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Abstract—The problem of configuring a variability model is
widespread in many different domains. Renault has developed its
technology internally to model vehicle diversity. This technology
relies on the approach known as knowledge compilation to
explore the configurations space. However, the growing variability
and complexity of the vehicles’ range hardens the space repre-
sentation problem and may impact performance requirements.
This paper tackles these issues by exploiting symmetries that
represent isomorphic parts in the configuration space. The
extensive experiments we conducted on datasets from Renault
show our approach’s robustness and effectiveness: the achieved
gain is a reduction of 52.13% in space representation and 49.81%
in processing time on average.

Index Terms—Knowledge compilation, Product line, Variabil-
ity model, Value Symmetries

I. INTRODUCTION

Variability Modeling Problems [1] are pervasive in real
life. Such problems are crucial in the car industry, as they
touch all business activities, including design by engineers,
manufacturing, vehicle documentation, and marketing fore-
casts. As an example of Variability Model (VM) in that
industry, let’s consider a VM M: it has a variable model,
which represents the vehicle model with values range in the
domain {m1,m2}; a variable fuel type with the domain
{petrol, diesel, LPG}. Then, variable dependencies describe
activity-related constraints (business, technical, legal require-
ments, and many others). For instance, the constraint model =
m1 ⇒ fuel_type = LPG leads to four possible combinations
that form the different configurations for this vehicle. We
refer to the set of possible configurations for a VM as the
configuration space or the solution space.

Renault is a world-leading automobile manufacturer that
uses such VMs to model its vehicle range. Some ranges of
vehicles of Renault can reach 1032 possible configurations.
For these large VMs, Renault has plenty of variants and
complex business requirements for internal and external us-
ages. For example, the inside usages cover variant designs
for engineering, sales, calculation of manufacturing cost, fore-
cast data, and many other departments. In each of these
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designs, it will require performing queries on populations
of vehicles. These queries are always specified with several
variable assignments, and the purpose of such queries could
be checking the satisfiability or looking for the satisfying
configurations. For the external usages, the most common
one is the online configuration of vehicles that customers are
entitled to: they can choose a vehicle’s model and the motor
type or other options. The manufacturer needs to respond to
those customers’ requests within less than a second, with the
set of cars matching the requested configuration. A similar
case of customization has been discussed in [2].

Responding to the requests of internal applications or online
customer configurations boils down to searching for and
returning a solution from the configuration space of the VMs.
From the theoretical point of view, constructing the config-
uration space is equivalent to solving a typical Constraint
Satisfaction Problem (CSP) [3]. Indeed, a VM can straightfor-
wardly translate to a CSP [4], whose solutions correspond to
the configuration space. Furthermore, answering requests can
happen in two ways: the first, the natural one, is to solve a CSP
problem at every request. Taking an online configuration as an
example, it becomes a new set of constraints when inputting
a configuration request. It is then combined with the CSP
representing the VM, deriving a new CSP problem. If this
latter has a solution, then the asked configuration is possible.
While this solution is simple, its computational cost (time) is
expensive since one has to solve an NP-complete problem at
each request [5]. However, if the underlying problem falls into
a polynomial category, or the VM is too easy to solve (less
than a second), it can be solved many times cost-less. When
evaluating the VMs of Renault , it turns out that the considered
VMs are neither polynomial nor easy to solve. In particular,
using state-of-the-art solvers (e.g., choco [6], absCon [7])
on the benchmarks reveals that around 30% of the VMs are
solved in more than 5 seconds to get only one solution. Thus,
responding to requests in this way is unacceptable.

The second possible solution is to build, once and for
all, the configuration space, using an approach known as
knowledge compilation [8]. The idea of knowledge compilation
is using symbolic structures (e.g., BDD [9], SDD [10]) to



represent the problem configuration space. Of course, building
the configuration space with such symbolic structures is more
complicated than finding just one solution. However, since this
activity can run offline and the configuration system can reuse
such a compiled knowledge for all requests, this approach
seems to be a good compromise. This second solution is the
one Renault has retained, implemented, and used for a long
time. Though, it is subject to a critical limit: the memory
size of the symbolic structure. Indeed, for the internal or
external usages, the symbolic structure reside in memory,
and all requests operate from there. The total size of such
compiled structures can reach dozens of Gigabytes, which
may bring potential pressure for the memory usage. So far,
several heuristics and optimizations control the pressure on the
memory. Here, we want to go further and improve the system
by exploring what is called Symmetries [11] that represent
isomorphic parts in the configuration space.

To illustrate symmetries, let’s consider again the aforemen-
tioned variability model M augmented with a new variable,
color, ranging in domain {C1, C2, ..., C10} (representing ten
possible colors). If all colors are interchangeable without any
constraint, then the number of solutions in the initial model M
is multiplied by ten. However, storing all these configurations
in the solution space is not mandatory since we can obtain the
whole set of configurations by only knowing the solutions of
the initial model M augmented with only one value for the
color variable. Indeed, the interchangeability property if the
domain of the color variable is an example of symmetries.

In this context, this paper describes our approach to exploit
symmetries to improve the configuration system of Renault.
In addition, our requirement of this study is to avoid radical
changes on this system, because such changes may equally
lead to modifications of the related applications, which may
bring potential and unnecessary risks. Thus and as we will
show in the rest of the paper, our approach is integrated with
the current system in a weakly coupled manner, altering it as
little as possible while optimizing it. The contributions of this
paper are thus:

1) A detailed explication of symmetries’ effects over the
symbolic structure of Renault’s configuration system.

2) Revisiting the product configuration system by exploiting
symmetries.

3) A validation of the proposed approach with massive
experiments based on the actual industrial CSP instances
that show the robustness and effectiveness of our ap-
proach.

The paper is organized as follows. Section II firstly presents
the basic concepts of CSP, then briefly describes how a
VM translates as a CSP, introduces the current configuration
system of Renault, and details the motivation for exploiting
symmetries. Section III presents symmetries in CSP and ex-
plains how they can be profited to compress the configuration
space with an example. Section IV details the contribution of
this paper. It first revisits the current product configuration
system, then describes how we have extended the workflow

of the current configuration system to integrate symmetries.
Section V presents and discusses the experimental results
of our method. Section VI presents the related work, while
section VII concludes this paper.

