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Abstract

Astrophysical tests of the stability —or not— of fundamental couplings (e.g. can the numerical
value ~ 1/137 of the fine-structure constant o = €?/hc vary with astronomical time?) are a very
active area of observational research. Using a specific a-free non-relativistic and nonlinear isotropic
quantum model compatible with its quantum electrodynamics (QED) counterpart yields the 99%
accurate solution a = 7.3641073 versus its 7.297...1073 experimental value. The ~ 1% error
is due to the deliberate use of mean-field Hartree approximation involving lowest-order QED in
the calculations. The present theory has been checked by changing the geometry of the model.
Moreover, it fits the mathematical solution of the original nonlinear integro-differential Hartree
system by use of a rapidly convergent series of nonlinear eigenstates [G. Reinisch, Phys. Lett. A
(2024): doi.org/10.1016/j.physleta.2024.129347]. These results strongly suggest the mathematical
transcendental nature —e.g. like for m or e— of a’s numerical value ~ 1/137 and hence its
astrophysical as well as its cosmological stability.
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Since Dirac [1] [2] and Jordan [3] [4] first suggested it as a possibility, the time variation of
the fundamental constants has remained a subject of fascination which motivated numerous
theoretical and experimental researches. Landau [5] envisaged the possibility that the fine-
structure constant o ~ 1/137 could vary with time, due to the renormalization of the electric
charge. Data from the natural fission reactors which operated about two billion years ago
at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability
of a [6]. This bound was revisited and the relative variation of « over this interval of
time was found to be —0.91077 < Aa/a < 1.21077 while the averaged relative growth of
a was estimated between —6.71077yr~! and 5.0107'7yr~! [7]. A comprehensive review
emphasized the main experimental and observational constraints that have been obtained
from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating,
quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background
and big bang nucleosynthesis [8]. The deep conceptual importance of carrying out such
astrophysical tests of the stability of fundamental couplings has been complemented by
some evidence for such a variation [9], coming from high-resolution optical/UV spectroscopic
measurements of the fine-structure constant « in absorption systems along the line of sight of
bright quasars [10]. However, this opinion is somewhat controversial: the apparent ubiquity,
size and general characteristics of the distortions are capable of significantly weakening the
evidence for variations in « from quasar absorption lines [11]. More recently, combining
four direct measurements related to the value of a 13 billion years ago with existing data,
a spatial variation is preferred over a no-variation model at the 3.90 level [12]. On the
other hand, Feynman [13] was fascinated by the very numerical value ~ 1/137 of o which
he called “one of the greatest damn mysteries of physics”. Therefore, any indication that
the numerical value of a could unexpectedly appear in the solution of a non-relativistic (i.e.
a-free) mathematical description should importantly fuel this controversial issue.

The very first question is: can the fine-structure constant o = e?/hc appear in the
description of a non-relativistic physical process where the velocity of light ¢ is by definition
absent? Rather surprisingly, the answer is yes. In [14] [15], an empirical non-relativistic
connection between the electronic polarizability of atoms and « is proposed. In [16] [17],
the 97.7% visual transparency of graphene —a two-dimensional material with carbon atoms
in a honeycomb lattice— is determined solely by 7a. This significant 2.3% absorption of
incident white light despite the graphene being only one atom layer thick is a consequence
of graphene’s unique electronic structure [18].

Actually possible links between non-relativistic physical systems and « are provided by
quantum electrodynamics (QED) through its basic hypothesis of virtual photons that me-
diate in electromagnetic interactions [19] [20]. The celebrated example is the description
of classical Coulomb electrostatics (hence non-relativistic) by QED’s exchange of a single
virtual long-wavelength photon of probability amplitude o< \/a [21] [22]. Specifically: i) The
electromagnetic operator H.,, = [ jAd®z defined by the 4-vector particle current density j
and related potential operator A is proportional to e?/y/a where e is the electron charge.
ii) Therefore the lowest-order probabiliy amplitude to create a virtual photon |k) of given
long-wavelength wavenumber k out of the vacuum |0) is:

k|Hem|0)

A = Bl o (1)

since wy = ck. iii) Consequently, the total number of virtual photons with all possible wave
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numbers that take part in the interaction is:
Poea = > _ | A* x . (2)
k

iv) On the other hand, the corresponding energy of this gas of virtual photons is:

