
HAL Id: hal-04510486
https://cnrs.hal.science/hal-04510486

Submitted on 6 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduced bases for model updating in structural
dynamics based on constitutive relation error

Arnaud Deraemaeker, Pierre Ladevèze, Philippe Leconte

To cite this version:
Arnaud Deraemaeker, Pierre Ladevèze, Philippe Leconte. Reduced bases for model updating in struc-
tural dynamics based on constitutive relation error. Computer Methods in Applied Mechanics and
Engineering, 2002, 191 (21-22), pp.2427-2444. �10.1016/S0045-7825(01)00421-2�. �hal-04510486�

https://cnrs.hal.science/hal-04510486
https://hal.archives-ouvertes.fr


Reduced bases for model updating in structural

dynamics based on constitutive relation error

A. Deraemaekera, P. Ladev�eezea,*, Ph. Leconteb

a LMT––Cachan (ENS de Cachan, Universit�ee Paris 6, CNRS), 61 Avenue du Pr�eesident Wilson, 94235 Cachan Cedex, France
b THALES (Thomson CSF Optronique), rue Guynemer BP 55, 78283 Guyancourt Cedex, France

This paper deals with the application of a model reduction method to the updating of models of industrial structures
with many degrees of freedom. The updating method is based on the concept of constitutive relation error. This is an
iterative method in which each iteration consists of a first step in which the most important errors in the model are
localized and a second step in which these errors are corrected. The reduction method follows a classical approach in
which we introduce a truncated modal basis to which the static responses associated with different excitations are added.
The efficiency of the method is illustrated on one example of a finite element model containing 10,000 degrees of
freedom. In the first part, we update the mass and stiffness properties of the model based on eigenmodes and eigen-
frequencies. In the second part, the damping properties are updated based on the frequency response functions of the
structure.
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1. Introduction

The use of numerical simulations is becoming increasingly important in today’s industrial applications.

With the increase of computer power, the models used have attained a high degree of complexity. Even

though computers can calculate the response of such structures for linear problems, iterative calculations

are usually excessively expensive.

Despite the increasing use of simulations, experimental testing is still necessary in order to validate the

hypotheses used for numerical models. Very often, the test data and numerical predictions are poorly

correlated. This can be explained by the difficulty of modeling certain parts of the structures, such as joints,

whose mechanical behavior is generally not very well known.

Whenever the correlation between test and calculations is unsatisfactory, model updating methods are

used. The purpose of such methods is to minimize the distance between the test data and the model by

modifying the numerical model. A state-of-the-art review of these methods can be found in [1]. The first
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model updating methods which appeared fall in the ‘direct method’ category in which corrections of the

mass and stiffness matrices of the model were sought without taking into account the physical meaning of

the modifications. Within this category, a first set of methods is based on the search for minimum norm

corrections [2,3]. A second set of methods is closely related to control theory [4,5]. The main drawback of

these methods is that the corrections usually lack physical meaning, so the models are often invalid when

they are used in configurations different from those used for the updating process.

In order to maintain the physical meaning of the model, indirect or parametric methods have been

developed. In these methods, the changes in the stiffness and mass matrices are based on variations of the

physical parameters of the model. The approach consists of building a cost function which represents

the correlation between the numerical model and the test data in terms of the physical parameters of the

model. Several types of cost functions can be used. They can be classified into three categories. The first two

categories are the input residuals [6,7] and the output residuals [8,9]. The third category is based on a

residual called ‘‘constitutive relation error (CRE)’’. The initial work on model updating goes back to the

eighties [10]. The first development of the method was aimed at achieving model updating based on

eigenfrequencies and eigenmodes [11]. Then, the method was extended to forced vibration problems in

[12,13]. This approach is based on the so-called Drucker error and has proved its ability to update the mass,

stiffness and damping properties [14]. The method can also deal with nonlinearities due to both the material

and contact. The concept of dissipation error was introduced in a new development presented in [15]. This

error has a clear mechanical meaning and emphasizes the dissipation properties of the model. Let us also

note the development of very similar methods for the free vibration case, such as minimum dynamic re-

sidual expansion (MDRE) [16] and modeling error in the constitutive equations (MECE) [17].