II. A CONSTRAINT-BASED REPRESENTATION OF
VEHICULE DIVERSITY

This section provides several basic definitions and notations
of CSPs that the remaining of the paper will use. We then
introduce the Renault’s variability models and their relations
with CSPs. We present the current configuration system and
end the section by explaining our working constraints and
motivations of exploring symmetries.

A. Definitions and Notations

A CSP is a triple (X,D,C), where X is a set of variables,
D is a set of domains, and C is a set of constraints. Each
variable x ∈ X is associated with a domain Dom(x) ∈ D.

A constraint, c ∈ C, can be intentional or extensional:
• Extension constraint: also called table constraint is de-

fined by enumerating the list of tuples that are allowed
or forbidden. It is of the form extension(X,S) where
X = ⟨x1, .., xn⟩ and S is a set of supported/forbidden
value tuples, S = ⟨⟨d1, ..., dn⟩, ...⟩ (with di ∈ Dom(xi)).

• Intension constraint: it is a constraint of the form
intension(X,P ) where X = ⟨x1, ..., xn⟩ is a sequence
of n variables (the scope of the constraint), and P is a
predicate expression, with n formal parameters, on the
variables of X .

A literal is a statement of the form x = d, where d ∈
Dom(x). An assignment is a set of literals covering all the
variables in X . A partial assignment is a set of literals
covering a subset of X . A solution is an assignment consistent
with all the constraints in C.

B. Renault’s Variability Models as CSPs

Mapping VMs to CSPs is a process, which uses CSP
variables to model vehicles features (such as the fuel type,
model...), uses variables’ domains to model available choices
of the features (such as the petrol for fuel type, m1 for
model...), and finally translates the constraints under the form
of extensions or intensions. The use of one or the other
form depends on the choice made during the VM modelling
process. More details can be found in [12].

We give as example a CSP p generated from the VM of
Renault. We will use this example for the rest of the paper:

• X = {model, fuel type, airconditioning, dustfilter}
• D = {{m1,m2}, {petrol, diesel, LPG}, {manual, auto,
none}, {with, none}}
with, Dom(model) = {m1,m2},
Dom(fuel type) = {petrol, diesel, LPG},
Dom(airconditioning) = {manual, auto, none} and
Dom(dustfilter) = {with, none}

We have one extension constraint c1:

c1 : extension(⟨model, fuel type⟩, ⟨⟨m1, LPG⟩,



⟨m2, P etrol⟩, ⟨m2, diesel⟩, ⟨m2, LPG⟩⟩)

We have several intension constraints:

c2 : intension(⟨model, fuel type, airconditioning⟩,
⟨(((model = m1) ∨ (model = m2)) ∧

((fuel type = petrol) ∨ (fuel type = diesel))) ⇒
airconditioning = auto⟩)

c3 : intension(⟨airconditioning, dustfilter⟩,
⟨airconditioning = manual ⇒ dustfilter = with⟩)

It’s important to mention that, in our context, all manipu-
lated variables have only finite domains, therefore any inten-
sion constraint can map to an equivalent extension constraint.

C. Overview of the current configuration system

Renault’s current compilation system can be divided into
two parts: offline part generates and saves the configuration
space while online part deals with variant requests. This
section details the offline part and highlights our motivation of
exploring symmetries. In addition, we give an overview of this
system and specify the challenges and our working constraints.

a) Current configuration system: as mentioned in the
introduction, the configuration space is represented by a
symbolic structure, which implicitly saves all the possible
configurations. More specifically, it is based on a private
compiled representation of vehicle diversity in the form of a
cluster tree, which has been used in various applications since
1995 in Renault [13]. Here, we detail the offline process of
the construction of the cluster tree (more details can be found
in [13], [14]).

Fig. 1: cluster1 and cluster2.

• Implementation of a cluster: a cluster is a group of
variables associated to a set of partial solutions of a set of
constraints. These latter should only involve the variables
in the cluster. The compilation process encodes literals as
Boolean variables. Each partial solution is encoded as a
vector of bits. For the CSP p, consider that cluster1 refers
variables model and fuel type, and cluster2 refers vari-
ables airconditioning and dustfilter. c1 contains two
variables, model and fuel type, so c1 is associated to
cluster1. Similarly, c3 is associated to cluster2. We then
use Boolean variables to encode literals: a for model =
m1, b for model = m2, c for fuel type = petrol, d for
fuel type = diesel, and e for fuel type = LPG. We
use f, g, h to encode, resp., the choices manual, auto,
none of airconditioning, and use i, j to encode, resp.,
the choices with, none for dustfilter. We calculate the
partial solutions for each cluster and get the cluster1 and
cluster2 as in Figure 1.

• Construction of the cluster tree: A cluster tree is a tree
whose nodes are clusters. An arc between two clusters
shows a dependency between the linked clusters as a
set of constraints. Hence, these latter involve variables in
both clusters. It is encoded as a data structure that eval-
uates whether the partial solutions in the linked clusters
are consistent w.r.t. these constraints. Thus, the structure
allows to restore the complete configurations from the
partial solutions in each cluster. Figure 2 presents the
cluster tree for the example.

Fig. 2: Cluster tree example.

Indeed, for the same problem, many cluster trees can be
derived, depending on the way of dividing variables to
clusters. In order to optimize the cluster tree size, the
current system builds the cluster tree with an heuristic
analyses over the constraint graph [15], [16] and defines
a dispatch of the different variables into the clusters of
the tree.

• Propagation on the cluster tree: Whenever the state of
a cluster changes (for example, a variable is assigned by
the application request), it will make a global propagation
through the whole cluster tree, and keep a deductively
complete truth maintenance system.

The offline part saves the cluster tree in the memory for the
use of the online part. Figure 3 give a global description of
the current configuration system. The Configuration Requests
Management activity takes the configuration request, looks for
a matching solution in the “stored” configuration space, and
returns the (positive or negative) answer.