Eqed = Y [ ATy, o< €. (3)
k

We recover the classical non-relativistic Coulomb energy: it is independent of « (or equiv-
alently of ¢). The use of Feynman-diagram “linked cluster theorem” constitutes a standard
procedure to recover (3) as the lowest-order term of the Rayleigh-Schrédinger perturbation
series, and hence to evaluate its error. We have indeed [23]:

(O Hemn| o) (k| Herm |0) [0 Hem k) (| Hern|0)]* | ) [(O] Hem k) (k| Hern|0)]*
Egea = 3| ) Choy +.]. @

The negative signs in those denominators in (4) of numerator terms to the odd powers are
canceled by the property that the matrix elements of the creation and annihilation operators
do have always opposite signs [24]. Thus we obtain from series (4) the next-order correction
to (3):

(k|Hepn|0))? e?//a)t
L E

| = S 1A+ ofc) x 1+ o)) (3

Therefore the lowest-order QED description (1-3) yields an error of ~ 1%.

But there is a snag in the above and overcoming this latter is the object of the present
work. Contrary to its energy (3), photon number (2) cannot be properly defined.
Indeed it has a k! logarithmic singularity at & — 0 in the corresponding integral which
unfortunately occurs in the long-wavelength domain of (1) [19]. Therefore the above lowest-
order QED sketch is not self-consistent.

It is possible to find a specific non-relativistic quantum-electrostatic system whose lowest-
order QED description similar to (1-3) yields a well-defined photon number Pgq x « free
of any long-wavelength singularity. It is provided by quantum-dot Helium [25] [26] [27] and
specifically by its couple of lowest-energy electrostatic bound state eigensolutions of the non-
relativistic and nonlinear Schrodinger-Poisson (SP) differential system [28] [29]. Ina D =3
three-dimensional (3d) radial harmonic potential defined by its angular frequency w, the
discrete real-valued steady-state electron-electron scattering solutions u;(X) corresponding
to the two lowest-energy S = 0 eigenstates (“s” states) —ground state |a) and 1rst excited
state |b)— are defined by the following SP system in appropriate dimensionless units (we
use parenthesis instead of brackets in |a, b) to emphasize eigenstate nonlinearity):

d? D—-14d 1.,
[W_FTE—FCAX)_ZX]U%(X)O (6)
d? 2 d 9 }
oty |G = atx) i=ab, (7)
3
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where

Ci(X) = pi — e®3(X), (8)

is related to eigenvalue (or chemical potential) p; in units of hw. It is defined by the
nonlinear eigenstate w;, together with its corresponding Coulomb potential ®;(X). The
initial conditions are:

dU,i
w(0) =wo || =0, (9)
dC;
Cy(0) = Cyy [ } —0, 10
(0) = Cio d (10)
and the eigenstate’s regular boundary condition reads:
mlglolouz(X) = 0. (11)

For all eigenstates, the normalization condition is:
Vi / w(X)XPrdX = N. (12)
0

It is indeed defined by the quantum-classical order parameter that only depends on the
confining parabolicity w:

x —. (13)

The characteristic length L = /h/2mw is the “harmonic length” of the oscillator. It de-
fines the reduced radial coordinate X = r/L. The linear regime limy _,ou; ~ 0 where the
nonlinear effects become negligible in agreement with Eqs (6-7) since they become decou-
pled corresponds to the strongly-confined case w — oco. Eigenstate non-orthogonality —or
overlap— is defined by the inner product in agreement with normalization (12):

(alp) = ,%/ /0 XX, (14)

In units of hw, the nonlinear eigenvalues p; can be calculated by use of either the initial
conditions X = 0 in (8) or the boundary conditions X — oo in Poisson equation (7):

: N
pi = Ci(0) + e@,(0) = Jim [Ci(x) + ], (15)
where -
/ G(0, X)u2X2dX = / W2 X2dX, = / w2 XdX, (16)
0
by use of the 3d Green function G(X', X) = 1/|X’ — X| of Eq. (7) at X’ = 0. Equations

(15-16) provide an excellent test for the accuracy of the numerical code: we obtained a 107%
precision by use of MatLab’s ode45 integration code [30].
Now define the electrostatic potential:

W(X) = ®p(X) — @4 (X), (17)

by use of its two first nonlinear eigenstates u, of system (6-12) together with their respective
Coulomb potentials ®,,(X) given by Eqgs (8) and (15). Apply to it the lowest-order QED

