwer Academic/Plenum Publishers,
New York, 1999.
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It is no doubt because of its universality that mixing, as noted with
regret by J. Ottino (1989), “… does not enjoy the reputation of being a
very scientific subject …” as is frequently the fate of interdisciplinary

topics.

The dendritic nature of the subject matter is revealed by the different
angles from which the various scientific communities attack the problem,

according to their needs.

These approaches can be roughly grouped into three naturally overlap-
ping categories, each of them of interest to different schools of thought:

Geometry

Kinetics

Structures

Beyond the tools and attitudes developed by different scientific groups

regarding the problem of mixing, one might appreciate that mixing, as
suggested by common sense, is the operation by which a system evolves
from one state of simplicity (the initial segregation) to another state

of simplicity (the complete uniformity). Between these two extremes,

complex patterns emerge and die. Questions then naturally arise: how
can the geometry of complex patterns be characterized; what is the clock,
the time-scale of the process; and what are the structures involved in
the flow?

1.1. Geometry

Very early on, emphasis was placed on the geometry of the mixing zone
in the combustion context. Indeed the involved, multiscale geometry
of the interface that separates two streams being mixed is not only a

spectacular facet of the process, but also sometimes at the core of the
physical problem. Exothermic reactions in gases, or reactions with a
fast kinetics in liquids confine the reaction zone to a thin region of space

and the flame appears as a sharp interface for most scales in the flow.
The total extent of the flame area dictates the propagation speed of the
front in premixed reactants, as noted by Damköhler (1940), and the net

combustion rate in diffusion flames (see the celebrated experiments of

Hawthorne et al. (1949)). Knowing how and why the front is distorted
by the underlying motions is thus crucial for predicting the flame extent.

The multiscale structure of the contour of a scalar blob immersed in
a disordered flow was recognized by Welander (1955), who suggested
how a connection could be made between the internal structure of the
underlying motions and the complexity of the blob shape. Welander even
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made reference to the Koch curve, long before fractals were popularized

in this and other contexts by Mandelbrot (1975).
The program, still very active today, for investigating the geometry

of the scalar support, or the iso-concentration surfaces in flows was
certainly already contained in Reynolds (1894). Reynolds was prob-

ably even more ambitious, suggesting that watching the dynamics of

“coloured bands” in a flow was a route towards understanding the driv-

ing motions.

1.2. Kinetics

Mixing is, in the strict sense, a transient process from initial segre-

gation to ultimate homogeneity. This calls for the understanding of the

kinetics and timescales of the process.

Studies on dispersion address the problem of the growth rate of the
radius of a tracer blob in a prescribed displacement field. In addition

to pure molecular diffusion in the medium at rest, fluid motion usually

enhances dispersion (Taylor 1921, 1953) and alters not only the diffusion

law, by a renormalization of the diffusion coefficient, but also the struc-

ture of the law itself. Due to persistent ballistic movements and ever

larger jumps in turbulent flows, dispersion laws exhibit, in the absence
of traps or slow recirculating motions, a faster-than-linear growth of the
mean-squared radius of the blob (Prandtl 1925, Richardson 1926). The
presence of bypasses or dead-ends in complex geometries alter, in con-

tinuous flow systems (a river, a valley through which wind blows, an

open chemical reactor), the residence time distribution of a tracer intro-
duced at the inlet of the system. The novel features of the distribution

are spikes at short times if a short circuit is present, and/or long tails

caused by traps and slow motions in confined cavities. This was first

described by Danckwerts (1953).
The kinetics of mixing does not only refer to dispersion. Dispersion

may result solely from a spatial reorganization of the quantity to be
mixed, with no interpenetration with the substrate at the molecular

level.

Mixing, as opposed to stirring, actually means homogenization at the

smallest, i.e. diffusive, scales; and the appropriate quantity to define and
measure the mixing time, namely the “intensity of segregation,” was
introduced by Danckwerts (1952). The mixing time (for instance in a

tank stirred with an impeller, familiar in the chemical industry) is found

to be solely determined by the large-scale features of the flow (integral
scale, root-mean-square velocity; see, e.g., Nagata (1975)), regardless of

the intimate structure of turbulence, provided the Reynolds number is
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large enough (typically larger than in a wide variety of  flows. This
absence of a role for turbulence and its structure in the characteristic
time of the inhomogeneities decay is an important point, which has been
somewhat overlooked. The intimate structure of the local rearrange-

ments in the flow does, however, play a role when chemical reactions

with a nonlinear kinetics, or consecutive–concurrent chemical reactions

occur within the mixture (Danckwerts 1953, Epstein 1990).

