
HAL Id: hal-04518671
https://cnrs.hal.science/hal-04518671

Submitted on 24 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Migrating Individual Applications into Software Product
Lines using the Mobioos Forge Platform

Karim Ghallab, Tewfik Ziadi, Zaak Chalal

To cite this version:
Karim Ghallab, Tewfik Ziadi, Zaak Chalal. Migrating Individual Applications into Software Product
Lines using the Mobioos Forge Platform. Asia Pacific Software Engineering Conference, Dec 2023,
Seoul, South Korea. �hal-04518671�

https://cnrs.hal.science/hal-04518671
https://hal.archives-ouvertes.fr


Migrating Individual Applications into Software
Product Lines using the Mobioos Forge Platform

Karim Ghallab1, Tewfik Ziadi1,2, Zaak Chalal1
1RedFabriQ, Paris, France

2Sorbonne University - LIP6 - CNRS, Paris, France
Karim.Ghallab@mobioos.ai, Tewfik.Ziadi@lip6.fr, Zaak.Chalal@mobioos.ai

Abstract—The adoption of Software Product Lines in the
industry remains a major challenge. This paper presents an
experience report focused on the application of a novel tool-
based approach called Mobioos Forge. We introduce the vision
and operational activities of Mobioos Forge, emphasizing its
significance through an examination of the complex process of
migrating the ArgoUML application – an open-source codebase
exceeding 400KLOCs. We highlight the achieved feature model
and detail the feature-to-source code mapping. Additionally, we
explain the derivation process used to generate the source code
for multiple variants. We discuss the time and effort expended
on this migration, showcasing that, even with no prior familiarity
with ArgoUML, it took less than 11 hours to successfully migrate
the entire application into an SPL.

Index Terms—Software Product Lines, Mobioos Forge, Ar-
goUML

I. INTRODUCTION

Software Product Line Engineering (SPLE) aims to improve
reuse by focusing not on the development of a single software
product but on a family of related products. The systems in
a Software Product Line (SPL) approach are developed from
a common set of assets in a prescribed way, in contrast to
being developed separately, from scratch, or in an ad-hoc
manner. This production economy makes the SPL approach
attractive. SPLE considers the existence of a single architecture
describing all the variants that implement different software
products of a single product line. The particularity of this
architecture is that it includes what is refereed as a variability
model (also called feature model), in which variability and
commonality are explicitly specified using high level charac-
teristics of the so-called features [1]. These are then mapped
to the source code, which are organized according to the
identified features. Specific software variants can be derived
(generated) by choosing from the feature model a set of desired
features, then SPL tools customize the source code to generate
specific variants [1].

Still, adopting SPL remains a major challenge for compa-
nies [2], [3]. Compared to single-system development, SPL
variability management implies a methodology that highly
impacts the life cycle of the products and the processes and
roles inside the company [4]. From a developer perspective,
it is very challenging to manage at the same time constraints
related to classical development activities and tasks dealing
with software variability implementation. These constraints
represent barriers to SPL adoption in the industry.

To facilitate SPL adoption in industry, we recently proposed
a new tool-supported approach called Mobioos Forge (MF).
Instead to create the SPL from scratch, MF offers the guidance
to developers for migrating existing individual applications
to SPL. This paper presents our experience on using MF
to migrate the ArgoUML open-source application into SPL.
By exploring ArgoUML’s source code, we showcase the
conceived feature model and illustrate how MF effectively
facilitates the establishment of a complete mapping between
the features and the source code. Metrics related to feature
mapping are presented to provide a comprehensive view of
this feature-to-source code mapping. Moreover, the advantages
inherent in the resultant SPL are underscored by employing
MF’s derivation engine. This engine is employed to generate
tailored new variants by deriving source code from diverse
configurations. In addition, we also present metrics related to
the time and effort spent on the migration process.

The paper is organized as follows: Section II exposes
background information about SPL and its adoption chal-
lenges. Section III introduces the MF platform. Section IV
describes our experimentation and evaluation of MF thought
the migration the ArgoUML case study into an SPL. Lastly,
Section V provides an overview of related works concerning
the migration of applications into SPLs.

II. BACKGROUND

A. Software Product Lines Engineering

A Software Product Line (SPL) is defined as “a set of
software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market
segment or mission, and that are developed from a common
set of core assets in a prescribed way“ [5]. The inspiration for
proposing this engineering practice is commonly attributed to
the manufacturing industry where different predefined reusable
components are usually combined to satisfy different customer
needs.

Achieving large-scale productivity gains and improving
time-to-market and product quality are some of the claimed
benefits of SPLE [5], [6]. Some acknowledged examples
can be found in the SPL hall of fame [7] which reports
commercially successful implementation of the SPL paradigm
in companies from different domains ranging from avionics
and automotive software, to printers, mobile phones or web-
based systems. As illustrated in Figure 1, the general SPL



Engineering (SPLE) framework is defined with the dual phases
of domain and application engineering [8].