4
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scheme (1-3) with its ~ 1% error. By use of Poisson equation and with our dimensionless
units, potential (17) yields the charge density:
[15(X) — g (X)) (18)

a

€
) = N

Use the nonlinear electromagnetic interaction operator defined (in gaussian units) by poten-

tial (17) [28]:

. 2 3/2 d3k/
H, :/\/'/jAdda: = <%) Nv27rhc/[ak/p};, —i—az,pk/] N (19)

In (19), j is the 4-vector particle current density and A the related potential operator; aj,
and ay are respectively the creation and the annihilation operators of scalar photons with
wave vector k' and frequency wy = ck’ [24]. We use the stationary configuration where j
reduces to its 4th charge density component (18), while p; is the radial Fourier component
of p. Photon amplitude (1) together with the properties of operators a™ and a yield:

k| H.,,|0 3/2
A= e = () e ()

where n = p/e is the particle density defined by (18). Its 3-dimensional radial Fourier
component (as a function of the reduced wave number k = Lk: hence kX = kr) is n, =

9(r)/(N'V873) with:

sin kX

o) = [ [[OF = fua (X0 T XX (21)

K

The lowest-order QED description of the classical non-relativistic electrostatic potential
energy eW by use of the charge density (18) yields the photon number:

[,\3 [ a [ dr
_ 2 L 2/ 1277 _ 2
Psa = Ek |Ag|” = <27T) /o | Ag|* Ak dk _W/o 97 (k) P (22)

in agreement with (2). But, contrary to (2), it has no singularity in the long-wavelength
limit k — 0 since g(0) = 0 as the result of normalization (12) with D=3. Therefore it can be
used to establish a link to some appropriate specific physical property of the non-relativistic
—hence a-free— nonlinear SP differential system (6-12).

We have the following theorem about nonlinear eigenstate overlap (14) [31] [32]:

W, e db
(a|p) = b~ Tab | P (23)
Mo — Ha Ha — Hp Mo — Ha

The respective Coulomb potentials are labelled here as superscripts when necessary in order
to avoid any confusion with the real-valued matrix element ®°, = (a|®'|b) = (b|®'|a) = P},
The physical significance of theorem (23) can be illustrated from lowest-order QED (actually
first-order time-independent perturbation theory in quantum mechanics [33]). Specifically,
matrix element ®%, /(. — 1) describes an absorption-like transition; namely, the probability
amplitude for the system being in nonlinear ground eigenstate |a) to populate nonlinear
excited eigenstate |b) as a result of interaction potential ®, defined by probability density

5
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|[uq|? = u? through (7-8) and (15). Similarly, the second term ®° /(u, — j1,) would define the
reverse process induced by interaction potential @, defined by u?; namely, the probability
amplitude for the system being in excited eigenstate |b) to populate ground state |a) through
an emission-like transition. However, since the system is conservative, there are no external
photons to induce these two processes. They are only due to the intrinsic nonlinearity of
system (6-12) as shown by theorem (23). Therefore we might equivalently wish to consider
them within the QED framework as follows:

1. Nonlinearity yields eigenstate overlap (14);
2. Eigenstate overlap (14) creates virtual QED photons (22);

3. Virtual photons (22) induce eigenstate transitions (23).

These photons interfere [32] in the build-up of the inner product (a|b) as shown by
theorem (23). At any extremum of (a|b) —e.g. at the minimum of (alb), i.e. at the
maximum (a|b)?,,, of overlap probability (a|b)? reached at N' = A,,,..—, the two nonlinearly-
induced emission/absorption photon amplitudes are in phase and resonantly add up. Such a
resonance is defined in QED description (4) by all (0| H,|k)(k|H,|0) terms in the series that
yield the photon gas energy. As a consequence, we expect photon number (22) to equal
—within the ~ 1% tolerance defined by (5)— maximum overlap probability (a|b)?,,.
at N = N,z Since the former is proportonal to o while the latter is independent of «,
we recover the value (a|b)2,,. ~ « that has been repeatedly found —though sometimes with

questionable arguments— in quantum-dot Helium [28] [32] [34] [35] [36]. Quantitatively,
(22) yields at N' = Nqp [28]:

o W[ (a[b)2, (24)

Jo (k) dk

Therefore the numerical value ~ 1/137 of « is mathematically defined by the sole
nonlinear spectral properties of dimensionless eigenvalue differential system (6-
12): Thus it is a transcendental number of mathematical origin which, like 7 or e, should
probably be defined by a plethora of other mathematical models and remain invariant over
cosmological times.