The cost function to be minimized is generally nonlinear with respect to the model’s parameters. Thus, it

is necessary to use an iterative procedure in order to update the model. The use of models with a large

number of degrees of freedom makes these calculations very costly in terms of computer time (CPU). The

knowledge of the excitations, the points of measurement and the possible variations in the structure enable

one to define a subspace of basis vectors whose dimension is much smaller than the initial space. This

approach has the advantage of reducing the cost of updating the model drastically. Among the existing

approaches, we mention those based on sensitivity vectors (for a state-of-the-art review of these methods,

see [18]), the multimodel approach [19] in which the basis is formed by the truncated modal bases of the

model for different values of the model’s parameters and the approach presented in [20] in which the

variation of the model’s parameters is interpreted as excitations applied to the initial structure. Let us also

mention the existence of an iterative method to construct a solution with a given accuracy for the MDRE

method [21].

The model updating method we use is based on the concept of CRE. The main idea in this method is to

subdivide the equations and quantities into a reliable group and another which is less reliable. For the

numerical model, it is assumed that the constitutive relations can be inaccurate, which leads to the con-

struction of an error called CRE. This error can be calculated locally on the structure, which allows us to

detect the regions which have not been modeled correctly. Regarding experimental data, the amplitudes of

the measured data (force, displacement, . . .) are considered to be the less reliable quantities which lead to

the construction of an error on the measurements. The reliable equations and quantities are satisfied ex-

actly, whereas the possible variations in the model are due only to the less reliable equations.

In order to reduce the cost associated with the calculation of the error, we first consider a truncated modal

basis. We assume that damping is small, that the frequency considered in the calculation is small compared

to the frequencies of the eigenmodes retained in the truncated modal basis and also that the variations in the

model’s parameters are small. With these assumptions, we show that the calculation of the error can be

treated as a forced vibration problem in which the excitations are associated with the less reliable equations

and quantities. However, the excitations are functions of the solution of the problem. Therefore, following

the approach described in [20], we seek a first-order approximation of these excitations.
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Then, the initial truncated modal basis is enriched with the identified excitations by following a classical

approach in which we add the Krylov vectors associated with these excitations. A localization step and a

correction step must be performed at each iteration of the method. A different reduced basis must be used

for each of these steps.

This paper is organized as follows: in the first part, we outline the model updating method based on CRE

and we detail the discrete formulation of the problem for linear, damped structures. In the second part, we

address the choice of the reduced basis. By rewriting the problem in order to express the error calculation on

the model as a forced vibration problem, we identify the different types of excitations that need to be taken

into account. Then, we propose a reduced basis which is a function of these excitations. In the last part, we

illustrate the effectiveness of the method on a numerical example. The structure is a simplified model of

camera equipment intended to be attached to an airplane. The finite element model has more than 10,000

degrees of freedom (dofs). We illustrate the capabilities of the reduction method based on modal data as well

as frequency response functions (FRF). The basis for localization contains less than 100 vectors which are

the low frequency modes to which static corrections to forces located at the sensors are added. For the

correction step, static corrections associated to the variable parameters are added to the basis used for

localization.

2. Presentation of the updating method

2.1. The reference problem

We consider a structure within a domain X during a time interval ½0; T � (Fig. 1). On the boundary oX,

displacements Ud and forces F d are prescribed on o1X and o2X respectively. Body forces f d exist inside the

domain X. The reference problem consists of finding the displacements UðM ; tÞ, stresses rðM ; tÞ and forces
CðM ; tÞ, t 2 ½0; T �, M 2 X which verify a set of equations that we subdivide into a reliable group and a less

reliable group:

The reliable equations:

• the equilibrium equations.

The less reliable equations:

• the constitutive relations.

In order to take into account both the free- and the forced-vibration cases, we will work in the frequency

domain. In addition to the equations hereabove, we need some data in order to solve the problem

Fig. 1. Domain studied and applied loads.
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(frequency, direction and amplitude of excitation, boundary conditions, . . .). In the framework of model

updating, this data come from measurements on a real structure. We consider for example a structure

excited in one point on which the displacements are measured at different locations. In this example, we

divide the data as follows:

The reliable measurements:

• the measured angular frequency x;

• the positions and directions of the excitation and sensors.

The less reliable measurements:

• the amplitudes of the forces ~FF d and displacement ~UUd at the points of excitation;

• the amplitudes of the displacements at the sensor points ~UUx, which constitute a vector of finite dimension

containing all discrete measurement values.