Fig. 3: Renault’s Current Configuration System.

b) Challenge and Objective: this knowledge compilation
based method invests once in a heavy offline level, and benefits
a high-performing configurator when considering online re-
quests. However, the growing variability and complexity of the
range of models worsen the pressure on the memory storage.



Actually, operational applications need to keep hundreds of
different compiled models in the RAM cache to guarantee a
rapid response time for requests (< 10ms). Since the size
of one compiled model can reach up to 800 Megabytes, the
cumulative size of the compiled models in the cache could be
tens of Gigabytes or more. As the actual servers don’t always
have such memory resources, reducing the memory size of
individual compiled models, while not degrading response
time is an important challenge to cope with.

c) Motivation of exploring symmetries: observing the
cluster structure, we can notice that columns in the matrix will
become unnecessary if they can be deducted from others. With
this idea in mind, symmetries, which represent the isomorphic
parts in the configuration space, seem to be an interesting
direction to explore.

d) Constraints of our contribution: To avoid any pos-
sible confusion, we specify here, once more, our working
constraints. Since the current configuration system is used
by plenty of operational applications, a radical change in
the used technology can bring potential risks. Hence, in our
work, the system is taken as a black (or even grey) box and
improvements are made as pre- and post-treatments. In details,
the working constraints are the following: (i) A fixed input
format: the CSP instances we work on are encoded in the
XCSP3 format [17], generated by Renault from real industrial
variability models. (ii) A fixed configuration space compilation
process: the current compilation process and the choice of
using cluster tree as the data structure shouldn’t be changed.

III. LEVERAGING SYMMETRIES TO OPTIMIZE THE
CONFIGURATION SYSTEM OF RENAULT

Symmetries are very common in car industry. The inter-
changeability of colors mentioned in introduction can also
exist for radios, roof types, etc. Here, we aim at exploiting this
property to help reduce the configuration space representation.

A first key point is to be able to detect the presence of these
isomorphic parts but at the level of the problem description. In
practice, one needs to know if the set of solutions of the CSP
at hand has isomorphic parts, without actually constructing the
solutions. This can be achieved by studying the presence of
symmetries in the structure of the CSP under study.

This section presents symmetries in the context of CSPs
and their exploitation to reduce the configuration space. It
then illustrates the effects of symmetries with the example of
Section II-B. We conclude the section by giving the numbers
on the symmetries we detected in the datasets.

A. Symmetries in CSP

A solution symmetry of a CSP is a permutation of its
literals that preserves the set of solutions [18]. It is a bijection
from literals to literals that maps solutions to solutions [19].
Solution symmetries are classified into following categories:

• Value symmetries [19]: a value symmetry g is a
symmetry of solution such that there exists, for a variable
x, a permutation θ of Dom(x), with g.(x = d) = (x =
θ.d), and d ∈ Dom(x). For example, consider a variable

x with Dom(x) = {d1, d2} and θ.d1 = d2. If g is a value
symmetry of the problem in question, i.e. g.(x = d1) =
(x = θ.d1 = d2), then for all solutions with x = d1, the
assignments obtained by exchanging, in these solutions,
x = d1 with x = d2 and keeping all other variables with
their values, are also solutions of the problem.

• Variable symmetries [19]: a variable symmetry is
a solution symmetry g such that it exists a permutation
σ of the variables such that g.(x = d) = (σ.x = d),
with d ∈ Dom(x). Consider, for example, the assignment
A = {x1 = 1, x2 = 2, x3 = 3}, that is a solution to
the problem at hand, and a variable symmetry g: that
is a permutation σ, with σ.x1 = x2, σ.x2 = x1 and
σ.x3 = x3. Hence, and by extension, applying σ on A
derives the assignment {x1 = 2, x2 = 1, x3 = 3}, that
is also of valid solution.

This paper will focus on value symmetries since these are
the symmetries our approach currently leverages.

B. Detecting and Breaking symmetries in a CSP

Here, we give a general overview on how to detect and
break symmetries in a CSP. The detailed usage of these latter
(in our context) is discussed in section IV.

Computing the symmetries of a CSP reduces to solve
a graph automorphism problem [20]. Hence, we need to
encode the CSP as a colored graph and then apply a graph
automorphism tool (e.g., saucy3 [21] , bliss [22]) to get
the automorphisms. Symmetries are then a straightforward
interpretation of the latter.

Once detected, one can exploit these symmetries to avoid
exploring isomorphic parts in the search structure. Such an
approach helps reduce memory usage as well as execution
time. Exploiting symmetries can happen in different ways that
fall into two categories: 1) Static symmetry breaking [20],
and 2) Dynamic symmetry breaking [23], [24]. We give an
overview of the first approach since our method relies on it.

Static symmetry breaking: Once the group of solution
symmetries (of a CSP) is known, say G, then the solutions of
the problem can be partitioned into equivalence classes (EC).
All solutions belonging to an EC can be obtained from each
other by some element of G. Hence, to get all solutions of
a class, one needs to know only one solution of the EC and
then derive the others by applying the appropriate g ∈ G.

The central concept is to augment the CSP with a set
of constraints, called Symmetry Breaking Constraints (SBCs),
which preserves very few solutions per class and discards
all others1. Thus, the problem’s solution space considerably
decreases while preserving all the necessary information to
reconstruct the whole solution set.

To compute SBCs, the most classical way is to apply the
lex-leader method [20]. It requires a static ordering on literals
(we use the symbol ≺ to denote this ordering). For example:
(x1 = 1) ≺ (x1 = 2) ≺ (x2 = 1) ≺ ... With such an

1Ideally, one wants to preserve only one solution per class, but this is
computationally very expensive!



ordering, one can establish a total lexicographical order on
the solutions of the problem at hand. We then define the min
(or max) solution, called canonical solution, for each EC as
the one we preserve. The generated SBCs are constructed such
that only canonical solutions can satisfy them.

For example, consider the detection of a solution symmetry
g such that: g.(x = d) = (x = θ.d = d′). By imposing
the ordering (x = d) ≺ (x = d′), we augment the problem
with the following SBC: ¬(x = d′). This constraint will be
satisfied by all the solutions where x = d and not satisfied by
those where x = d′. Here, we preserve equi-satisfiability of
the original and the augmented problems while reducing the
memory footprint and/or the solving time of the latter.