During domain engineering, the scope of the SPL is defined,
commonality and variability among products are explicitly
specified using the concepts of features and feature models
[3], [9]. feature models are typically tree-like structures that
hierarchically organize features. Cross-tree constraints can also
be specified in a feature model, representing logical expres-
sions that establish additional relationships among features.
For instance, Figure 1 illustrates a feature model of a simple
text editor application. The features Save, Editor actions, and
Find are sub-features of the root feature Notepad, whereas
Copy and Cut are sub-features of Editor actions. Moreover,
Save and Editor actions are mandatory, implying their se-
lection alongside their parent feature Notepad. Conversely,
Find is optional, and features Copy and Cut share an OR
relationship with their parent feature Editor actions. Domain
engineering also aims at implementing the SPL at the source
code level. Various techniques exist for SPL implementation
using annotations, templates, aspects, deltas, or modules [10]–
[20]. While these approaches may vary, most of them fall
into two categories: annotative or compositional [21]–[23].
The annotative approaches involve textual or visual annota-
tions that encapsulate feature implementations, as depicted in
Figure 2a. While in the compositional approaches, features
are implemented as separate code units, often referred to as
composition units [20], feature modules [9], [18], or delta
modules [15], [16] (see Figure 2b). The underlying concept
involves commencing with a foundational core module and
incrementally incorporating supplementary modules to pro-
gressively introduce novel elements while refining, substituting
[19], [24], or eliminating existing ones [15], [16], [25]. Despite
the substantial divergence between these two methodologies,
each one presents distinct merits and limitations [26].

The application engineering phase is related to product
derivation, where specific product variants are derived and
created by reusing the results of domain engineering. This in-
cludes create what is called a valid configuration that outlines
the desired features for a specific product variant, adhering to
the rules established by the feature model. Once the configu-
ration has been established, the process of product derivation
aims generating a customized variant that aligns with the
specifications outlined in the configuration. The specifics of the
product derivation process depend on the chosen implemen-
tation strategy within the domain. This process could involve
removing or replacing annotated code segments or relying on a
composer. The composer constructs the product by assembling
the selected modules, guided by the configuration.

Over the past years, several tools have been proposed to
support the SPLE process. We distinguish between research
tools like FeatureIDE [27], as well as industrial tools such
as Pure::variant [28] and BigLiver/Gears [29]. However, the
adoption of SPLs within the industrial landscape remains a
substantial challenge. The following subsection discuss these
challenges.

Fig. 1: The Software product lines engineering process.

(a) Annotative approach (b) Compositional approach

Fig. 2: SPL implementations approaches.

B. Challenges for Software Product Lines Adoption

Even though the SPLE process, encompassing both domain
and application engineering phases, has reached a level of
maturity and is widely supported by both research and in-
dustrial tools, the adoption of SPLs by companies remains a
major challenge. Instead of following the SPLE process to
create product lines, companies increasingly employ to using
ad hoc techniques to develop variants of the same software. For
example, the clone-and-own approach, which involves creat-
ing variants by duplicating and modifying existing products
to meet new requirements, remains extensively adopted by
companies [30].

The use of ad hoc techniques to create variants of the SPL
instead of following the SPLE process can be justified by
two main reasons. Firstly, implementing an SPL from scratch,
which involves the dual phases of domain and application
engineering, requires an upfront investment that companies
may struggle to support. Secondly, implementing SPL from
scratch demands an understanding of variability from the
beginning. As discussed in numerous studies [31], software
variability often becomes apparent only after initial variants



have been implemented using ad hoc reuse approaches.
To facilitate the adoption of SPL, we recently proposed a

new platform named Mobioos Forge (MF). This platform is
distributed for free and aims to re-visit the SPLE process with
a migration-oriented perspective. Instead of creating SPL from
scratch, MF offers the guidance to developers for migrating
existing individual applications to SPL. The following section
presents the foundational principles and the various activities
provided by MF.

III. THE MOBIOOS FORGE PLATFORM

Mobioos Forge (MF) is an extension of Visual Studio Code
(VScode) that can be freely downloaded from the VScode
MarketPlace1. MF aligns with the SPLE process but proposes
a migration-oriented vision allowing developers creating SPLs
from the source code of individual applications. In the next
subsections, we introduce MF’s vision and activities.

A. Overview

MF’s vision is divided into four activities: 1) Feature
Model Specification, 2) Feature Mapping, 3) Constraints and
Anomalies Detection, and, 4) Variants Derivation. Figure 3
summarizes the initial three activities, while Figure 4 provides
an overview of the final one. To provide a clearer understand-
ing of MF’s distinct activities, the upcoming subsections base
the presentation of these activities on the Notepad application
featured in the MF tutorial [32].

As illustrated in Figure 3, MF’s vision follows existing ones
and proposes specifying variability at the domain level using
the well-known formalism related to feature models [33]. In
addition to feature models specification, MF aims to help
developers locating the features in the source code of their
applications. To do so, it relies on a language-independent
semi-automatic process that: given some initial knowledge of
the feature implementation, proposes to the developer potential
new locations where the features might be implemented. Fi-
nally, as seen in Figure 4, MF allows the derivation of variants
thought the Variants Derivation activity. Taking as input a
configuration as well as the mappings between the feature
model and the source code, this activity lets developers derive
variants fitting the requirements specified in the configuration.
The following subsections describes in detail the activities of
MF.

B. Feature Model Specification

This activity is the first one in MF’s approach. It consists
in the description of the features of the application via the
specification of a feature model. Taking as input an existing
application, the developer initiates the process by identifying
the application’s features. Subsequently, these features are de-
signed along with their respective relationships by constructing
a feature model.
MF integrates a feature model designer in VScode to allow
developers specifying the feature model of their applications.