This separation is only given as an example and can vary depending on the problem. The reliable quantities

and equations define the admissible solution. We seek a solution which is admissible and which verifies the

less reliable equations and quantities as closely as possible. The problem we must solve is

ðPxÞ
Find s 2 Sx

ad

which minimizes e2xðs
0Þ with s0 2 Sx

ad

ð1Þ

where e2xðs
0Þ is the modified CRE. In the case of a single excitation, the measured displacements are normed

by the amplitude of the force vector so that only the amplitudes of the displacements appear in the ex-

pression of the modified error, which can be written at a given frequency as

e2xðsÞ ¼ n2xðsÞ þ
r

1	 r
kPfUg 	 ~UUxk

2
ð2Þ

where n2xðsÞ is the CRE and the second term represents the error on the measurements. e
2
xðsÞ contains all the

less reliable quantities and equations which are to be verified by the admissible solution as closely as

possible.

P is a projection operator which when applied to vector fUg gives the value of the vector at the sensors.
k 
 k2 is an energetic error measure equivalent to n2xðsÞ. The choice of this error measure will be addressed in
Section 3.1. The coefficient r=ð1	 rÞ is a weighting factor which allows us to assign a greater or lesser
degree of confidence to the measurements: the value of r is close to 1 if the measurements are considered

very reliable and close to 0 in the opposite case. The value currently used is 0.5.

In the case of multiple excitations, additional terms appear in the expression of e2xðsÞ in order to take into
account the fact that the amplitudes of the measured forces are not reliable quantities. For more details,

see [22].

Remark. There are other examples where we could consider that the direction or the position of the ex-

citation is not reliable. In that case, the definition of the modified CRE and the admissibility is thus changed

according to this new assumption.

2.2. Modified constitutive relation error

We consider the following constitutive relations:

r ¼ Heþ ixBe; ð3Þ
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C ¼ 	qx2U ð4Þ

where q is the density (assumed to be constant), H and B are the Hooke’s and damping operators and e

represents the deformation tensor. From these two constitutive relations, it is possible to build the ‘Drucker

error’ [23] which, for a given frequency (displacement formulation), is expressed as

n2xðU ; V ;W Þ ¼

Z

X

c

2
tr½ðHþ Tx2BÞðeðV Þ 	 eðUÞÞ�ðeðV Þ 	 eðUÞÞ�

þ
1	 c

2
qx2ðU 	 W Þ

�
ðU 	 W ÞdX ð5Þ

where ‘‘�’’ represents the complex conjugate; we introduced fields U , V , W such that

U c ¼ U ; ð6Þ

rs ¼ HeðV Þ þ ixBeðV Þ; ð7Þ

Cs ¼ 	qx2W : ð8Þ

We also define the relative error

n2xr ¼
n2x
D2x

ð9Þ

with

D2x ¼

Z

X

c

2
tr½ðHþ Tx2BÞeðUÞ�eðUÞ� þ

1	 c

2
qx2U �U dX: ð10Þ

Assuming that the structure is divided into substructures E 2 E, the error can be viewed as the sum of the
contributions of all substructures:

n2xrðsÞ ¼
X

E2X

n2ExðsÞ: ð11Þ

The relative error for each substructure is given by

n2Ex ¼
1

D2x

Z

XE

c

2
tr½ðHþ Tx2BÞðeðV Þ 	 eðUÞÞ

�
ðeðV Þ 	 eðUÞÞ�

þ
1	 c

2
qx2ðU 	 W Þ

�
ðU 	 W ÞdXE: ð12Þ

When the structure is studied in a frequency range, we introduce a weighting factor zðxÞ such that
Z xmax

xmin

zðxÞdx ¼ 1; zðxÞP 0: ð13Þ

The Drucker error in a frequency range is given by

n2T ¼

Z xmax

xmin

n2xrzðxÞdx ð14Þ

and the local contributions become

n2ET ¼

Z xmax

xmin

n2ExzðxÞdx: ð15Þ
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The modified CRE is now

e2T ¼

Z xmax

xmin

1

D2x
e2x:zðxÞdx: ð16Þ

The simplest choice for function zðxÞ is

zðxÞ ¼
1

xmax 	 xmin
: ð17Þ

This function can be adjusted based on the regions of interest in the frequency range. The value of n2T
represents the relative quality (in %) of the numerical model with respect to the measurements.

2.3. Implementation of the updating method

2.3.1. Localization step

For each experimental frequency x, we solve problem (Px) given by (1). The solution of this problem

allows to calculate the indicators n2T , n
2
ET and e2T defined in Section 2.2. The value of n

2
T represents the

relative quality (in %) of the numerical model with respect to the measurements in a certain frequency

range. This allows us to decide whether model updating is necessary.