1.3. Structures

Disordered flows develop a broad hierarchy of scales of motion that

convect and distort the scalar field. Notwithstanding the fact that mix-

ing is, like the decay of the energy-containing eddies, a transient phe-

nomenon, the problem of the interaction of the scalar field with the

underlying turbulent flow has focused on hypothetical “stationary con-
ditions.” This approach parallels the Kolmogorov quasi-equilibrium

picture of turbulence (Corrsin 1951, Oboukhov 1949, Batchelor 1959,

Batchelor et al. 1959) and it is in this assumed limit that the timescales

of the stirring motions that distort the scalar field are all shorter than the
global mixing time (i.e. the variance of the scalar fluctuations is station-
ary as seen on the timescale of these motions), allowing the possibility

of resorting to cascade arguments, and spectral analysis.

It is customary, in turbulence, to oppose the statistical approaches,

the cascade representation being one of those, to the approaches focus-

ing on “structures” more or less coherent or permanent in the flow. This

opposition is somewhat artificial. Modern statistical models of turbu-

lence rely in fact on a description of the flow as a hierarchical structure

in the real space, possibly fractal, the structure of the hierarchy induc-

ing the statistics. The cascade picture, notably, is thus in a sense a
“structural approach.”

In this cascade picture, the mixing time is the time needed for the

scalar to travel, by a process of successive reductions of scale imposed
by the hierarchy of pre-existing scales of motion (eddies) in the flow,

from its initial size to the dissipation scale, prescribed by the Reynolds

and Schmidt numbers (Corrsin 1964). This description presents many

shortcomings, the first one being its inconsistency with the observed
fact that the mixing time depends linearly on the initial size of the

blob to be mixed, instead of on its size raised to the power 2/3. If
it is clear that mixing macroscopic objects implies a reduction of their

transverse size and a multiplication of ever smaller scales for diffusion to
act efficiently, there is no direct proof that a scalar blob should follow the
“Kolmogorov cascade” step by step to be ultimately erased by molecular
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Figure 1 Start-up vortex. A fast chemical reaction between the ring and the ambient

fluid traces the spiraling interface between the two media.

diffusion. Here is a sign that, in turbulence, even many basic properties

escape our precise understanding; the future should therefore be rich in

forthcoming works (see the program reviewed by Shraiman and Siggia

2000).
The will to reduce a complicated problem such as turbulence to a set

of elementary objects containing, presumably, all of the desired infor-

mation, is in keeping with a long tradition in physics and fluid mechan-

ics. Coherent structures, filaments, worms, and sheets are frequently-
invoked paradigms. In the context of mixing, the discovery of large-

scale vortical structures sustained by shear flows has prompted a surge

of activity (Brown and Roshko 1974). Originating essentially from a

Kelvin–Helmhotz type of instability, these intense, long-lived structures

are serious candidates to compete with the cascade representation since

they directly couple injection scales with dissipation scales, eliminat-

ing intermediary steps. Their existence alone is not, however, sufficient

to ensure a rapid mixing. When formed by a given velocity difference

across a shear layer, their size (equivalent to the Reynolds number) has

to grow beyond a critical value to allow the onset of the fine-scales activ-

ity, thereby hastening the uniformization within the layer. This is the

so-called “mixing transition” (Breidenthal 1981).

Although its ubiquitous character is striking and goes far beyond the

context of mixing layers, as recently reviewed by Dimotakis (2000), little
is known in detail about what occurs during and after this transition. It

is, nevertheless, a known fact that the deformation tensor in turbulent

flows bears, in the mean, two directions of stretching and one direc-

tion of compression as first analyzed by Betchov (1956). This property
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Figure 2 Cuts in the longitudinal and transverse directions of the flow of a coaxial

jet showing the rolling-up structures resulting from the shear instability between the

streams (from Villermaux and Rehab 2000).

leads to an increase in the length and area of material lines and surfaces

(Batchelor and Townsend 1956). The stretched sheet is thus likely to be

the elementary brick of mixing, whether turbulent or not (Ranz 1979,

Ottino 1989).

1.4. Towards a new paradigm

Restricting our field of sight to the particular limit of mixing in homo-

geneous fluids, and keeping the Pandora’s box of mixing in complex,
non-Newtonian fluids, multiphase flows, granular flows, etc., carefully

sealed, we may wonder what the minimal set of ingredients should be to

reach a satisfactory description of the above three facets of the mixing

phenomenon. Let us examine mixing patterns obtained in different flow

conditions, going from laminar (Fig. 1) to strongly turbulent (Fig. 3),

via transitional shear instabilities (Fig. 2).