1https://marketplace.visualstudio.com/items?itemName=Mobioos.
mobioos-forge

Each feature is associated with a color used in the Feature
Mapping activity The feature model designer also proposes an
editor to add cross-tree constraints to describe dependencies
between features. Figure 5 shows MF’s integrated feature
model designer used to design the feature model of the
Notepad application. This feature model contains 8 features,
including the root feature named Notepad. It also has 2 cross-
tree constraints displayed at the bottom of the figure.

C. Feature Mapping

Mapping the features to the source code of the application
requires making choices about how variability is implemented.
As seen in the Section II, there are several approaches to
map features to code fragments. This includes annotative and
compositional approaches [1], [26]. MF’s vision is inspired
by the one proposed by CIDE [21] using visual annotations.
This means that the code fragments associated with a specific
feature are colored with the feature color. Advantages of these
colored annotations are multiples: 1) The source code of the
application is not altered (information about the annotations
are stored in external files), and 2) It is easy to visualize to
which feature a given code fragment belongs as the editor
applies the feature’s color to its related code fragments.
Mapping features into the source code uses what is called
markers that refer to the preliminary information about the
mapping of features into the source code. Markers are provided
by developers based on their knowledge of the source code
and the identified features. MF proposes two types of markers
depending on the granularity of the mapping: 1) Code-markers
that are applied to code fragments. They associate the selected
code fragment with a specific feature, and 2) File-markers
which associate a whole file/folder to a specific feature. Those
markers are then used to help the developer identify code
fragments and files associated with each feature of the feature
model. Once a marker is added, the Feature Mapping activity
assists developers with a semi-automatic process that infers
Maps, i.e. code fragments and files/folders belonging to the
feature from the initial marker. For MF to compute maps from
a marker, the marker must be added on a declaration (class
declaration, method declaration etc.). Once a marker is added,
the developer must validate/delete the maps provided by MF.
Validating a map involves confirming its position within the
source code or modifying it to cover a different area of the
source code. Once the map is validated, MF computes other
potential maps within the source code that could be associated
with the related feature. It is important to note that validating
one map can lead to the automatic validation of other maps.
If the newly validated map’s area covers other maps related to
the same feature, these maps will be automatically validated.
Hence decreasing the number of required validation, resulting
in a reduction of the developer’s workload.
As previously mentioned, MF shows the mapping of a given
feature in the source code by applying its related feature’s
color on the code fragment. Regarding code-markers, they
are displayed as colored annotations in the VScode editor,
whereas file-markers are shown in the Mobioos Forge Feature-

https://marketplace.visualstudio.com/items?itemName=Mobioos.mobioos-forge
https://marketplace.visualstudio.com/items?itemName=Mobioos.mobioos-forge


Fig. 3: Domain Engineering in MF’s vision.

Fig. 4: Application Engineering in MF’s vision.

Fig. 5: Notepad’s feature model created using MF.

Maps View. Figure 6 enhances examples of markers and maps
present within the Notepad application. In this figure, we
can see on the left an example of a file-marker added on
file RedoAction.java as well as maps inside the file
Noetpad.java. On the right side of the figure, several maps
are displayed on the VScode editor. They are distinguishable
by the colors applied in the editor.

Fig. 6: Examples of markers and maps in MF.

D. Constraints and Anomalies Detection

In addition to helping the migration of a given application
into an SPL, MF also aims to analyze the built SPL in order
to detect possible anomalies in the domain [34] and its imple-
mentation [35]. Not only does MF detect these anomalies, but
it also offers suggestions for constraints to be incorporated into
the feature model to rectify the identified anomalies whenever
feasible. This activity is fully automatic as its analysis run in
background while the developers design the feature model or
map the features into the source code.
Detecting and solving such anomalies can be done by using a
SAT solver [36]–[38], thereby, MF’s VScode extension embed
a SAT solver to allow detecting and solving anomalies. The
detection of anomalies related to the feature model is run in
background while developers design the feature model. The
detected anomalies are then shown in a pop-up window of
the feature model designer. Anomalies related to the features’
implementations in the source code are computed while the
Feature Model Specification and the Feature Mapping activ-
ities. Computed anomalies are shown in VScode’s problem
view. Figure 7 shows an example of anomaly and how it
is shown in MF. In the depicted figure, a feature model is
shown containing two optional features, namely B and C.
In the implementations of these features, the source code
of C is encompassed within B. However, this relationship
existing in the source code is not present in the feature
model. MF detects this inconsistency and highlights it by
presenting a message in VScode’s problem view. Additionally,
MF proposes a resolution by suggesting the addition of the
constraint C =⇒ B to the feature model.

E. Variants Derivation

As for the Feature Model Specification activity, MF follows
other existing approaches and proposes specifying specific
requirements though the usage of configurations. A config-
uration is a subset of features that need to be taken in the
generated variant. Regarding the derivation process, as MF
implements the variability using an annotative approach, the
approach follows a classical derivation process where code



Fig. 7: A constraint detection in MF.

fragments and files belonging to features not included in the
configuration are deleted/replaced.
MF’s derivation engine includes a graphical configuration
editor enriched by a SAT Solver component [37] to ensure
the creation of valid configurations, i.e., configurations that
respect the rules issued by the feature model. The editor lets
the user specify the features to include in the variant. Once
the configuration is fully specified, MF derives the associated
variant following other derivation processes regarding anno-
tative approaches. Thus, deriving a variant in MF consists
in deleting/replacing the code-fragments and files related to
the features not included in the configuration. Figure 8 shows
the described configuration editor embedded in MF. This
configuration has been used on the Notepad SPL. As you can
see, only the features Redo and Undo are selected.

