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Abstract. A novel way of comparing supervised learning algorithms
has been introduced since the late 90’s, based on Receiver Operating
Characteristics (ROC) curves.
From this approach is derived a NP complete optimization criterion for
supervised learning, the area under the ROC curve.
This optimization criterion, tackled with evolution strategies, is experi-
mentally compared to the structural risk criterion tackled by quadratic
optimization in Support Vector Machines. Comparable results are ob-
tained on a set of benchmark problems in the Irvine repository, within a
fraction of the SVM computational cost.
Additionally, the variety of solutions provided by evolutionary computa-
tion can be exploited for visually inspecting the contributing factors of
the phenomenon under study. The impact study and sensitivity analysis
facilities offered by ROGER (ROC-based Genetic LearneR) are demon-
strated on a medical application, the identification of Atherosclerosis
Risk Factors.

1 Introduction

Supervised machine learning (ML) is interested in estimating a nominal or nu-
merical variable based on some set of labeled examples, or training set.

The learning performance is usually measured from the predictive accuracy
of the estimator or hypothesis, i.e. the percentage of correctly identified labels
in another set of examples, the test set [Die98].

Though predictive accuracy was commonly used to compare learning algo-
rithms, it suffers from several shortcomings regarding skewed example distribu-
tions (e.g. discriminating a 1% positive examples from 99% negative examples)
and asymmetric mis-classification costs [Dom99].

A remedy to these limitations was offered by Receiver Operating Charac-
teristics (ROC) analysis [Bra97,PFK98,LHZ03], as will be detailed in the next
Section. ROC curves, originated from the signal theory, are popular in Medical
Data Analysis as they offer a synthetic representation of the trade-off between
the true positive rate (TP) and the false positive rate (FP) depending on how
a medical test is interpreted, e.g. which thresholds are used to tell pathological
from normal cases (Fig. 1).
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Fig. 1. The ROC curve illustrates the hypothesis trade-off between true and false
positive rates. The best performance for a given misclassification cost ratio is found on
the Best Trade-off line.

Along these lines, it came naturally to consider the area under the ROC curve
(AUC) as a learning criterion [MDC+01,FFHO02]. As this criterion induces a
mixed, NP complete optimization problem [CSS98], its optimization was tackled
within greedy search [FFHO02] or genetic algorithms [MDC+01].

Independently, the foundational approach of Statistical Learning offered a va-
riety of learning optimization criteria, drastically renewing the Machine Learning
perspective [Vap98,SBS98,CST00]. Such criteria derive well-posed optimization
problems, such that the optimum solution offers statistical guarantees of learn-
ing performance; for instance, Support Vector Machines (SVMs) are determined
by quadratic minimization of the structural risk criterion.

The present paper presents the ROGER (ROC-based Genetic Learning) al-
gorithm, implementing the evolution-strategy based optimization of the AUC
criterion; ROGER is compared to a state-of-art SVM algorithm known as SVM-

Torch [CB01].

Both algorithms demonstrate comparable learning performance on a subset
of benchmark problems in the Irvine repository [BKM98]; however, ROGER

requires a fraction of SVMTorch computational effort. The differences in the
learning behavior of both algorithms are discussed and some interpretations are
proposed.

Finally, this paper presents a novel exploitation of the variety of hypotheses
provided by evolutionary optimization, through impact study and sensitivity
analysis visual facilities. As noted by [CMS99], visual representations can provide
the expert with a wealth of easy-to-understand and yet precise information.
These visual facilities are illustrated and discussed on a medical data mining
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application, the identification of Atherosclerosis Risks, presented in the PKDD
2002 Challenge [LAS02].

This paper is organized as follows. Section 2 presents ROC analysis and re-
views related work. Section 3 describes the ROGER algorithm. Section 4 reports
on comparative experiments, using SVMTorch as reference algorithm. Section 5
finally describes and discusses how to exploit the variety of evolution-based so-
lutions in a Visual Data Mining perspective.

2 ROC Curves and Machine Learning

This section briefly situates the use of ROC curves from a machine learning
perspective.

2.1 Robustness of ROC Curves

As mentioned in the introduction, predictive accuracy might be a poor perfor-
mance indicator when the problem domain suffers from skewed class distribu-
tions and involve asymmetric mis-classification costs. For instance, medical or
text retrieval applications commonly present negative examples outnumbering
positive examples by a factor 100, with a false positive cost (mistaking a nega-
tive example for a positive one) usually much lower than the false negative cost
(missing a true positive).