If model updating is considered necessary, we start from our mathematical model which depends on a

number of uncertain parameters, such as Young’s modulus or the thickness of certain parts. We arrange

these structural parameters into a vector k; we call the corresponding space k. The selection of the ‘most

erroneous’ substructures is based on the criterion:

n2ET P d: max
E2E

n2ET ð18Þ

with, for example, d ¼ 0:8. Let us note that large errors in all substructures indicate that the error distri-
bution is nearly uniform in the structure. Let Z be the set of the substructures which verify (18).

2.3.2. Correction step

The localization step allows us to select the regions of the structure where the modeling error is large.

Only parameters belonging to these substructures are selected for correction. The problem is: Find k 2 kz
which minimizes

k ! JðkÞ; ð19Þ

kz ! R: ð20Þ

The functional JðkÞ is defined by

JðkÞ ¼

Z xmax

xmin

1

D2x
e2xzðxÞdx:

This is a nonlinear problem with respect to the parameters in k. We solve it using a BFGS-based

minimization algorithm. The gradients of the cost function are calculated numerically. Thus, the stiff-

ness, mass and damping matrices are reassembled and problem Px is solved for each variation of the

parameters.

2.3.3. Interruption of the model updating process

Once the correction has been made, the value of n2T is reevaluated. If it falls below the required quality

level n20, the updating process is terminated. If not, a new iteration consisting of a localization step and a
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correction step is performed. In each iteration, new erroneous substructures can appear as a result of the

substructures from the previous stages being corrected. This approach introduces a regularization to the

inverse (ill-posed) problem.

3. Discretization and model reduction of problem (Px)

The updating method is developed in a finite element environment which requires to discretize the

problem. Large size industrial models lead to costly calculations because problem ðPxÞ needs to be solved
many times in order to perform model updating. In this section, after detailing the discretization of the

problem, we propose a reduction technique in order to lower the costs associated to model updating of

large size industrial models.

3.1. Discrete formulation of problem (Px)

The discretization of the problem using the finite element method leads to the construction of the

stiffness, mass and damping matrices [K], [M] and [B] as well as the vectors of nodal values of fields U , V

and W , which will be designated by fUg, fV g and fW g. The discrete form of the modified error is

e2xðfUg; fV g; fW gÞ ¼
c

2
fU 	 V g

�
½K�
�

þ Tx2½B�
�

fU 	 V g þ
1	 c

2
fU 	 W g

�
x2½M�fU 	 W g

þ
r

1	 r
fPU 	 ~UUxg

�½Gr�fPU 	 ~UUxg: ð21Þ

Here, matrix ½Gr� represents the error measure k 
 k
2
. The choice of that error measure is not critical and, for

example, one can take

½Gr� ¼
c

2
½K�r
�

þ Tx2½B�r
�

þ
1	 c

2
x2½M�r ð22Þ

where ½K�r, ½M�r and ½B�r are the reduced stiffness, mass and damping matrices of the system at the mea-
surement locations (the classical Guyan reduction can be used). Other approaches exist but this simple

approach has given satisfactory results in the past. The triplet s ¼ ðfUg; fV g; fW gÞ must be admissible,
which means that must satisfy the equilibrium equations:

½K�½ þ ix½B��fV g 	 x2½M�fW g ¼ fF g: ð23Þ

fF g represents the excitation and is equal to zero in the case of free vibration. e2x can be minimized under
the admissibility constraint by introducing Lagrange multipliers, which leads to a saddle-point problem.

One can show that problem ðPxÞ requires the resolution of the following system of linear equations:

½A�fXg ¼ fBg ð24Þ

with

½A� ¼

c

2
ð½K� þ Tx2½B�Þ

1	 c

2
x2½M�

r

1	 r
PT½Gr�P

c

2
ð½K� þ Tx2½B�Þ

1	 c

2
ð½K� 	 ix½B�Þ 0

ð½K� þ ix½B�Þ 	x2½M� ð	½K� 	 ix½B� þ x2½M�Þ

2

6

6

6

6

4

3

7

7

7

7

5

; ð25Þ
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fXg ¼
fU 	 V g
fU 	 W g

fUg

2

4

3

5; ð26Þ

fBg ¼

r

1	 r
PT½Gr�f ~UUxg

0

fF g

2

6

4

3

7

5
: ð27Þ

3.2. Forced-vibration aspect of the problem

The second set of equations allows us to express fU 	 W g as a function of fU 	 V g:

fU 	 W g ¼ 	
c

1	 c
½K�ð 	 ix½B�Þ

	1
½K�
�

þ Tx2½B�
�

fU 	 V g: ð28Þ

3.2.1. Approximation

We assume that the operator ix½B� is small compared to the stiffness (this is the case if the damping or the
frequency is small), which allows us to perform a reduced-order development of operator ½K� 	 ix½B�ð Þ