It is worth noting that the equi-satisfiability does not imply
logical equivalence. As discussed before, the additional SBCs
in the augmented problem will discard all the solutions of the
same EC but a few, which has a side effect on our approach.
We will discuss that issue in the remainder of the paper.

C. Value symmetries in action

Back to the example of Section II-B to explain the effects
of value symmetries. The solution space of p is:

• s1= {m = m1, ft = LPG, ac = manual, df = with}
• s2= {m = m1, ft = LPG, ac = auto, df = none}
• s3= {m = m1, ft = LPG, ac = none, df = with}
• s4= {m = m1, ft = LPG, ac = auto, df = with}
• s5= {m = m1, ft = LPG, ac = none, df = with}
• s6= {m = m2, ft = petrol, ac = auto, df = with}
• s7= {m = m2, ft = petrol, ac = auto, df = none}
• s8= {m = m2, ft = diesel, ac = auto, df = with}
• s9= {m = m2, ft = diesel, ac = auto, df = none}
• s10= {m = m2, ft = LPG, ac = auto, df = with}
• s11= {m = m2, ft = LPG, ac = auto, df = none}
• s12= {m = m2, ft = LPG, ac = none, df = with}
• s13= {m = m2, ft = LPG, ac = none, df = none}
• s14= {m = m2, ft = LPG, ac = manual, df = with}

(m represents model, ft represents fuel type, ac represents
airconditionning, df represent dustfilter)

a) Value symmetries identification: we can observe that
for each solution where ft = petrol (s6, s7), we have
a symmetrical solution where ft = diesel, with all the
other variable values being the same (s8, s9). Hence, this
is a value symmetry in p between the two values of the
variable fuel type. Using a cyclic notation, this is written
as: ((fuel type = petrol) (fuel type = diesel))

Indeed, to detect symmetries in a CSP, it actually needs
calculating the graph automorphism of the colored graph
encoding the CSP, which is discussed in section IV-A.

b) Breaking value symmetries: in the example above,
we can get s8 from s6, and get s9 from s7 by permuting
the values of fuel type. Hence, we don’t need to save
all the solutions. We add to the problem a set of SBCs
to remove the symmetric solutions. To do so, we fix the
ordering on literals. Since only fuel type is involved in the
value symmetries, we need an ordering on the literals, as the

following: (fuel type = petrol) ≺ (fuel type = diesel) ≺
(fuel type = LPG). So, the following SBC enriches the
original problem: c4 ≡ ¬(fuel type = diesel).

Therefore, the solutions of the new problem reduce to a set
of 12 solutions with removing solution s8 and s9. We build
the cluster tree for the new problem with the SBC c4 added.
According to c4, Boolean variable d should always be false.
So the new cluster tree will be as shown in Figure 4: cluster1
in Figure 2 is compressed by c4 and then we get cluster′1
instead.

Fig. 4: New cluster tree.

Now the solutions space has been successfully reduced
and the the cluster tree is well compressed too. This simple
example helps give a general idea of how symmetries can work
and be used to reduce size of the cluster tree.

D. Value symmetries in Renault’s CSP instances

To complete our discussion about symmetries, we present,
in Table I, the results on the symmetry profile exhibited by
the datasets of Renault. In Table I, #CSP is the total num-
ber of CSP instances in the datasets. Avg(#P ), Min(#P ),
Max(#P ), SD(#P ) represent, respectively, the average, min-
imum, maximum and standard deviation value of permutation
numbers detected in the datasets.
TABLE I: Number of value symmetries detected in the datasets
of Renault .

#CSP Avg(#P ) Min(#P ) Max(#P ) SD(#P )

424 317 14 2217 224

We observe that the number of value symmetries detected
is quite large and this justifies the interest of the proposed ap-
proach. The following section describes a full implementation
of our approach around the current configuration system. In
addition, we explain how to detect value symmetries and give
formal algorithms for generating SBCs and canonical queries.

IV. REVISITING THE PRODUCT CONFIGURATION SYSTEM

This section details how we operate each activity in the new
configuration system. The following two figures use a different
color to specify the activities we add.

Figure 5 highlights the revisited Offline level of the config-
uration system with the integration of two new activities de-
scribed earlier: 1) Value Symmetries Detection, which provides
the Symmetries Information inside the configuration space. 2)
Value Symmetries Breaking that augments the CSP with SBCs.

Figure 6 shows how the revisited Online level operates, by
considering the Symmetries Information during the Configura-
tion Requests Management. We propose two new activities:



Fig. 5: The new configuration system - The Offline level.

Fig. 6: The new configuration system - The Online level.

• Request Canonization: since the reduced solution space
contains only canonical solutions, then to correctly an-
swer a configuration request, the request must be canon-
ized. This activity computes the equivalent (symmetrical)
representation of the given request using the lex-leader
method. We refer to this activity as Request Canonization,
which takes the original request and the symmetries
information to calculate the canonical request. Then the
system takes this new canonical request and searches in
the Reduced Configuration Space to find the solutions.

• Response Decanonization: when responding to the cus-
tomer or applications, if we only need to respond whether
the configuration request is satisfiable or not, then the
responses for the original configuration request and its
canonical request are the same. We can directly pass the
symmetries-based Response as the final response to the
customer. However, if the customer also asks for the sat-
isfying solutions, decanonizing the response is necessary
because the satisfying solutions in the symmetries-based
Response respond to the canonical request, but not to
the original Configuration request. Inside the solutions,
the literals involved in symmetries are replaced by per-
mutable literals that have a lower order. Therefore, we
need the activity Response Decanonization to decanonize
the found solutions, and return the decanonized response.

The following sections detail the four new activities above.