Two results confirm the quite specific role played in (24) by the maximum overlap prob-
ability (a|b)?,,, at Nyae: see fig. 1. Firstly, the direct mathematical solution at N,q. of
Hartree’s original integro-differential system by use of a rapidly convergent series of its non-
linear eigenstates [37]. Secondly, the following D = 2 two-dimensional electron gas geometry
which strongly modifies both Schrodinger and Poisson equations. Indeed, they respectively
become in their dimensionless form (i = a,b):

] N:Nma:c

d? 1 d 1
4 - X2y = 9
[dX2+XdX+C’ 1 ]uz 0, (25)
d? 2 d 2
[dX2 * XdX]C X (26)

The normalization condition is still given by (12) with D = 2. The X! factor in the
source term of Poisson equation (26) is due to Gauss’ theorem. When X — oo, the elec-
trostatic interaction energy e®; defined by Eqs (8), (15-16) and (26) yields in units of Aw

6
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FIG. 1: Photon number Psq94 (broken lines) versus square eigenstate overlap (a|b)? (continuous
line) in units of a. The circles indicate the maxima of (a|b)? corresponding to the actual minima
of eigenstate overlap (a|b).

limy o e®;(X) = X! OX_)OO u?(X)X'dX" = N'/X through multiplication of (26) by X?
and integration by parts. This result fits normalization (12) with D = 2; see also (15). In
contrast, droping the X! factor in the r.h.s. of (26) would yield the 3-dimensional electron
density integral limy o e®;(X) = X! [ uf(X')X"2dX’ instead of the correct 2d one.

In this 2-d electron frame, the charge density (18) now becomes :

p=gonvrE ) 27)

while the corresponding 2d Fourier component of n = p/e is n, = h(k)/(4wN') where:
) = [ (00 — 2001 (RX) XA, 29
0

and Jj is the Bessel function of the 1rst kind. Therefore the QED probability defined by
(20-22) becomes in the present 2-dimensional parabolic electron confinement:

a [ dr
Pgd = 5/0 hg(li)? (29)
Since Jy(0) = 1 and hence h(0) = 0 by use of normalization (12) with D=2, we recover the
same regularity of Pay at £ ~ 0 as in the 3d electron case (22).

Figure 1 displays the final numerical results. The intersections of photon number Psg 24
with their respective square eigenstate overlap (a|b)? occur as expected about the maxima of
these latter (circles). In accordance with (22), we have in the 3d case P3; = 0.4714 o at max-
imum eigenstate overlap (a|b)?,,., = 3.471073 (= 0.4755«) reached at N,,., = 6.3542. Hence

7
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the expected ~ 1% relative error about this intersection, due to the difference between 0.4755
and 0.4714. According to (24), the 3d electron configuration yields azg = 3.471073/0.4714 =
7.3611073. Similarly, (a|b)?,,, = 4.648107% (= 0.6370c) at N,u, = 3.7477 in the 2d case,
while (29) yields Pog = 0.6309 . Thus apy = 4.6481073/0.6309 = 7.367 1072 in the 2d
case. It differs from gy = 7.361 1072 by 0.08%. Such an excellent agreement between these
two « values validate the present theory and exclude any fortuitous numerical coincidence.
Moreover, they both approach the exact value o = 7.297... 10~2 within less than 1% error,
in perfect agreement with the QED estimation obtained by (5).

Let me conclude:

1. Astrophysical tests of the stability of the fine-structure constant ov ~ 1/137 are very
active in observational research [6]-[12].

2. T obtain a = 7.364107% (vs experimental o = 7.297...1073) from the mathematical
solution of a dimensionless eigenvalue differential problem derived from the dual de-
scription of: i) a stationary nonlinear mean-field interacting quantum system; and ii)
its lowest-order QED counterpart.

3. This result strongly suggests the mathematical transcendental nature of a and there-
fore its astrophysical as well as its cosmological stability.

4. The corner stone of the solution lies in the physical similarity of nonlinear eigenstate
overlap with induced eigenstate transitions by QED virtual photons.

5. Despite its 1% relative error due to deliberate simplifications, I believe that the present
theory constitutes a pivotal progress towards the solution of what Feynman stressed
as “one of the greatest damn mysteries in physics” [13].
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