	1
,

which yields

fU 	 W g ’ 	
c

1	 c

X

m

j¼0

ðixÞj ð½K�	1½B�Þj



þ Tx2ð½K�	1½B�Þjþ1
�

fU 	 V g ¼ 	
c

1	 c
Zm½ �fU 	 V g: ð29Þ

The first set of equations in (24) becomes

½K�
�

	 x2½M�
�

fU 	 V g ¼ fF1g þ fF2g þ fF3g ¼ fF gT ð30Þ

with

fF1g ¼ 	
2

c

r

1	 r
PT½Gr�PfUg




	 ~UUx

�

;

fF2g ¼ 	Tx2½B�fU 	 V g;

fF3g ¼ 	x2½M� ½Id�ð 	 Zm½ �ÞfU 	 V g:

Field fU 	 V g is the solution of an undamped forced vibration problem where the force vector is the sum
of three contributions. If we retain only the first-order term of the development (m ¼ 1), we get

fF3g ¼ Tx2½M�½K�
	1
½B�fU 	 V g:

The third set of equations in (24) becomes

½K�
�

	 x2½M�
�

fUg ¼ fF g þ fF4g þ fF5g ð31Þ

with

fF g excitation applied to the structure;

fF4g ¼ 	ix½B�fUg;

fF5g ¼ ½K�

�

þ ix½B� þ x2
c

1	 c
½M�ð½Id� þ Tx2½K�	1½B�Þ

�

fU 	 V g:

Field fUg is also the solution of a forced vibration problem.
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3.2.2. Remark

In the correction step, system (24) is solved many times for different values of the structural parameters.

This leads to modifications of matrices ½K�, ½M� and ½B� which become respectively ½Kþ DK�, ½Mþ DM� and
½Bþ DB�. Thus, the forced vibration problems are modified by adding on the right-hand side terms of the
form:

fF gK ¼ ½DK�fUg; ð32Þ

fF gM ¼ ½DM�fUg; ð33Þ

fF gB ¼ ½DB�fUg: ð34Þ

3.3. Reduced bases for the resolution of problem (Px)

3.3.1. Generalities

For large industrial models, the direct calculation of the solution of problem (Px) can be very costly.

Although the system is linear, its size is 3N � 3N , N being the number of degrees of freedom of the model.
An alternative is to use a reduced basis consisting of the so-called Ritz vectors. Let ½T� be that reduced basis;
we define the following reduced quantities (identified by the subscript r):

fUg ¼ ½T�fUgr; ð35Þ

fU 	 V g ¼ ½T�fU 	 V gr; ð36Þ

fU 	 W g ¼ ½T�fU 	 W gr; ð37Þ

fF gr ¼ ½T�TfF g; ð38Þ

½K�r ¼ ½T�
T
½K�½T�; ð39Þ

½M�r ¼ ½T�
T
½M�½T�; ð40Þ

½B�r ¼ ½T�T½B�½T�; ð41Þ

Pr ¼ P½T�: ð42Þ

Now, the system to be solved is 3NR� 3NR, NR being the number of vectors in the reduced basis ½T�. Note
that choosing the same basis for fUg, fU 	 V g and fU 	 W g is not necessarily optimal. It has the
advantage however to lower the number of reduced operators to compute.

3.3.2. Choice of the reduced basis

At a given frequency x, we consider the undamped forced vibrations problem in its discrete form:

½K�
�

	 x2½M�
�

fUg ¼ fF g: ð43Þ

Let fUjg and xj be an eigenmode and the associated eigenfrequency. They verify the equation

ð½K� 	 x2j ½M�ÞfUjg ¼ f0g: ð44Þ

For a system with N degrees of freedom, there are N pairs ðfUjg;xjÞ which verify this equation. A classical
approach to the construction of a reduced basis is to consider a reduced set of such vectors. A truncated

modal basis is built by taking L eigenmodes such that

9



x

xi

� 1; i > L: ð45Þ

In order to improve the approximation, a series of vectors, commonly called the Krylov vectors associated

with the excitation fF g, is added to the basis. These vectors take the form:

½K�
	1
ð½M�½K�

	1
Þ
j
fF g; j ¼ 1; . . . ;H : ð46Þ

A justification can be found, for example, in [24] (where the method is called modal acceleration method).