Fig. 8: The configuration editor in MF.

IV. THE MIGRATION OF ARGOUML INTO AN SPL

This section presents the ArgoUML case study, as well
as our outcomes concerning its migration into an SPL using
MF’s VScode extension. We present a detailed account of the
outcomes achieved during the migration process, as well as
the time and effort required for the complete migration of
ArgoUML into an SPL.

A. The ArgoUML Case Study

In the context of SPL migration using the capabilities of MF,
the ArgoUML application serves as an illustrative case study.
ArgoUML, is a Java/Maven open-source UML modeling tool
available on Github2. Previous works have explored the mi-
gration of ArgoUML into an SPL [39], [40]. Therefore, we

2https://github.com/argouml-tigris-org/argouml

believe it provides an interesting scenario to demonstrate the
effectiveness of MF in migrating an individual application into
an SPL. ArgoUML allows the graphical modeling of various
diagrams. These diagrams are: Class, State, Activity, Use
Case, Sequence, Deployment, and Collaboration diagrams.
The application has about 400KLOCs lines of code (LOCs).
In this paper, the LOCs metrics counts the number of lines of
code without blanks lines.

B. Results and Discussion

In the subsequent sections, we delve into the results of
the ArgoUML migration process. This exploration not only
sheds light on the migration process using MF, but also
provides valuable insights into the challenges and successes
encountered during the SPL migration using ArgoUML as a
reference point.

1) Feature Model: Prior works already exist regarding the
migration of ArgoUML into an SPL [39], [40]. Therefore,
we have opted to create a feature model similar to those
developed in these prior studies. Figure 9 show the designed
feature model for the ArgoUML SPL. This feature model
contains the seven diagram types supported by ArgoUML
(Class, State, Activity, Use Case, Collaboration, Deployment
and Sequence). It also describes two optional features named
Cognitive Support and Logging. The Cognitive Support feature
offers insights to help diagram designers identify and resolve
issues within their models [41]. This feature is realized through
software agents operating persistently within a background
thread of control. the Logging feature, as its name suggests,
logs messages throughout the application. These messages can
be error messages, as well as simple informational messages
enabling the tracking of execution progress. These last two
features distinguish themselves from the others due to their
crosscutting nature as they have an impact across the entire
application.

The presented feature model is akin to those in prior works,
with the exception of the cross-tree constraint Activity =⇒
State, which we have introduced ourselves. The motivation
behind this constraint addition is explained upon in Section
IV-B3 related to MF’s detected constraints.

2) Markers and Maps: This activity is of notable interest
for analysis since we had no prior knowledge regarding the
ArgoUML implementation. The initial step involved identify-
ing candidates for marker addition. To accomplish this, we
conducted searches for class or package names that align with
the defined features’ names in the feature model. Once these
classes and packages were identified, we proceeded to add
both code markers and file markers based on the context.
Following these additions, which generated various maps,
the ensuing step was to validate these maps. This validation
process allowed us to uncover the features’ implementations
within the source code. If necessary, we subsequently intro-
duced additional markers to comprehensively complete the
feature mapping. Figure 10 illustrates two pie-charts that
shows for each feature: the quantity of markers that were

https://github.com/argouml-tigris-org/argouml


Fig. 9: ArgoUML’s resulting feature model.

added (left pie-chart), and, the total number of maps computed
by MF from these markers (right pie-chart).

28
22

23
35

22211829

571

Class
State
Activity

Use Case
Collaboration
Sequence
Deployment
Cognitive Support
Logging

190

197

226
161

115177345

2302

1119

Fig. 10: Quantity of markers & maps in the ArgoUML SPL.

By examining these two charts, we can easily discern
which features required the highest number of markers to
be fully mapped within the code. This allows for a direct
comparison between the marker count and the number of
maps calculated by MF.s The first observation that becomes
evident when examining the marker count is that the Logging
feature required a significantly higher number of markers
compared to all other features. While the marker count for
the other eight features ranges between 18 and 35, with an
average of ≈ 25 markers per feature, the Logging feature
alone accounts for 571 markers, approximately 74.25% of
the total number of added markers. As we proceed, upon
considering the number of maps generated from these markers,
it is noticeable that despite its extensive number of markers,
the Logging feature does not have the highest number of
associated maps. The reason behind this limited number of
maps lies in the fact that MF exclusively computes maps
when markers are added on declarations. However, the loggers
used throughout the application were: either integrated in Java
or provided by the third-party library Log4j. Consequently,
there were no declarations of these logger classes within the
project. Surprisingly, the Cognitive Support feature, with a
relatively small marker count of 29, has computed a substantial
2302 maps. Accounting for 47.64% of the SPL total number of
map. Meaning that we obtained approximately ≈ 79.3 times
the number of maps. In comparison, we only obtained ≈ 1.96

times more maps than markers for the Logging feature.
The notable number of maps generated from the markers
emphasizes MF’s contribution in facilitating the mapping of
the features into the source code. In the absence of MF, manual
identification of feature locations throughout the source code
would have been necessary. Table I presents metrics concern-
ing the Feature Mapping activity within the ArgoUML SPL.
This table provides, for each feature, the associated number
LOCs, the percentage of LOCs relative to the total mapped
LOC count, the number of impacted files, as well as the
Maps/Marker ratio (i.e. the average number of maps generated
by MF given one marker).