Specific heuristics are devised to resist such characteristics, e.g. through over-
sampling the rare class, incorporating the mis-classification costs in the learning
criteria, and/or relabeling the examples [Dom99].

An alternative would be to see learning as a multi-objective optimization
problem (see [Deb01] and references therein), simultaneously maximizing the
true positive and true negative rates. From this perspective, ROC curves simply
depict the Pareto front associated to a set of hypotheses and/or learners (Fig.
1) [Bra97,PFK98,SKB99].

Three particular points in the ROC space correspond to the All positive

hypothesis (point (1, 1)), All negative hypothesis (point (0, 0)), and discriminant
hypotheses (point O = (1, 0)).

By construction this representation does not depend on the class distribution,
since it uses normalized coordinates, the true positive and false positive rates.

Furthermore, this representation immediately allows one to select the best
hypothesis depending on the error costs. Assuming that a false negative error
costs r times more than a false positive one, the best hypothesis lies at the
intersection of the ROC curve with the straight line ∆ of slope −1

r
(Fig. 1).

2.2 Related Work

As argued in [Bra97,MDC+01,FWB+98], ROC curves also allow one to deal with
practical requirements on the minimal TP or maximal FP rates. For instance, the
detection of churners within a given sensitivity (TP) and precision (1-FP) range
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was achieved in [MDC+01], with a GA-based optimization of the area under
the ROC curve in the desired ranges. The detection of malignant mammograms
with a minimum sensitivity and precision was similarly tackled by EP-based
optimization of ANN and linear hypotheses in [FWB+98].

When such desired ranges are unknown, the whole area under the ROC
curve can be taken as learning criterion (AUC), with two warnings. Firstly, the
AUC criterion is not “better” than the predictive accuracy [LHZ03]; rather,
both criteria define distinct optimization landscapes. Secondly, the AUC crite-
rion defines an NP complete, combinatorial optimization problem; to our best
knowledge, this optimization problem was only addressed through greedy or
evolutionary search, respectively learning decision trees [FFHO02], or linear hy-
potheses [MDC+01].

Nevertheless, optimizing the AUC criterion enforces the learning stability
with respect to the misclassification costs. Learning stability is most generally
desirable, for the target hypothesis should be independent as much as possible
from fortuitous effects in the problem domain. To our best knowledge, learn-
ing stability has mostly been investigated in relation with the training example
distribution [BE02]. But stability wrt misclassification costs is desirable as well,
for two reasons. On one hand, the expert usually sets the misclassification costs
by trials and errors; optimizing the ROC curve provides optimal hypotheses for
various misclassification costs, which allows the expert for a more informed and
better choice.

On the other hand, the appropriate misclassification costs might vary, de-
pending on additional information on the case at hand (e.g. the “normal” range
for a bio-chemical exam might depend on the age and mobility of a patient). The
decision making based on a ROC curve can thus be locally adjusted depending
on the case at hand.

Conversely, the use of ROC spaces offers a geometrical and intuitive rep-
resentation for the behavior and dynamics of a learning strategy on a given
domain [Fla03]; for instance, experimentations with different learning criteria
(m-estimate, Gini criterion, entropy) offer new insights into how they trade-off
the FP and TP rates [FF03].

Less related to ROC analysis, the Learning to Order Things approach de-
veloped by Cohen et al. [CSS98] searches for ranking hypotheses, compatible
with the preferences of some experts in a Web-based and text retrieval context.
Indeed, any ordering hypothesis that would rank positive examples first, would
reach the optimum of the AUC criterion.

3 Genetic ROC-Based Learning

This section describes the ROGER algorithm, implementing an evolution-
strategy based optimization of the AUC criterion, and discusses its limitations.
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3.1 Overview

Let the data set be given as E = {(xi, yi), i = 1 . . . n, xi ∈ X, yi ∈ {1, −1}},
where X denotes the instance space. In the following, we restrict ourselves to
attribute-value learning, e.g. X = IRd.

The hypothesis space considered in the following is the set of real-valued
functions on X.

For the sake of comparison, only linear functions are considered in the
following; the hypothesis space H is set to IRd. The extension to richer function
spaces using kernel-based representations is planned for further research.

Any real-valued hypothesis h on X induces by thresholding a family of binary
classifiers {ht, t ∈ IR}, with

ht(x) =

{

1 if h(x) > t

−1 otherwise

It is straightforward to see that the true positive and the false positive rates
monotonically increase as t decreases: the curve defined by (FP (ht), TP (ht), t ∈
IR) is a ROC curve.