A. Value Symmetries Detection Activity

To compute the symmetries of a CSP, we need to encode
the CSP as a colored graph and then calculate the graph
automorphism [20].

a) Encoding the colored graph: the choice of the used
colored graph is very important. An improper graph choice can
lead to the loss of symmetries information or bring unexpected
difficulties. For example, one colored graph proposed in [19]
doesn’t contain value symmetries since this graph encodes
equally extension or intension constraints as nodes, and does
not encode enough details on the literals. Another graph called
variable-value graph in [19] turn out to be extremely large
for our instances. This graph needs to encode each allowed
assignment of each constraint as a node. To calculate the
allowed assignments of intension constraints, one needs to
rewrite them under the form of extensions. Our experiments
showed that, in our datasets, an intension constraint can have
tens of thousands of allowed assignments. Therefore, this leads
to a graph with one constraint node linked to tens of thousands
of assignment nodes, which is too large to deal with.

Our graph encoding approach relies on the one proposed
by Mears [25], itself based on the Puget’s variable-value
graph [19]. The particularity of Mears’ graph is that, while
rewriting the intension constraints into extension constraints,
one can choose to compute the allowed or not allowed assign-
ments. The resulting graph still allows the detection of value
symmetries while being less memory-intensive: complicated
intension constraints, with more than ten thousand allowed
assignments, have only hundreds of not allowed assignments.2

b) Computing the graph automorphisms: Once the stud-
ied CSP is encoded, we calculate the automorphisms of the
resulting graph using bliss tool [22]. The output is a set of per-
mutations between the node identifiers. We straightforwardly
get the value symmetries we are looking for by decoding node
identifiers into literals.

It’s worth noting that value symmetries extracted by bliss
can be arbitrary complex (binary permutations, ternary per-
mutations, etc). So, exploiting these symmetries can quickly
become complicated to handle. Since our experiments show
that 95% of the detected symmetries are binaries3, we decide
to focus only on those symmetries and develop our algorithms
according to this restriction.

B. Value Symmetries Breaking Activity

With the value symmetries obtained above, we calculate
the SBCs. Algorithm 1 describes the procedure of SBCs
calculation using the lex-leader method. The generated SBCs
are added to the original CSP to get the augmented CSP.

Algorithm 1 goes through the permutations given as input
(line 3), compares the order of the literals for each permutation
and generates the corresponding SBC (lines 5 and 7).

2The rewriting of the intension constraints into extensions is done using the
solvers abscon [7].

3Under cyclic notation, these are permutations of the form ((x = v1)(x =
v2)).



Algorithm 1 SBCs-calculation(P,O): returns a set of SBC,
taking P, the set of permutations, and O, the global literal
ordering as inputs.

1: procedure SBCS-CALCULATION(P,O)
2: SBCs=[]
3: for ((x = d)(x = d′)) ∈ P do
4: if (x = d) ≺ (x = d′) then
5: SBCs.add(not(x = d′))
6: else
7: SBCs.add(not(x = d))
8: end if
9: end for

10: return SBCs
11: end procedure

C. Request Canonization Activity

The general idea of canonizing requests is as follows:
we iterate on each literal of an incoming request, verifying
whether it is involved in a value symmetry; if not, we keep
it; otherwise, we replace it with the symmetrical literal having
the least lexicographical order. Algorithm 2 formalizes this
process. We first sort the literals in ro according to the global
order O (line 3), then for each literal in ro, the procedure goes
through all the permutations (line 4). If a literal is smaller
than the literal at hand, a swap takes place (lines 6-10). The
resulting request is the canonical one (line 14).

Algorithm 2 Requests canonization(ro, P, O): returns rc, the
canonical form of the input request (ro), taking the original
request ro, P the set of permutations, and O the global literal
ordering as inputs.

1: procedure REQUESTS-CANONIZATION(ro, P,O)
2: rc = []
3: ro = sort(O, ro)
4: for lo ∈ ro do
5: lr = lo
6: for (l, l′) ∈ P do
7: if (lr == l && l′ ≺ l) then
8: lr = l′

9: else if (lr == l′ && l ≺ l′)
10: lr = l
11: end if
12: end for
13: rc.add(lr)
14: end for
15: return rc
16: end procedure

D. Response Decanonization Activity

The response decanonization process is simple: if canonized
request rc is unsatisfiable, we respond directly with ”unsat-
isfiable”. Otherwise, we replace the values of the variables
involved in symmetries with the values in the original request.

V. EXPERIMENTS AND RESULTS

This section presents the experimental results with the
revisited product configuration system. First, we present the
datasets. Then we present the experiments we conduct: (i)
symmetry detection; (ii) offline process: compilation of the
original and augmented CSPs; (iii) and online process: re-
sponse to configuration requests using the original and the
new systems. All experiments are carried out on a machine
with an Intel Xeon CPU 2.80GHz with 16GB of memory.

A. Datasets

We collect 424 CSP instances each representing a variability
model. These instances are used at an intermediate stage of the
commercial offer, representative of the real range of vehicles
at a given time, and covering a good part of the diversity cases
of Renault. These CSP instances are encoded in the XCSP3
format [17]. Variables’ domains are finite sets of integers, and
each CSP contains both extension and intension constraints.

To better evaluate the contributions of our approach, we
classified the instances into several groups. We used for that a
custom indicator provided by Renault. This indicator is linked
to the offline compilation process. It’s used to evaluate the
instance solving difficulty within the compilation system. The
calculation of this indicator is based on the number of cycles
detected in the constraint graph [3]. We calculate the number
of connected component (note as Ncc) for each graph. A
connected component or simply component of an undirected
graph is a subgraph in which each pair of nodes is connected
with each other via a path [26]. Then for each connected
component, we use tarjan’s cycle enumeration algorithm [27]
to calculate the number of cycles (Note as Nci). We also
compute the number of nodes for each connected component
(Note as Nnode). Finally we use the sum of the product of
Nci and Nnode, (noted as σ =

∑Ncc
i=1 (Ncii ×Nnodei)), as

indicator to classify the models.
We group the instances according to σ. Table II shows

the four obtained classes. Each class contains 106 CSPs.
Column Avg(σ) represents the average σ value for each class.
Min(σ) (resp. Max(σ)) represents the minimum value (resp.
maximum value) of σ for each class.
TABLE II: Subdivision of the datasets in four classes of CSPs
using the calculated σ.