Feature LOCs
Percentage
of Mapped

LOCs

Impacted
Files

Maps /
Marker

Class 6042 6.93% 68 6.79
State 4696 5.39% 64 8.95
Activity 6845 7.85% 96 9.83
Use Case 8239 9.45% 81 4.60
Collaboration 4030 4.62% 51 5.23
Sequence 6053 6.94% 113 8.43
Deployment 7067 8.11% 93 19.17
Cognitive Support 40763 46.77% 335 79.38
Logging 3426 3.93% 283 1.96

TABLE I: Metrics about the feature-mapping activity.

By examining the table, we can observe that the number of
LOCs for the various diagrams ranges between 4.62% and
9.45% of the total number of mapped LOCs. In contrast,
Cognitive Support accounts for almost half of the total number
of mapped LOCs (46.77%). This explains its high number of
maps compared to the other features. The feature Logging, on
the other hand, is the smallest feature in terms of LOCs. If we
examine the Impacted Files column, we can observe that, as
mentioned during the ArgoUML’s feature model presentation
(Section IV-B1), the Cognitive Support and Logging features
have the most widespread impact. The implementation of
Cognitive Support spans across 335 different files, while
Logging, on the other hand, is found in 283 files. Despite
having the fewest number of LOCs, Logging has the second
highest number of impacted files.



3) Detected Constraints: During the Feature Model
Specification and Feature Mapping activities, MF executed
background constraints and anomalies detection. This analysis
notably led to the detection of a constraint between two
features that was not present in the feature models proposed
in previous works. The origin of this constraint arises from
an extends relation between two classes defined within the
project. Those two classes are what ArgoUML calls graph
model. A graph model establishes rules for manipulating a
specific diagram (such as possible additions or deletions).
Thus, MF detected that the implementation of State is
nested inside the implementation of Activity. This nestedness
between Activity and State exists because: the graph model for
activity diagrams (class ActivityDiagramGraphModel)
extends the graph model of state diagram (class
StateDiagramGraphModel). Figure 11 illustrates a
screenshot of the detection and proposed resolution by MF.
In this figure, we can observe that the implementation of
the State feature is included within the Activity feature.
Detecting that no similar relationship existed in the feature
model, MF suggested adding the following constraint:
Activity =⇒ State. The addition of this cross-tree
constraint is visible in Figure 9

Fig. 11: Constraint discovered by MF.

Other constraints and anomalies were detected by MF.
However, only this one, due to its impact on the source code,
motivated us to introduce a cross-tree constraint. Specifically,
the relationship between Activity and State is such that Activity
cannot properly work when State is disabled.

4) Derived Variants:
a) Metrics: Once all the features were mapped within

the source code, we derived ArgoUML variants to test our
migration. Table II presents metrics for the original application
and 5 variants generated from MF. For each variant, we
provide its number of LOCs as well as the number of deleted
LOCs relative to the SPL’s total LOCs. The Variants column

describes the variants by listing their respective enabled fea-
tures.

Variants (enabled features) LOCs Deleted
LOCs

All features (original application) 413086 0
Only Class 355349 57737
Class, Use Case and Collaboration 362824 50262
Class, State, Activity and Cognitive 394790 18296
Class, State, Deployment, Sequence and Logging 361187 51899
All diagram features 369039 44047

TABLE II: Metrics about some generated variants.

Figure 12 displays the execution of the Only Class variant.
We can observe that the buttons used to create diagrams other
than class diagrams have been removed. Additionally, we can
notice the removal of the “ToDo item“ panel. This panel
enables the Cognitive Support feature to indicate actions for
improving/correcting diagrams.

Fig. 12: Execution of the variant with only Class enabled.

b) Correctness: Testing the correctness of an SPL is
a complex task [42], [43]. To conduct the testing of our
ArgoUML’s migration, we opted to use the extensive unit
test suite already implemented in the ArgoUML application.
Our variant testing procedure encompassed two key steps:
initializing the unit test suite for the specific variant, and upon
successful execution of all tests without any errors, manually
triggering the execution of the variant. This enabled us to
observe its proper operation and verify that the correct features
were enabled/disabled.
The ArgoUML application contains 1225 unit tests imple-
mented across various test files. Naturally, while mapping
features within the source code, we also mapped the corre-
sponding feature unit tests. Consequently, a variant containing
at least one disabled feature will have a decrease of its number
of tests, as these tests were deleted along with the code for the
respective disabled feature. Table III shows the number of tests
that were executed for each of the presented variants. Given
that one of the prerequisites for validating the correctness of a
variant is the successful execution of its complete test suite, the
number of tests presented in the table aligns with the number
of passed tests.



Variants (enabled features) Unit Tests
All features (original application) 1225
Only Class 397
Class Use Case and Collaboration 953
Class, State, Activity and Cognitive 1046
Class, State, Deployment, Sequence and Logging 952
All diagram features 970

TABLE III: Test metrics about the generated variants.

The ArgoUML SPL built using MF is available on GitHub3.
The variants presented in this paper are accessible through
several branches of the repository.