The fitness of h is set to the area under the above ROC curve, computed with
complexity n log n where n is the number of examples (Table 1). Normalization
is omitted as of no effect on the optimization problem.

Table 1. Fitness of h = Area Under the Roc Curve of h

Fitness function of hypothesis h

Input
Data set E = {(xi, yi), i = 1 . . . n, xi ∈ X, yi ∈ {1, −1}}
Hypothesis h : X �→ IR

Init
Sort E = {(xi, yi)} by decreasing order, where i > j

iff (h(xi) > h(xj)) or ((h(xi) = h(xj) and (yi > yj)).
p = 0
F = 0

For i = 1 to n

if yi = 1, increment p;
else F = F + p

EndFor
Return F

The optimization of fitness function F on the search space H = IRp is
achieved using evolution strategies (ES) with self-adaptive mutation [Sch81],
well suited to parametric optimization [Bäc95].

We use the (µ+λ)−ES selection/replacement mechanism; µ parents generate
λ offspring, and the best individuals among the µ parents + λ offspring are
selected as parents for the next generation.
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3.2 Discussion and Limitations

Since the 90’s, the use of real-valued hypotheses has been investigated in two
major areas of machine learning, namely statistical learning [Vap98] and ensem-
ble learning [SFPL97]. The efficiency of both approaches is explained from the
optimization of the minimal margin (the diagnostic confidence, or distance to
the discrimination threshold t).

Based on structural risk minimization, SVMs actually depend on a few se-
lected examples, the support vectors; they achieve stable learning as they pay
no attention to (the distribution of) other examples.

The difference with AUC optimization is twofold. On one hand, the AUC
criterion depends on the whole example distribution. On the other hand, AUC
is an order-based criterion, reputed more stable under statistical noise than
real-valued criteria. In counterpart, AUC maximization defines an ill-behaved
optimization landscape, as it maps a continuous search space onto a finite integer
set, while structural risk defines a convex, quadratic optimization landscape.

However, AUC minimization achieves learning stability wrt misclassification
cost, as desired and discussed in Sect. 2; a single real-valued hypothesis h is
learned, and the misclassification cost only governs the discrimination threshold
t. In opposition, modifying the misclassification cost would require to retrain
SVMs and result in a different hypothesis.

In conclusion, AUC-based learning presents two main drawbacks. One, shared
with SVMs, is that it does not provide an intelligible hypothesis, though experts
are often willing to sacrifice some accuracy for more intelligible hypotheses. The
other drawback results from the fact that AUC defines an under-specified opti-
mization problem, admitting infinitely many solutions.

We shall see in Sect. 5 that this multiplicity of solutions can be exploited and
provide the expert with some facilities for inspecting the hypotheses, “for free”.

4 Comparative Validation

ROGER is experimentally validated on eight problems from the Irvine repository
[BKM98], and compared to a state-of-art SVM, SVMTorch [CB01].

4.1 Experimental Setting

On each problem, the dataset is splitted into a training set and test set with same
class distribution as the global dataset, and 11 independent splits are considered.
The split is done with 2/3 of the data in the training set, and 1/3 in the test
set; in some cases (see Table 3), the size of the training set has been reduced
such that SVMTorch learning computational cost be less than 15 minutes on
Pentium-II, 400 MHz.

On each training set, SVMTorch is run with default parameters, and com-
putes the SRM-optimal hyperplane on the training set, h(x) = w.x + b. Hy-
pothesis h is assessed from the ROC curve associated to w.x on the test set.
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On the same training set, ROGER is run 21 times, providing 21 independent
solutions h to the AUC maximization problem (Table 1). Same parameters,
summarized in Table 2, are used for all runs and all problems.

For each training set, we consider the median of the ROC curves on the
test set, over the 21 runs. As already noted by [PFK98], the representativity of
the median ROC curve is difficult to assess since different portions of the curve
correspond to distinct hypotheses.

Finally, we take the mean of the above medians over the 11 splits for each
dataset.