The first term of this series is the static response of the structure to the given excitation fF g. The next terms
are static responses to forces ð½M�½K�

	1
Þ
j
fF g. One can show that the contribution of the terms in the Krylov

series decreases if condition (45) is verified. This explains why a very good approximation of the solution

can be obtained by simply adding the static response of the structure to the L selected eigenmodes.

3.3.3. Application to problem (Px)

3.3.3.1. Calculation of {U 	 V }. Let us first note that the static response to fF3g corresponds to the second
vector of the Krylov series associated with fF2g. Thus, the Krylov vectors associated with fF2g are sufficient
to represent the excitation fF3g.

3.3.3.2. Approximation of the excitations. The vector fF1g is a function of fUg which is solution of the
problem and, therefore, unknown. One can see that the components of fF1g are zero except for the
measured degrees of freedom. Thus, this force can be considered as the sum of unit forces (fF1gi) at each of
the NS sensors:

fF1g ¼
X

NS

i¼1

aifF1gi: ð47Þ

fF2g is a function of fU 	 V g, which is also unknown. However, fU 	 V g can be approximated by

fU 	 V g ¼ ½T�0fU 	 V gr ð48Þ

with

½T�0 ¼ fUg1 
 
 
 fUgL½K�
	1fF1g1 
 
 
 ½K�

	1fF1gNS

h i

: ð49Þ

Thus, fF2g can be expressed as

fF2g ¼ ½B�
X

L

i¼1

aifUig

"

þ
X

NS

i¼1

bi½K�
	1
fF1gi

#

: ð50Þ

The second term in this expression represents a correction to the first. In order to simplify the expression of

fF2g, we consider only

fF2g ¼
X

L

i¼1

ai½B�fUig: ð51Þ

This approach is very similar to the one presented in [20] and to basis initialization methods considered in

[21] and the correction proposed in [18].

3.3.3.3. Calculation of {U}. Following the same approach we used for the approximation of fF2g, we show
that

fF4g ¼
X

L

i¼1

ai½B�fUig ¼ fF2g: ð52Þ
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fF5g can be decomposed into four contributions:

½K�fU 	 V g;

½M�fU 	 V g;

ix½B�fU 	 V g;

½M�½K�	1½B�fU 	 V g:

The first two contributions do not lead to a correction since the terms ½K�fUig and ½M�fUig excite only
mode fUig. The fourth contribution is the second Krylov vector of the third contribution and, thus, can
also be disregarded. The third contribution leads to the same terms as in the case of fF2g.

3.3.3.4. Correction. For the correction step, using the same approach, we get the following approximations:

fF gK ¼
X

H

i¼1

bi½DK�fUig; ð53Þ

fF gM ¼
X

H

i¼1

ci½DM�fUig; ð54Þ

fF gB ¼
X

H

i¼1

di½DB�fUig: ð55Þ

3.4. Summary

We have shown that problem (Px) can be expressed as an undamped forced vibration problem for the

different fields considered in the calculation of the error. The excitations can be approximated by a linear

combination of the forces:

• fF g, vector of the excitations applied to the structure;
• fF1gi, unit force at sensor i;
• fF2gi ¼ ½B�fUig, i ¼ 1; . . . ; L, associated with damping;
• fF gKi ¼ ½DK�fUig, i ¼ 1; . . . ; L, associated with variations of the stiffness parameters;
• fF gMi ¼ ½DM�fUig, i ¼ 1; . . . ; L, associated with variations of the mass parameters;
• fF gBi ¼ ½DB�fUig, i ¼ 1; . . . ; L, associated with variations of the damping parameters.

These excitations are associated with the less reliable experimental measurements (intensity of the excitation

and amplitudes at the sensors), with damping and with the less reliable equations of the numerical model

(mass, stiffness and damping parameters of the constitutive relations). The reduced basis contains the first L

eigenmodes as well as the Krylov vectors associated with each excitation.

3.5. Practical considerations in building the reduced bases

The environment used for the implementation of the method consists of the MATLAB program [25] and

the SDT toolbox [26]. The numerous options of the toolbox allow us to calculate the eigenmodes and

frequencies, assemble the elementary and global stiffness, mass and damping matrices and calculate the

static responses to the excitations. The reduced matrices constructed with these vectors are usually ill-

conditioned because some vectors are very nearly collinear. Therefore, it is necessary to orthonormalize the
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reduced basis. This is achieved using a Lanczos-type algorithm with SVD (singular value decomposition)

(fe_norm function in SDT) in order to obtain a well-conditioned problem. In the course of applying this

function, certain vectors can be eliminated.