5) Time and Effort during SPL migration: MF aims to
help developers migrate their own applications into SPLs.
Therefore, an important data to watch is the time required to
map each feature’s implementation into the source code using
MF. Hence, we quantified the time taken for feature mapping
by a junior developer (with less than three years of software
development experience) for each individual feature. The
timed interval encompasses both the marker addition phase
and the complete validation of the resultant maps induced by
these markers, culminating in the total mapping of the features
into the source code. Throughout our experimentation, a
compelling pattern emerged—an apparent correlation between
the mapping-time for a feature and the quantity of manually-
validated maps associated with it. Figure 13 visually encapsu-
lates this phenomenon, portraying a histogram showcasing the
measured durations for mapping each feature. Overlaying this
histogram is a plotted line that signifies the count of manually-
validated maps corresponding to each feature.

Fig. 13: Mapping-time and manually-validated maps.

Upon analyzing the provided chart, it becomes evident
that the majority of features were successfully mapped in
under an hour. In fact, only Cognitive Support and Logging

3https://github.com/KarimGhallab/ArgoUML-SPL

C
la

ss

St
at

e

A
ct

iv
ity

U
se

C
as

e

C
ol

la
bo

ra
tio

n

Se
qu

en
ce

D
ep

lo
ym

en
t

C
og

ni
tiv

e
Su

pp
or

t

L
og

gi
ng

0

500

1,000

1,500

2,000

99 90 65 53 56 34 78
201

1,067

91 107 161 108 59
143

267

2,101

52

Manually-Validated Maps
Automatically-Validated Maps

Fig. 14: Number of manually/automatically-validated maps.

extended beyond this time-frame. For the former, the map-
ping process demanded 1 hour and 37 minutes, while the
latter required 3 hours and 24 minutes. Notably, the Logging
feature’s mapping alone accounts for over one-third of the
total mapping duration, representing 34.4% of the overall
mapping-time. A strong correlation seems to emerge between
the number of manually-validated maps for a feature and its
mapping-time, a connection that becomes particularly apparent
in the case of Logging. This feature’s extensive mapping-
time can be attributed to its 1067 manually-validated maps,
which stands as the highest count among all features. The
relationship between manual validation and mapping-time is
illustrated through the histogram displayed in Figure 14, which
juxtaposes the count of manually-validated maps against that
of automatically-validated ones for each feature.

The graph presents a notable disparity between the manual
and automatic validations for the maps of the Cognitive
Support feature. Notably, the manual validation of 201 maps
resulted in the automatic validation of 2101 maps, nearly
tenfold the manual validations. In contrast, we can observe
an almost inverse relationship for Logging. Only 52 maps
were automatically validated, while 1067 demanded manual
intervention. This underlines the substantial impact of MF’s
automated validation. Additionally, it emphasizes that the
duration of an SPL migration is heavily influenced by the
balance between manually and automatically-validated maps.

V. RELATED WORK

In this paper, we have presented an experience report on the
use of the MF platform for migrating the ArgoUML individual
application into an SPL. The initial effort to extract an SPL
from the ArgoUML source code was proposed by Couto et
al. [44]. While MF offers an automated mapping mechanism,
Couto et al. employ a manual approach to locate the source
code fragments related to features. Furthermore, while MF
uses decorations without modifying the code, Couto et al.
utilize compilation directives to annotate the code for each

https://github.com/KarimGhallab/ArgoUML-SPL


feature, resulting in code modification. We believe that a non-
destructive approach like MF is better suited for industrial
constraints.

In addition, our work is based on the latest commit made
to the repository at the time of writing this paper. It’s im-
portant to note that the ArgoUML application has evolved
between our research and the previously cited works. Those
prior works date back to 2011. If we count the number of
commits made from 2012 until today, we can observe that
147 commits have been applied to the ArgoUML repository.
However, our examination of the ArgoUML commits leads
us to speculate that the 2011 works are based on a commit
made in 2008 (we speculate it is around commit f9084b0).
This speculation is drawn from the pronounced resemblance
between the application’s architecture in 2008 and the one
proposed by in the prior works.

The ArgoUML case study has also served as a benchmark
for feature location [40]. Our work in this paper can thus
complement this benchmark and be used as an anticipated
outcome for endeavors related to product line construction.

Martinez et al. [45] also provided an experience report on
migrating an existing application to a SPL. They conducted
their study using the Robocode case study and extracted an
SPL utilizing the FeatureHouse framework. At present, we are
working on the process of migrating the Robocode application
to an SPL using the MF platform.

Instead of migrating individual applications into SPLs,
recent research work consider the migration of a collection of
product variants (created using the clone-and-own approach)
into SPL [46]. One of our future perspectives is to enhance
MF to address this scenario.

VI. CONCLUSION

This paper presents our experience on using MF to migrate
ArgoUML into an SPL. We first present background informa-
tion about SPLs adoptions. Then, we introduce MF’s vision
and activities, followed by sharing our results and engaging in
a discussion regarding the migration of ArgoUML using MF.
We present the designed feature model and provide metrics
related to the mapping of the features in the source code.
Subsequently, we describe the constraints detected by MF
before detailing the variants generated from the SPL using
MF. Then, we give insights about the time and effort needed
to map all the features into the source code. Finally, we present
works related to the migration of applications into SPLs. The
source code of the SPLs and their variants is available at:
https://github.com/KarimGhallab/ArgoUML-SPL.
In addition to the ArgoUML case study, other examples
of migrated applications are available on the official doc-
umentation of MF [32]. Noteworthy non-Java applications
include: 1) Hive: A mobile application crafted using Ionic and
ASP.NET Core. 2) BankWeb: A web application featuring a
pure HTML/CSS/JS client and an ASP.NET Core server.