Class #CSP Avg(σ) Min(σ) Max(σ)

C1 106 8,141 2 33,969
C2 106 167,331 34,957 429,476
C3 106 1,860,927 442,936 4,009,127
C4 106 239,425,467 4,098,726 12,447,733,956

B. Measuring time of generating augmented CSPs with SBCs

The first experiment concerns measuring the time of activ-
ities Value Symmetries Detection and Symmetries Breaking.

Table III presents the results of Value Symmetries Detection
with the number of value symmetries detected for each class.
We observe that the average numbers of value symmetries
detected for each class increases along with the solving
difficulty. Table IV presents the execution time (unit: minutes)



TABLE III: Number of value symmetries detected for each
class in the datasets.

Class Avg(#P ) Min(#P ) Max(#P ) SD(#P )

C1 151 14 492 80
C2 320 46 900 139
C3 363 58 647 106
C4 415 22 2,217 315

Total 317 14 2,217 224

TABLE IV: Execution times (unit: minute) for generating the
augmented CSPs with SBCs for each class in the datasets.

Class Sym. detection Sym. breaking Total
In2Ex bliss

C1 114 0.40 0.02 114.42
C2 323 3.47 0.05 326.52
C3 292 9.25 0.04 301.29
C4 670 13.78 0.07 683.85

Total 1,399 26.9 0.18 1,426.08

of both activities. Column In2Ex represents the total execution
time for the conversion of intension constraints to extensions
during Value Symmetries Detection. Column bliss represents
the total time for calculating graph automorphisms. Column
Sym. breaking represents the total time for calculating SBCs.

We observe that the step of transforming intension con-
straints to extensions consumes the most time. All the other
steps execute quickly, especially the calculation of SBCs
(column Sym. breaking).

We also observe that the total execution time (1426 mins)
is relatively high. However, all these steps happen offline and
are separated from the compilation activity (see Figure 5).
Besides, the cost could be absorbed if the obtained reduction is
significant: (i) allowing the compilation of CSPs that could not
be treated before; (ii) allowing the reduction of the response
time to customers’ queries.

C. Measuring the compilation time and memory usage of the
compiled structure

In this experiment, we use the current compilation system
to compile both the original CSPs and the CSPs with SBCs.
Hereafter, we report the resulting structures’ compilation time
and memory usage for both types. Tables V and VI presents
the results, followed by our observations and conclusions.
TABLE V: Memory usages (unit: MB) of the built solution
spaces by compiling the original (CMo) and the augmented
CSPs (CMa).

Class CMo CMa ∆m

C1 8.13 5.00 -38.5%
C2 3,952 1,857 -53.01%
C3 10,671 4,735 -55.62%
C4 7,667 4,075 -46.8%

Total 22,298.13 10,672 -52.13%

Table V is the resulting memory usages: CMo (resp. CMa)
represents the total memory usage (in MB) for each class of the
original (resp. the augmented with SBCs) CSPs. ∆m reports
the difference between CMa and CMo in percentage: ∆m =
(CMa − CMo)/CMo.

TABLE VI: Compilation times (unit: minute) of the original
(CTo) and the augmented (CTa) CSPs, excluding the time for
symmetry detection. ∆t expresses the gain or the loss.

Class CTo CTa ∆t

C1 0.12 0.13 8.33%
C2 7.73 4.91 -36.48%
C3 33.76 17.60 -47.87%
C4 27.24 19.24 -28.15%

Total 68.85 41.88 -39.18%

Table VI presents the compilation times (unit: minute)4:
CTo (resp. CTa) represents the total compilation time for the
original (resp. augmented) CSPs. ∆t shows the difference be-
tween CTa and CTo in percentage: ∆t = (CTa−CTo)/CTo.

From Tables V and VI, we observe that: (i) For all the
classes, our new configuration system reduces the memory
usage. The memory reduction is up to 55.62%, w.r.t. the
original approach. Additionally, the new configuration system
reduces the compilation time by up to 47.87%. (ii) For simple
classes (C1), the compilation time remains almost the same.

Our first conclusion is that the introduction of symmetries
could be beneficial to treating very complex VMs and hope-
fully manage previously intractable problems.

We believe our method has a positive impact over all the
classes of instances. Especially, for the complex classes, the
SBCs performs quite well. The reason why it takes more time
to compile the instances of C1 is their relative simplicity.
Actually, instances of C1 do not contain that much of value
symmetries, and the integration of SBCs does not simplify
their solving. However, for the complex classes, the added
SBCs decrease the configuration space dramatically, since we
have to store only few represents for each EC.

D. Measuring configuration requests’ response time

Configuration requests can be quite variant in real life. There
are several basic types of requests [28]: (i) a satisfiability
check; (ii) compute the number of satisfying solutions for
requests; (iii) compute all valid solutions for requests.

In our benchmark, the configuration request type we used
is the first, a satisfiability check. These requests are the partial
configurations consisting of assignments of values to a certain
variables, in order to check whether requests are satisfiable.
The general form of these requests is then a conjunction of
variable assignments. The number of variables in each request
varies from 2 to the total number of variables of the CSP at
hand. For each instance, we generate 2000 requests: 1000 are
satisfiable, and 1000 are not. This choice is motivated by the
fact that it simulates the actual number and type of requests
run by certain operational applications of Renault. Actually,
this type of requests is used for the forecast product offer.

Indeed, the request form can be more than the conjunction
of assignments. One can create its request with different oper-
ators (disjunction, implication, etc.), to describe the relations
between the variable assignments. Since these requests can be
transformed into a set of requests of the conjunction form, we
only consider the conjunction form request in the test.

4Without considering the time for symmetry detection.



We report here the requests’ response times for the original
and reduced configuration spaces (for each class of problems).
The former is the time of searching for solutions over the orig-
inal configuration space. The latter includes the times of the
activity Request Canonization and searching for solutions over
the reduced configuration space. Since the request is a simply
satisfiability check, the activity of Response Decanonization
is not taken into consideration.

Table VII presents the results: nb req is the total number
of requests (number of instances times number of requests for
each instance), to (unit: second) is the total response time of
the original system, and ta is the response time of the new
system (including canonization and interrogation execution
times). ∆t reports the difference between ta and to.
TABLE VII: Requests’ response times (unit: second) for the
current (to) and the new (ta) configuration systems.