Figure 1 shows a start-up vortex (a kind of a smoke ring), several
turns after its formation. The fluid constitutive of the ring develops a
chemical reaction with the ambient medium in which it is rolled up. This

is a fast chemical reaction and the reaction diffusion zone, very thin in

this case, traces the spiraling interface between the two media. The ring
is a non-turbulent object. It directly couples its own injection scale with

the diffusive scale via the spiraling motion and the accretion of sheets

of ambient fluid at each turn. However, the ring presents many scales,

even a continuous spectrum of scales, due to the continuous increase of

the striation thickness from the core of the spiral to its edge. This is a
fractal whose covering dimension is close to 3/2. This is a multiscale,
dissipative object; but where is the cascade?
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Figure 3 Blob of dye deposed in a large scale sustained turbulent flow converted

into disjointed sheets which dilute in the surrounding medium (from Villermaux and
Innocenti 1999).

Figure 2 represents cuts in the longitudinal and transverse directions
of the flow of a coaxial jet. The inner jet is slower than the outer

annular jet, and the pictures show the structures that result from the
instability of the shear between the streams. One recognizes in the

longitudinal structures formed from the shear instability the rolling-up
vortices similar to those in Fig. 1. But the coherence of these structures

gets lost and the resulting mixture finally looks like Fig. 3.

Figure 3 illustrates what happened to a small compact blob of scalar

deposed in a large-scale sustained turbulent flow. The blob has been pro-

gressively converted into disjointed sheets that dilute in the surrounding

turbulent medium. Except for loose, diffuse sheets of dye, no obvious

structures can be distinguished. The striking observation is nevertheless
the broad fluctuations in the transverse size of the sheets, and in the
concentration level they carry. Although captured at the same instant

of time in the snapshot of Fig. 3, those sheets have not all experienced
the same history. Some are still thick and dark, while others are already
so thin that they almost fade away in the diluting medium.

What is the paradigm, the elementary structure of mixing in disor-

dered flows? The coherent rolling-up vortex, the cascade, the stretched

sheet? It seems that none of these caricatures is fully satisfactory and
could give way to a new paradigm that would account for the parallel,

distributed histories of cumulated stretchings experienced by the mate-
rial elements in the course of time. This new paradigm could reconcile
the three facets of mixing by unifying geometrical, temporal, and struc-
tural aspects of the process: its intrinsic transient nature, its evolutive

geometry as a set of particular structures, namely sheets with distributed
histories.

7



Figure 4 A snapshot of the scalar distribution in the region 8 < x/d < 12 down-

stream of the injection point, with d = 1 cm and Re = = 6000.

2. FROM ELEMENTARY SOURCES
TO COMPLEX MIXTURES

2.1. The single source

Experiments (Villermaux et al. 1998, Villermaux and Innocenti 1999)

have been conducted aiming at following an initially smooth and com-

pact blob of dye released in a turbulent flow along its transient evolution,

from the initial segregation, towards uniformity. The scalar to be mixed

is injected continuously in the far field and on the axis of a turbulent

jet via a small tube whose diameter d is smaller than the local integral
scale L (typically The injection point behaves neither as
a source nor as a sink of momentum, in the mean, and the properties

of the flow (stirring scale L, r.m.s. velocity are constant during the
uniformization period of the scalar.

These experiments involve three types of scalars: temperature in air

temperature in water (Sc = 7), and the concentration

of disodium fluorescein in water (Sc = 2000), thus allowing an investiga-

tion of the quantitative role of the intrinsic diffusive molecular properties

of the scalar being mixed on the process.

Mixing time. The blob is progressively converted into a set of
stretched sheets, possibly coalescing as they fade away (Fig. 4), and the

scalar concentration fluctuations PDF, where denotes the

injection concentration, exhibits rapidly a self-preserving shape, whose
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Figure 5 Fluctuations PDFs, normalized by the initial concentration (temperature),

recorded for three Schmidt numbers 20 diameters d downstream from the injection

point. The PDFs exhibit an exponential decay of the form

Insert: The argument of the exponentials at different times ut/d and three Schmidt

numbers. Sc = 2000, Re = 6000 and 12000, d/L = 0.05, 0.1, 0.6. Re

= 6000, d/L = 0.05, 0.1, 0.16. Sc = 0.7, d/L = 0.08, Re = 23000;
0.7, d/L = 0.08, Re = 45000.

tail is an exponential with an argument increasing linearly in time t as

with the mixing time being found to be

as shown in Fig. 5. The factor f(Sc) is a slowly increasing function of
the Schmidt number. A fit consistent with the data is f(Sc) ln(Sc),
although a weak power-law dependence of the form is not

inconsistent as well.

The use of three different injection diameters indicates that the mixing

time of a blob of size d scales like ln(5Sc), as opposed to
according to the vision proposed by Corrsin (1964) and

Oboukhov (1949). The spectrum of the mixture is also found to decay

like in the inertial range of scales, and for scales smaller than the

injection scale d, as opposed to Moreover, the mixing time
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Figure 6 Left: Contours of the level sets of the scalar field of Fig. 4, for four different

concentration thresholds levels. From left to right and top to bottom,

0.3, 0.4 and 0.5. Right: Corresponding box-counting relationships.