4. Numerical applications

4.1. Presentation of the structure

The structure studied is shown in Fig. 2(a)

It is a simplified model of camera equipment intended to be attached to an airplane. The finite element

model has 10,008 dofs. It is divided into 18 substructures identified by different levels of grey. Three

modifications were applied to the initial model prior to simulating the measurements (Fig. 2(b)):

• a þ20% stiffness increase at the bindings (in black, DK1);
• a 	40% stiffness reduction at the connection ring (in grey, DK2);
• a 	20% error on the mass at the tip of the equipment (in light grey, DM).

4.2. Application 1: modal data

With the modified model, 10 modes were calculated using the finite element model. The sensor con-

figuration, shown on Fig. 3, consisted of 27 triaxial sensors totalling 81 measured accelerations.

4.2.1. Localization step

The methodology presented in the case of the damped FRFs can be applied to the modal data by taking

fF g ¼ 0 and ½B� ¼ 0, i.e. fF2gi ¼ 0. The only excitation left is fF1g, which is a linear combination of unit
forces located at the sensors (81 locations in this case).

The localization step was carried out using the following three bases:

• Basis 1: first 100 eigenmodes of the nominal structure;

• Basis 2: first 10 eigenmodesþ static responses to fF1gi, i ¼ 1; . . . ; 81 (first term of the Krylov series);
• Basis 3: Basis 2 þ second term of the Krylov series associated with fF1gi (i ¼ 1; . . . ; 81).

A reference calculation was carried out using the full model. The local indicators are compared in Fig. 4.

Fig. 2. Simplified model of camera equipment: (a) finite element model and (b) modifications.
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Fig. 4. Location indicators: (a) reference calculation, (b) Basis 1, (c) Basis 2, and (d) Basis 3.

Fig. 3. Sensor configuration of the test structure.
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The location indicators show that Bases 2 and 3 gave the correct location of the modifications according

to the reference calculation. On the contrary, Basis 1, which uses only the eigenmodes of the nominal

structure, failed to detect the modification on the connection ring.

The global error n2T was 6.079% for the reference calculation and 6.12%, 6.10% and 6.079% for the 10

eigenmodes and Bases 1, 2 and 3 respectively. Although the error level was well-represented by all three

bases, the location indicator gave poor results for Basis 1. Basis 3 gave no improvement of the results

compared to Basis 2, which means that the first term of the Krylov series is usually sufficient. Thus, we

retained only the first term of the series from there on.

4.2.2. Correction step

In order to verify the effectiveness of the proposed bases, we assumed that the erroneous parameters were

known. We had two stiffness parameters and one mass parameter. Since no measurement noise was added,

we could expect the minimization process to converge toward the exact value of the known modifications

introduced in the model. Thus, we performed the correction with the previous three bases.

As proposed, we also added the static response to vectors fF gKi and fF gMi for the three parameters

retained in the minimization. Thus, we defined two new bases:

• Basis 4: first 20 eigenmodes þ static responses to FKi and FMi (i ¼ 1; . . . ; 20);
• Basis 5: Basis 4 þ static responses to fF1gi, i ¼ 1; . . . ; 81.

The results are shown in Table 1.

eT0 and eT1 represent the values of the total modified error for the first 10 modes before and after

correction. The last column of the table shows the number of vectors retained in the reduced bases. Bases

1–3 do not contain the vectors associated with mass and stiffness variations. Therefore, they yielded a poor

correction of the stiffness parameter DK2, which is the parameter which did not show up in the localization

step with Basis 1. On the other hand, Bases 4 and 5 produced values which were very close to the exact

values for all the parameters. The absence of vectors associated with the sensors in Basis 4 resulted in a

slight overestimation of the initial error. The results show that the most important vectors for the correction

step are those associated with FKi and FMi.

Although it is preferable to retain the vectors associated with fF1gi in the basis, these results show that
they are not always needed for the correction step. Therefore, they can be skipped if this reduces the

computation costs significantly.

This example illustrates the effectiveness of the reduction method proposed here. For the localization

step, we have shown the importance of using the static responses to unit forces at each sensor. For the

correction step, we have shown the importance of including the vectors associated with the variations of the

parameters to be updated. A reduced basis taking all these vectors into account can be used in both steps. If

this basis is too large, a different basis can be used for each of the steps and the localization step can be used

to build the reduced basis for the correction step.