Class nb req to ta ∆t

C1 212,000 14.24 20.04 40.73%
C2 212,000 513.83 243.07 -52.69%
C3 212,000 1,530.8 714.4 -53.33%
C4 212,000 1,420.5 1081.6 -23.86%

Total 848,000 3,479.37 2,059.11 -49.81%

We observe that, on complex problems (classes other than
C1), the gain achieved by the new system is significant (up to
53%, compared to the original system). For the class where
the problems are relatively simple, the new system performs
poorly and worsens the response time (compared with the old
system). It turns out that the loss is due to the canonization
step, as highlighted in Table VIII.
TABLE VIII: C1 requests’ response times detailed. to and
ta (unit: second) are the same as in Table VII, tac is the
canonization time, and tai is the solution searching time over
the reduced configuration space.

Class to ta tac tai
C1 14.24 20.04 5.7 14.334

We notice that tai is almost equivalent to to. This is
reasonable because the size of the reduced configuration has
slight difference compared to the original (as in Table V). tac
is the reason of the loss. But we can also easily calculate that
on average, it takes only around 0.03ms ((ta − to)/212000)
plus to deal with each request.

We can then conclude: 1) For simple classes, the cost of
canonization worsens the response time w.r.t to the original
approach. Nevertheless, this degradation is negligible because
it results in a response time of less than 0.1 ms for each
request. 2) For complex classes, the reduction is so dramatic
that the cost of canonization is entirely absorbed by the short
time needed to search in a small structure.

E. Summary

With all experiments together, we conclude the following:

• Long pre-processing time: Computing symmetries can
be very long. However, since it is an offline phase, our
requirements in terms of computation time can be less
stringent. Nevertheless, this phase should be optimized.

• Reduction of memory usage: Our configuration system
succeeds in reducing the memory usage for complex
classes. The achieved gain is of 52% on average.

• Reduction of compilation time: While the pre-
processing time is relatively high, the compilation of the
augmented CSPs is small and fulfills the requirements.

• Reduction of requests’ response times: The experiment
in section V-D shows that our method can dramatically
save the response time on the requests involving complex
instances (50% on average compared with the original
approach). However, the approach has a rather negative
impact when considering simple instances, which results
in nuances in the approach’s usefulness in the general
case. Indeed, it is unnecessary to add the complexity of
the use of symmetries when the processed instances are
simple enough, and their solution spaces are easily stored.

To reproduce our experiments, we provide a file available at:
https://zenodo.org/record/7538421, including: (i) examples of
VMs specified as CSPs. For confidentiality reasons, we only
provide anonymized data; (ii) the source code of our tool for
detecting symmetries on CSPs that can be easily reused in
other contexts; (iii) examples of the value symmetries of the
provided VMs.

VI. RELATED WORK

a) Mapping Variability Models to CSPs: the mapping
from variability models to CSPs has been widely discussed
in the literature [4], [28]–[31]. Among them, many works
consider the specific case where the variability models are
represented as feature models [4]. Actually, several extensions
of the CSP paradigm handle the modeling of constraint-based
range of products. For example, Dynamic CSP [32] is often
used in the case where the existence of optional variables
depends on the value of another variable. Other extensions
include composite CSP [33] and interactive CSP [34].

In this study, since the characteristics taken into account by
these formalisms are not crucial for Renault , a classical CSP
is very well suited to represent the product range at hand.

b) Knowledge Compilation: as discussed earlier, the
configuration system studied here relies on knowledge com-
pilation. Darwiche and P. Marquis have provided a detailed
comparison between different representation languages in [8]
to compare their efficiency in supporting different types of
queries (for example, polynomial-time consistency check). In
addition, many other languages have also been proposed (Set-
Labeled DD [35], SDD [10]) recently.

The representation language used by the configuration sys-
tem of Renault differs from those studied by Darwiche and P.
Marquis. We are working on formalizing this representation
and integrating it in the global hierarchy presented in [8].

c) Symmetries: Gent et al. have discussed the symme-
tries in CSPs in [36]. Specifically, the related work in this
domain mainly differs from the symmetry breaking method
and the types of symmetries to explore. For the former, as
we mentioned earlier, the dynamic symmetry breaking method



has been studied by many researchers (SBDS [23], STAB [24],
SBDD [37]). Moreover, for the latter, Puget has proposed how
to detect and benefit from variable symmetries in [19].

Back to our work, integrating symmetries dynamically will
require a full access to the system. This will be difficult for
us because of our working constraint. But exploring the other
types of symmetries seems to be a next promising direction.

VII. CONCLUSION

This paper presents an approach that exploits symmetries in
configuring model variability for Renault. The aim is to tackle
the growing complexity of the vehicles’ range and improve
the performance of the configuration system. We have shown
how symmetries can be loosely coupled to this system while
achieving dramatic savings in memory and time usage.

Our first perspective is to improve the process of detecting
symmetries. The main problem is the used time to convert
intension constraints to extensions. Parallelism is a straight-
forward way for this problem. Indeed, the constraints can be
converted in parallel with minimal effort. Furthermore, as we
detected other types of symmetries, namely, variable sym-
metries and variable-value symmetries [25], in our datasets,
we plan to extend our work to handle these symmetries. The
issue is to derive a new algorithm for generating SBCs since
the one in this paper is not straightforwardly enforceable for
such symmetries. It will be also interesting to evaluate the
performance of our approach over the other open source data
sets. Another point is investigating how symmetries can be
integrated directly into the compilation process, which can
help guide the internal algorithms to derive more compact
structures and improve the performance even further.

REFERENCES

[1] T. B. et al., “A survey of variability modeling in industrial practice,”
in The Seventh International Workshop on Variability Modelling of
Software-intensive Systems, VaMoS ’13, Pisa , Italy, January 23 - 25,
2013, S. Gnesi, P. Collet, and K. Schmid, Eds. ACM, 2013, pp. 7:1–7:8.

[2] M. Cordy and P. Heymans, “Engineering configurators for the retail
industry: experience report and challenges ahead,” in Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, 2018.