Table 2. ROGER parameters

population size # parents µ 10
# offspring λ 50

max nb evaluations 10,000

crossover uniform rate .6
mutation self-adaptive rate 1

Table 3. The AUC values and computational time of ROGER and SVMTorch on eight
datasets from Irvine Repository

nb att nb att lin #Train #Test

Breast Cancer 9 42 189 97
Crx 15 47 70 620

German 25 25 100 900
Promoters 59 229 70 36
Satimage 36 36 139 1237
Vehicle 18 18 125 291
Votes 16 32 287 148

Waveform 1-2 22 22 211 3321

ROGER SVMTorch

AUC time AUC time

.674 ± .05 7” .672 ± .05 1”

.816 ± .06 7” .839 ± .04 886”

.712 ± .03 6” .690 ± .02 96”

.863 ± .07 2” .974 ± .02 < 1”

.918 ± .01 4” .876 ± .02 14”
.994 ± .005 1” .993 ± .007 < 1”
.993 ± .004 7” .989 ± .005 > 1,000
.971 ± .004 4” .963 ± .008 2”

The experiment goal is to compare AUC-based learning with SVMs in terms
of predictive accuracy and learning stability. At the moment, only linear hy-
potheses are considered; SVMTorch is run with a linear kernel.

4.2 Experiments

Table 3 summarizes the datasets considered, the size of the training and test
sets, the initial number of attributes and the size of the hypothesis search space,
being reminded that a nominal attribute with k modalities is expressed as k

boolean attributes, and accounts for k coefficients in the linear hypothesis h.
As already mentioned, the size of the training set was limited to restrict the
computational cost of SVMTorch to a maximum of 15 minutes on Pentium II,
400 MHz. The computational cost of ROGER is lower by one or several orders
of magnitude than SVMTorch in the worst cases.

The average and standard deviation of the areas under the ROC curve, aver-
aged over 11 runs for SVMTorch and 11 × 21 runs for ROGER, are reported in
Table 3. Similar AUCs values are obtained. Likewise, ROGER and SVMTorch
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have similar predictive accuracies, as can be observed from Fig. 2. SVMTorch

significantly outperforms ROGER on Promoters; ROGER significantly outper-
forms SVMTorch on Satimage. In most other cases, the median curves are almost
indistinguishable, except sometimes in the beginning of the curve.
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Fig. 2. Comparison of the median ROC curves obtained with SVMTorch and ROGER

These experiments suggest that AUC maximization is competitive with re-
spect to SVMTorch, which is much encouraging given the maturity and the
strong mathematical foundations of SVMs. A fortiori, ROGER compare favor-
ably to more traditional learners such as C4.5, naive Bayes, and k-NN on these
same problems, after [PFK98].

The scalability of the approach with respect to the size of the dataset, in
n log n, is quite satisfactory. Empirically, the computational cost of AUC evolu-
tionary minimization is much lower on average than for SVMTorch, with a very
low standard deviation.

However, the AUC scalability with respect to the number of attributes is
questionable. The worst performances are obtained for the Promoters problem,
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with 229 attributes. On-going experiments are underway to investigate and un-
derstand this limitation.

5 Impact Studies and Sensitivity Analysis

This section shows how the multiplicity of solutions provided by AUC evolution-
ary optimization can be exploited by the expert to gain some insights into the
phenomenon at hand. The approach is illustrated on the PKDD 2002 Challenge
dataset1, concerned with the identification of risk factors for atherosclerosis and
cardio-vascular diseases (CVD).

5.1 The Data and Learning Goal

Two databases have been made publicly available for the PKDD2002 Challenge.
The Entry database describes the personal and family case for 1419 middle aged
men.

This database involves 219 attributes, which have been manually compressed
into 28 boolean and numerical attributes [LAS02].

The Control database presents the longitudinal study over 20 years of a
sample of men. Using the medical expertise of the third author, this sample was
divided into three classes, depending whether their health after 20 years is good,
bad, or other (the later class includes in particular all men who disappeared from
the study)2.

5.2 Experimental Setting

The goal is to predict from the individual description given in the Entry database,
his health state after twenty years.

The dataset is splitted into a 2/3 training set and 1/3 test set with same class
distribution as the global dataset, and 11 independent splits are considered.

On each training set, SVMTorch is run with default parameters, and the
optimal hypotheses are again evaluated from their median ROC curve.

On each training set, 21 independent ROGER runs are launched with pa-
rameters given in Table 2). The median ROC curves over 21 runs are averaged
over the 11 splits of the data, and the mean ROC curve is displayed in Fig. 2.(f).

ROGER shows good performances, with an average AUC of .79 ±.012 to be
compared with .76 ±.045 for SVMTorch.