REFERENCES

[1] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-
Oriented SPLs: Concepts and Implementation. Springer Publishing
Company, Incorporated, 2013.

[2] Charles W. Krueger. Easing the transition to software mass cus-
tomization. In Revised Papers from the 4th International Workshop on
Software Product-Family Engineering, PFE ’01, page 282–293, Berlin,
Heidelberg, 2001. Springer-Verlag.

[3] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wąsowski. A survey of
variability modeling in industrial practice. In Proceedings of the Seventh
International Workshop on Variability Modelling of Software-Intensive
Systems, VaMoS ’13, New York, NY, USA, 2013. Association for
Computing Machinery.

[4] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. Bottom-up adoption of spls: a generic and
extensible approach. In Douglas C. Schmidt, editor, Proceedings of the
19th International Conference on Software Product Line, SPLC 2015,
Nashville, TN, USA, July 20-24, 2015, pages 101–110. Association for
Computing Machinery, 2015.

[5] Linda M. Northrop, Paul C. Clements, et al. A Framework for Software
Product Line Practice, Version 5.0. www.sei.cmu.edu/productlines/
framework.html, 2009.

[6] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software
product lines in action - the best industrial practice in product line
engineering. Springer, 2007.

[7] SEI. Product Line Hall of Fame. http://splc.net/fame.html, 2016.
[8] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-

Oriented Software Product Lines - Concepts and Implementation.
Springer, 2013.

[9] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peter-
son. Feature-oriented domain analysis (foda) feasibility study. Technical
Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1990.

[10] Márcio Ribeiro, Paulo Borba, and Christian Kästner. Feature mainte-
nance with emergent interfaces. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, page 989–1000, New
York, NY, USA, 2014. Association for Computing Machinery.

[11] S. Jarzabek, P. Bassett, Hongyu Zhang, and Weishan Zhang. Xvcl: Xml-
based variant configuration language. In 25th International Conference
on Software Engineering, 2003. Proceedings., pages 810–811, 2003.

[12] Duc Le, E. Walkingshaw, and M. Erwig. #ifdef confirmed harmful:
Promoting understandable software variation. In 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2011),
pages 143–150, Los Alamitos, CA, USA, sep 2011. IEEE Computer
Society.

[13] Cristina Lopes, Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Jean-marc Loingtier, and John Irwin. Aspect-oriented pro-
gramming. Association for Computing Machinery Computing Surveys,
28, 10 1999.

[14] Vander Alves, Pedro Matos, Leonardo Cole, Alexandre Vasconcelos,
Paulo Borba, and Geber Ramalho. Extracting and Evolving Code
in Product Lines with Aspect-Oriented Programming, page 117–142.
Springer-Verlag, Berlin, Heidelberg, 2007.

[15] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-oriented programming of software product lines.
pages 77–91, 09 2010.

[16] Ina Schaefer and Ferruccio Damiani. Pure delta-oriented programming.
In Proceedings of the 2nd International Workshop on Feature-Oriented
Software Development, FOSD ’10, page 49–56, New York, NY, USA,
2010. Association for Computing Machinery.

[17] Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. Compositional
type-checking for delta-oriented programming. In Proceedings of the
Tenth International Conference on Aspect-Oriented Software Develop-
ment, AOSD ’11, page 43–56, New York, NY, USA, 2011. Association
for Computing Machinery.

[18] Christian Prehofer. Feature-oriented programming: A fresh look at
objects. Lecture Notes in Computer Science, 1241, 10 1997.

[19] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. In 25th International Conference on Software Engineering,
2003. Proceedings., pages 187–197, 2003.

https://github.com/KarimGhallab/ArgoUML-SPL
www.sei.cmu.edu/productlines/framework.html
www.sei.cmu.edu/productlines/framework.html


[20] Sven Apel, Christian Kästner, and Christian Lengauer. Language-
independent and automated software composition: The featurehouse
experience. IEEE Transactions on Software Engineering, 39(1):63–79,
2013.

[21] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity
in software product lines. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, page 311–320, New
York, NY, USA, 2008. Association for Computing Machinery.

[22] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated, 2013.

[23] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Be-
navides, Goetz Botterweck, Animesh Pathak, Salvador Trujillo, and
Karina Villela. Software diversity: State of the art and perspectives.
International Journal on Software Tools for Technology Transfer, 14,
10 2012.

[24] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[25] Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze,

Lorenzo Bettini, and Ferruccio Damiani. Deltaj 1.5: Delta-oriented
programming for java 1.5. In Proc. of the 2014 Int. Conf. on Principles
and Practices of Prog. on the Java Platform, PPPJ ’14, page 63–74,
New York, NY, USA, 2014. Association for Computing Machinery.

[26] Christian Kästner and Sven Apel. Integrating compositional and anno-
tative approaches for product line engineering. 10 2008.

[27] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability with
FeatureIDE. Springer, 2017.

[28] Danilo Beuche. Industrial variant management with pure: : variants.
In Carlos Cetina et al., editor, Proceedings of the 23rd International
Systems and Software Product Line Conference, SPLC 2019, Volume B,
Paris, France, September 9-13, 2019, pages 64:1–64:3. ACM, 2019.