Table 1

eT0 (%) eT1 (%) DK1 (%) DK2 (%) DM (%) size (T)

Basis 1 8.16 5.23 þ19 	60 	20 100

Basis 2 6.32 0.56 þ19 	47 	20 91

Basis 3 6.29 0.44 þ19 	46 	20 172

Basis 4 7.94 0.29 þ20 	40 	20 80

Basis 5 6.29 0.03 þ20 	40 	20 161

Exact value – – þ20 	40 	20 10 008
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4.3. Application 2: Frequency response functions

We considered the same structure as in Application 1 excited with a shaker as shown in Fig. 5(a). The

sensor configuration was the same as that in Fig. 3. A nonproportional viscous damping model was used,

which means that each elementary damping matrix can be written:

½B�E ¼ a½K�E: ð56Þ

Note that the updating method can be used with any kind of damping (hysteretic, fractional derivatives

based model, . . .). We considered three regions:

• the main structure (Fig. 5(b), in white), coefficient a0;

• Ring 1 (Fig. 5(b), in black), coefficient a1;

• Ring 2 (Fig. 5(b), in black), coefficient a2.

The initial values of the damping coefficients are a0 ¼ 10
	10, a1 ¼ 10

	6 and a2 ¼ 10
	6. We assumed that the

mass and stiffness properties were perfectly known. The measurements were simulated from the initial

model with the following modifications to the damping coefficients: a1 ¼ 10
	2, a2 ¼ 10

	2.

The transfer functions for the initial and modified models and for the sensor located near, and in the

direction of, the excitation are plotted in Fig. 6.

4.3.1. Localization step

We focused on the frequency range (15–30) Hz and we considered 10 regularly spaced frequencies in that

interval. The reduced bases were

• Basis 1: first 100 eigenmodes of the structure;

• Basis 2: first 20 eigenmodesþ static responses to fF1gi (i ¼ 1; . . . ; 81) and fF g;
• Basis 3: Basis 2þ static responses to fF2gi (i ¼ 1; . . . ; 20).

Fig. 5. Excitation (a) and definition of damping distribution (b).
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The values of the location indicator are given in Fig. 7. Basis 1 did not enable us to localize the damping

errors correctly. Bases 2 and 3 gave very similar results and allowed us to localize the damping errors. In

this case, there was no need to add the vectors associated with fF2gi, which can be explained by the fact that
in the initial model damping is very small. We will show that these vectors were necessary in the correction

step, in which the correction leads to a model with larger nonproportional damping.

4.3.2. Correction step

Like in the previous example, we corrected the model by acting on only the erroneous parameters of the

model in order to see whether we would converge toward the exact known modifications. For the three

bases considered, the algorithm converged toward the values given in Table 2. Table 2 shows that Basis 1

gave very poor values of the damping parameters for the updated model. Basis 3 gave the best results,

which shows the importance of the vectors associated with fF2gi.
This application, like the previous one, shows the importance of the static responses to fF1gi and fF g for

the localization and the importance of the vectors associated with fF2gi when damping is nonproportional.

Table 2

eT0 (%) eT1 (%) a1 a2 size (T)

Basis 1 27.36 23.95 2.25 0.03 100

Basis 2 36.91 1.78 0.0078 0.0076 102

Basis 3 16.34 0.19 0.0099 0.0101 142

Exact value 0.01 0.01 10 008

Fig. 6. Measured transfer functions (––) and initial model (- - -).
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Let us note that the vectors associated with fF2gi are, in this case, similar to those associated with fF gBi,
which shows the effectiveness of the proposed reduced basis for the correction step.

5. Conclusion

In this paper, we discussed the problem of how to reduce computing costs in performing model updating

based on the error in constitutive relation on large industrial models with several hundreds of thousands of

degrees of freedom.

We showed that the calculation of the modified CRE relation can be treated as a forced vibration

problem. We also showed that, under certain assumptions, the excitations can be approximated by a linear

combination of a set of well-defined excitations.

The reduced bases we used contains the first eigenmodes of the structure as well as the static responses to

forces associated with the less reliable quantities in the model, i.e. the parameters in the constitutive re-

lations and the uncertainties on the experimental quantities.

The application of this methodology to model updating showed that for a structure in which the number

of sensors is significantly less than the number of degrees of freedom (which is the usual case for typical

Fig. 7. Location indicators: (a) Basis 1, (b) Basis 2 and (c) Basis 3.
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industrial structures) the static responses associated with the sensors and excitations are sufficient in the

localization step. On the other hand, additional vectors associated with the variations of the parameters

give very good results in the correction step.
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