[3] S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint satisfaction
problems: Algorithms and applications,” European journal of operational
research, vol. 119, no. 3, pp. 557–581, 1999.

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, 2010.

[5] S. A. Cook, “The complexity of theorem-proving procedures,” in
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, ser. STOC ’71. New York, NY, USA: Association for
Computing Machinery, 1971, p. 151–158.

[6] C. Prud’homme, J.-G. Fages, and X. Lorca, “Choco solver documenta-
tion,” TASC, INRIA Rennes, LINA CNRS UMR, pp. 13–42, 2016.

[7] C. Lecoutre and S. Tabary, “Abscon 109: a generic csp solver,” 01 2008.
[8] A. Darwiche and P. Marquis, “A knowledge compilation map,” Journal

of Artificial Intelligence Research, vol. 17, pp. 229–264, 2002.
[9] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation

of a bdd package,” in 27th ACM/IEEE design automation conference.
IEEE, 1990, pp. 40–45.

[10] A. Choi and A. Darwiche, “Dynamic minimization of sentential decision
diagrams,” in Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA,
M. desJardins and M. L. Littman, Eds. AAAI Press, 2013.

[11] K. A. Sakallah, “Symmetry and satisfiability.” Handbook of
Satisfiability, vol. 185, pp. 289–338, 2009.

[12] J. Astesana, L. Cosserat, and H. Fargier, “Constraint-based vehicle
configuration: A case study,” in ICTAI (1). IEEE Computer Society,
2010, pp. 68–75.

[13] B. Pargamin, “Vehicle sales configuration: the cluster tree approach,” in
ECAI 2002 Configuration Workshop, 2002, pp. 35–40.

[14] P. Bernard, “Extending cluster tree compilation with non-boolean vari-
ables in product configuration: A tractable approach to preference-based
configuration,” in Proceedings of the IJCAI, vol. 3. Citeseer, 2003.

[15] E. Amir, “Efficient approximation for triangulation of minimum
treewidth,” arXiv preprint arXiv:1301.2253, 2013.

[16] A. Becker and D. Geiger, “A sufficiently fast algorithm for finding close
to optimal clique trees,” Artificial Intelligence, no. 1-2, pp. 3–17, 2001.

[17] O. Roussel and C. Lecoutre, “Xml representation of constraint networks:
Format xcsp 2.1,” arXiv preprint arXiv:0902.2362, 2009.

[18] D. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M. Smith,
“Symmetry definitions for constraint satisfaction problems,” Constraints,
vol. 11, no. 2-3, pp. 115–137, 2006.

[19] J.-F. Puget, “Automatic detection of variable and value symmetries,”
in International Conference on Principles and Practice of Constraint
Programming. Springer, 2005, pp. 475–489.

[20] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint
programming. Elsevier, 2006.

[21] H. Katebi, K. A. Sakallah, and I. L. Markov, “Symmetry and satisfiabil-
ity: An update,” in International Conference on Theory and Applications
of Satisfiability Testing. Springer, 2010, pp. 113–127.

[22] T. Junttila and P. Kaski, “Engineering an efficient canonical labeling tool
for large and sparse graphs,” in 2007 Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM, 2007,
pp. 135–149.

[23] I. P. Gent, W. Harvey, and T. Kelsey, “Groups and constraints: Symmetry
breaking during search,” in International Conference on Principles and
Practice of Constraint Programming. Springer, 2002, pp. 415–430.

[24] J.-F. Puget, “Symmetry breaking using stabilizers,” in International
Conference on Principles and Practice of Constraint Programming.
Springer, 2003, pp. 585–599.

[25] C. Mears, M. G. De La Banda, and M. Wallace, “On implementing
symmetry detection,” Constraints, vol. 14, no. 4, pp. 443–477, 2009.

[26] J. Clark and D. A. Holton, A first look at graph theory. World Scientific,
1991.

[27] R. Tarjan, “Enumeration of the elementary circuits of a directed graph,”
SIAM Journal on Computing, vol. 2, no. 3, pp. 211–216, 1973.

[28] R. Pohl, K. Lauenroth, and K. Pohl, “A performance comparison of
contemporary algorithmic approaches for automated analysis operations
on feature models,” in 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011). IEEE, 2011.

[29] F. A. et al., “Intelligent support for interactive configuration of
mass-customized products,” in International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems.
Springer, 2001, pp. 746–756.

[30] H. A. et al., “Unifying software and product configuration: A research
roadmap,” 2012.

[31] D. Benavides, A. Felfernig, J. A. Galindo, and F. Reinfrank, “Automated
analysis in feature modelling and product configuration,” in International
conference on software reuse. Springer, 2013, pp. 160–175.

[32] S. Mittal and B. Falkenhainer, “Dynamic constraint satisfaction,” in
Proceedings eighth national conference on artificial intelligence, 1990,
pp. 25–32.

[33] D. Sabin and E. C. Freuder, “Configuration as composite constraint satis-
faction,” in Proceedings of the Artificial Intelligence and Manufacturing
Research Planning Workshop. AAAI Press Palo Alto, CA, 1996.

[34] E. Gelle and R. Weigel, “Interactive configuration using constraint
satisfaction techniques,” in Proceedings of PACT-96, 1996, pp. 37–44.

[35] A. Niveau, H. Fargier, and C. Pralet, “Representing csps with set-labeled
diagrams: A compilation map,” in Graph Structures for Knowledge
Representation and Reasoning - Second International Workshop, GKR
2011, Barcelona, Spain, July 16, 2011. Revised Selected Papers, ser.
Lecture Notes in Computer Science, M. Croitoru, S. Rudolph, N. Wilson,
J. Howse, and O. Corby, Eds., vol. 7205. Springer, 2011, pp. 137–171.

[36] I. P. Gent, K. E. Petrie, and J.-F. Puget, “Symmetry in constraint pro-
gramming,” Foundations of Artificial Intelligence, pp. 329–376, 2006.

[37] T. Fahle, S. Schamberger, and M. Sellmann, “Symmetry breaking,”
in International Conference on Principles and Practice of Constraint
Programming. Springer, 2001, pp. 93–107.