Continuous lines fit by Eqn. (5).

has been found to be smaller than the cascade time We

have suggested (Villermaux et al. 2000) that the process of mixing does
not follow the sequential route expected from cascade arguments, but

is on the contrary “bypassed” by a strong and constant stretching rate

acting at the injection scale.

Transient geometry. The changes in the blob morphology in

the course of its dilution reflect closely the uniformization process itself.

This is best illustrated by following the transient shape of a particular

isoconcentration contour Figure 6 shows four contours corresponding

to four different concentration levels

Consider a blob of dye initially smooth and segregated. The number

of segments, or square boxes of linear size r needed to cover its contour

at a threshold level is on a two-dimensional

cut such as those of  Figs. 3 or 4. If the blob is immersed in a prescribed

displacement field whose stationary velocity increments give rise

to a scale-dependent stretching rate then the number of

segments constitutive of the contour at time t is

where the amplification factor expresses the net increase in the

contour corrugations length, all the more rapid that is intense, and

where the exponential factor reflects the disappearance of the scalar by

molecular diffusion according to the global temporal evolution of the

concentration histogram (Eqn. (1)).
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The maximal rate of shear, giving the separation rate of two material

points initially close to each other, is of the order of   as suggested
by the scale dependence of the mixing time in Eqn. (2). Considering
two material points belonging, for instance, to the same isoconcentra-
tion contour, initially separated by a distance r not necessarily infinitely
small, the rate at which their separation distance increases is smaller
than Velocity gradients in the flow tend to vanish, in the

mean, for separation distances r larger than the scale of the mean gradi-
ent support, namely the injection size d in the present case. A possible
model for the elongation rate for any scale r is

The number of boxes are represented, for the corresponding threshold

levels by (see Fig. 6)

according to (3) and (4). Accounting for the initial smoothness of the

contour, namely the covering relationship (5) is a

combination of the trivial 1 / r factor, times a corrective factor, increas-

ing in magnitude with time, and whose weight depends on scale: it is,

at a given instant of time, a decreasing function of scale, expressing the

fact that small scales have, in proportion, more contributed to the cor-
rugation of the contour than larger scales, precisely because shearing
motions are less efficient at large scales than at smaller ones (Eqn. (4)).

The covering relationship (5) thus exhibits a curvature, whose direct

consequence is the scale dependence of the fractal dimension of the con-
tour This fact has been recognized in
a number of related instances (see Villermaux and Innocenti 1999 and
references therein) where the local (in scale) fractal dimension is found
to increase from 1 at small scale, to larger values, possibly reaching 2,

characteristic of space-filling objects in two dimensions.

The above scenario provides a mechanism for this continuous transi-

tion, its origin lying in the close interplay between kinetics and geometry.

2.2. Multiple sources

A complex mixture in the real world is obviously the result of the

superposition of many different sources. If we think of a hot jet dis-
charging in a quiescent cold environment, the temperature fluctuations
on its centerline at a given distance from the nozzle are certainly likely
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Figure 7 Two nearby sources discharging in a turbulent medium in which they mix.

to be the result of cumulated contributions from different parcels of cold

fluid entrained at the boundary of the jet in the course of its develop-
ment.

The “signature” of one scalar source presented in the previous section

is likely to be altered if another source is present in its vicinity (as shown
in Fig. 7), and the interaction between those two has to be considered.

If and are the bare PDFs of each of the two sources

disposed in the vicinity of each other, the compound PDF is

shown in Fig. 8.

As long as the plumes emanating from each of the sources do not
interfere, the sources develop in an anticorrelated manner: the concen-
tration measurement point is either in one plume, or in the other (see

also Warhaft 1984). Then, as soon as the plumes merge, it is observed

experimentally that is very close to the convolution of

and The concentration C in the resulting mixture is the sum

of the concentration from source 1 and of concentration from
source 2, and being chosen independently in each of the original

distributions provided that
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Figure 8 Composition of sources of heat in water (Sc = 7). Solid line:
experiment with two sources. Dashed line: reconstruction of the scalar field from

and under the anticorrelated rule. Circles: reconstruction of the scalar

field by convolution.

This result is extended to the turbulent jet problem (Duplat and
Villermaux 2000), for which it is shown that the scalar fluctuation PDF

on the centerline is the result of well defined elementary sources whose

size is given by the local width of the jet.

These findings, bridging the kinetics and statistical aspects of the
phenomenon of mixing, also suggest that a complex mixture can be
understood as the superposition of well defined elementary contribu-

tions, whose spatial distribution reflects the entrainment properties of
the flow.
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