Interestingly, the main difference between the two curves occurs close to
the origin. It appears that some negative examples are classified as positive
with high confidence by SVMTorch. Indeed, SVMs make no difference between
misclassified examples provided that their confidence is above the cost threshold;
and one would not increase the cost threshold too much, as this would increase

1 http://lisp.vse.cz/challenge/ecmlpkdd2002/
2 The prepared dataset is available at http://www.lri.fr/˜ aze/PKDD2002/.
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the sensitivity to noise of the algorithm. In contrast, the AUC criterion offers
a finer-grained evaluation of mis classifications, as the cost of an error actually
depends on its rank; improving the example order, even in extreme regions, is
rewarded. Accordingly, the True Positive rate increases abruptly at the beginning
of the ROGER curve: individuals classified as the most at risk are on average in
bad shape. In medical terms, the sensibility of the ROGER hypothesis is better
compared to SVMTorch on this problem.

5.3 Impact Studies

A well known limitation of SVMs (also incurred by ROGER) is that it does
not provide an easy-to-read hypothesis. An alternative to the analytic inspec-
tion of hypotheses is offered by diagrammatic representations, as investigated
in Visual Data Mining [CMS99]. Along these lines, we explore some graphical
interpretations of the ROGER hypotheses.

A first graphical exploitation concerns the impact study, analyzing the con-
tribution of a given feature on the concept under examination; classically, this
contribution is measured using correlation, chi-square or entropy.

However, ROGER hypotheses (and more generally, any ordered hypothesis)
provide a more detailed, intuitive and yet precise picture, about the contribution
of a feature (attribute, function of attributes). As an example, let us investigate
the impacts of the tobacco and alcohol intoxication on atherosclerosis risk factors.

These impacts are graphically assessed, using the following protocol.

10 30 50 70 90
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400

500

600

heavy smokers  
light smokers
median

10 30 50 70 90

300

400

500

heavy drinkers  
light drinkers
median

(a) Tobacco (b) Alcohol

Fig. 3. Tobacco and Alcohol Impacts on Atherosclerosis Risks

For each feature (here, an attribute), the 10% individuals in the test set
with maximal (resp. minimal) values for this attribute, are considered. In both
subsets, the individuals are ranked by increasing value of h, and the curves
(i, h(xi)) are displayed.

Each curve shows globally the risk range for the individuals with high (resp.
low) intoxication (though the risk might be due to other factors, correlated with
the intoxication). It is believed that such curves convey a lot more information
than the correlation factor or quantity of information.
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Furthermore, they allow for an intuitive comparison of the factors, by super-
posing the curves. For instance, the impact of tobacco can be argued from the
fact that the non-smoking individuals all lie in the better half of the population
(their risk is less than the median risk). The heavy smoker risk is always higher
than for non-smokers; 2/3 of the heavy smokers show an above-average risk and
the risk rises sharply for the worst 20% of the heavy smokers.

The apparently lesser impact of alcohol must be taken with care. On one
hand, it is true that a small amount of red wine was found beneficial against some
CVD. On the other hand, it appeared from the data that the men considered
“light drinkers”... were not drinking so lightly.

5.4 Sensitivity Analysis

The multiplicity of optimal solutions for the AUC criterion and/or the variability
of stochastic optimization, can also be exploited for sensitivity analysis.

Let us represent a model h as a curve i, wi, where i stands for the index of
the attribute and wi is the associated weight. Fig. 4 displays 21 models learned
from the total dataset, showing that some attributes play a major role for the
target concept (typically the tobacco factor, attribute 9). Conversely, some other
attributes can be considered as weakly relevant at best. Last, the inspection of
the curves suggests that some attributes might be inversely correlated, hinting
at the creation of compound attributes.

Attributes
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Sensitivity analysis

Fig. 4. Sensitivity analysis

6 Conclusion and Perspectives

This paper investigates a recent learning criterion, the maximization of the area
under the ROC curve. A simple ES-based maximization of this criterion ap-
pears to be competitive with well-founded statistical learning algorithms, SVMs
[Vap98].

The real-valued nature of the hypotheses allows for visual impact studies,
assessing the contribution of any attribute to the concept at hand; as shown
in Sect. 5, such visual representations provide much richer information than a
correlation factor.
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Moreover, the intrinsic variability of evolutionary results can be exploited to
provide “for free” a sensitivity analysis.

Further research is concerned with extending ROGER to more complex in-
stance and hypothesis languages, using for instance kernel representations. In
parallel, the sensitivity analysis will be exploited for feature selection and con-
struction.
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