[29] Charles W. Krueger and Paul Clements. Feature-based systems and
software product line engineering with gears from biglever. In Carlos
Cetina, Oscar Díaz, Laurence Duchien, Marianne Huchard, Rick Rabiser,
Camille Salinesi, Christoph Seidl, Xhevahire Tërnava, Leopoldo Teix-
eira, Thomas Thüm, and Tewfik Ziadi, editors, Proceedings of the 23rd
International Systems and Software Product Line Conference, SPLC
2019, Volume B, Paris, France, September 9-13, 2019, pages 66:1–66:2.
ACM, 2019.

[30] Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin,
and Jabier Martinez. The state of adoption and the challenges of
systematic variability management in industry. Empir. Softw. Eng.,
25(3):1755–1797, 2020.

[31] Jabier Martinez. Exploration des variantes d’artefacts logiciels pour
une analyse et une migration vers des lignes de produits. PhD thesis,
2016. Thèse de doctorat dirigée par Le Traon, Yves et Ziane, Mikal
Informatique Paris 6 2016.

[32] Mobioos Forge Official Documentation. https://documentation.mobioos.
ai. Accessed: 2023-08-15.

[33] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability with
FeatureIDE. Springer, 2017.

[34] Jacopo Mauro. Anomaly detection in context-aware feature models.
In 15th International Working Conference on Variability Modelling of
Software-Intensive Systems, VaMoS’21, New York, NY, USA, 2021.
Association for Computing Machinery.

[35] Chang Hwan Peter Kim, Christian Kästner, and Don Batory. On
the modularity of feature interactions. In Proceedings of the 7th
International Conference on Generative Programming and Component
Engineering, GPCE ’08, page 23–34, New York, NY, USA, 2008.
Association for Computing Machinery.

[36] Don Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the 9th International Conference on Software Product
Lines, SPLC’05, page 7–20, Berlin, Heidelberg, 2005. Springer-Verlag.

[37] Marcilio Mendonca, Andrzej Wąsowski, and Krzysztof Czarnecki. Sat-
based analysis of feature models is easy. In Proceedings of the
13th International Software Product Line Conference, SPLC ’09, page
231–240, USA, 2009. Carnegie Mellon University.

[38] Chico Sundermann, Michael Nieke, Paul M. Bittner, Tobias Heß,
Thomas Thüm, and Ina Schaefer. Applications of #sat solvers on
feature models. In 15th International Working Conference on Variability
Modelling of Software-Intensive Systems, VaMoS’21, New York, NY,
USA, 2021. Association for Computing Machinery.

[39] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo.
Extracting software product lines: A case study using conditional com-
pilation. In 2011 15th European Conference on Software Maintenance
and Reengineering, pages 191–200, 2011.

[40] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi,
Jairo Aponte, Eduardo Figueiredo, and Marco Tulio Valente. Feature
location benchmark with argouml spl. In Proceedings of the 22nd
International Systems and Software Product Line Conference - Volume
1, SPLC ’18, page 257–263, New York, NY, USA, 2018. Association
for Computing Machinery.

[41] J.E Robbins and D.F Redmiles. Cognitive support, uml adherence, and
xmi interchange in argo/uml. Information and Software Technology,
42(2):79–89, 2000.

[42] Matthias Kowal, Sandro Schulze, and Ina Schaefer. Towards efficient
spl testing by variant reduction. In Proceedings of the 4th International
Workshop on Variability & Composition, VariComp ’13, page 1–6, New
York, NY, USA, 2013. Association for Computing Machinery.

[43] Jihyun Lee, Sungwon Kang, and Danhyung Lee. A survey on software
product line testing. In Proceedings of the 16th International Software
Product Line Conference - Volume 1, SPLC ’12, page 31–40, New York,
NY, USA, 2012. Association for Computing Machinery.

[44] Marcus Vinicius Couto, Marco Túlio Valente, and Eduardo Figueiredo.
Extracting software product lines: A case study using conditional
compilation. In Tom Mens, Yiannis Kanellopoulos, and Andreas
Winter, editors, 15th European Conference on Software Maintenance
and Reengineering, CSMR 2011, 1-4 March 2011, Oldenburg, Germany,
pages 191–200. IEEE Computer Society, 2011.

[45] Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi. Software Product
Line Extraction from Variability-Rich Systems: The Robocode Case
Study. In Systems and Software Product Line Conference (SPLC),
Gothenburg, Sweden, September 2018.

[46] Roberto E. Lopez-Herrejon, Jabier Martinez, Wesley Klewerton Guez
Assunção, Tewfik Ziadi, Mathieu Acher, and Silvia Regina Vergilio,
editors. Handbook of Re-Engineering Software Intensive Systems into
Software Product Lines. Springer International Publishing, 2023.

https://documentation.mobioos.ai
https://documentation.mobioos.ai

	Introduction
	Background
	Software Product Lines Engineering
	Challenges for Software Product Lines Adoption

	The Mobioos Forge Platform
	Overview
	Feature Model Specification
	Feature Mapping
	Constraints and Anomalies Detection
	Variants Derivation

	The Migration of ArgoUML into an SPL
	The ArgoUML Case Study
	Results and Discussion
	Feature Model
	Markers and Maps
	Detected Constraints
	Derived Variants
	Time and Effort during SPL migration


	Related Work
	Conclusion
	References

