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Bernard Lyon 1, Lyon France
∗∗ Laboratoire des signaux et systèmes (L2S), UMR CNRS 8506,
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Abstract: In this paper, the stability analysis of a class of hyperbolic systems with non-
diagonalizable principal part and nonuniform coefficients is addressed. We give a stability
condition and express the convergence rate that can be obtained. Two cases will be treated
independently: with and without a source term. A numerical scheme is designed to illustrate
the performance of the Lyapunov stability analysis.
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1. INTRODUCTION

In recent years, significant progress has been made in
understanding the stability and control of strictly hy-
perbolic systems, thanks to the contributions of Bastin
and Coron (2016), among others. In particular, con-
trol strategies for hyperbolic systems using backstepping
with Volterra or Fredholm transformations have been
proposed Krstic (2009); Bribiesca-Argomedo and Krstic
(2015); Coron et al. (2013). These mathematical advances
can then be applied to a wide range of applications,
such as drilling processes Bresch-Pietri and Krstic (2014),
navigable rivers (Bastin and Coron, 2016, Chapter 8) or
wastewater treatment Valentin et al. (2023).

However, as soon as the system is weakly hyperbolic,
for instance having a non-diagonalisable principal part
with eigenvalues of multiplicity greater than one, only
few stability results and even fewer control results are
available (see however Alabau-Boussouira (2002); Métivier
and Zumbrun (2005)). In this paper, we deal with the case
of hyperbolic systems of dimension 2×2 when the principal
part has a positive eigenvalue of geometric multiplicity
equal to two, at least on a part of the spatial domain.

By leveraging Lyapunov analysis, a strict Lyapunov func-
tional is designed which, under certain conditions, allows
us to assess the global exponential stability. This Lya-
punov functional relies heavily on input-to-state proper-
ties Prieur and Mazenc (2012) satisfied by our class of
system. In addition, we have endeavored to get as close as
possible to the optimum bounds Lamare et al. (2016) on
the convergence rate and the overshoot. To achieve this,
we played with different weights, in particular using poly-
nomial rather than exponential weights in the Lyapunov
functional kernels.

Section 2 introduces the system class, along with the
accompanying definitions and the statement of the prob-
lem. In Section 3, two stability conditions are presented,
differentiating between cases with and without a source
term. Section 4 illustrates the theoretical findings through
the simulation of two academic examples.

Notation: Throughout the paper, the partial derivatives in
time and space are denoted ∂t and ∂x, while the classical
derivative are V̇ = d

dtV and . Moreover, Ck
pw(0, 1;R)

denotes the space of functions defined from [0, 1] to R
for which the k − 1 first derivatives are continuous and
the k-th derivative is piece-wise continuous; L2((0, 1);R)
denotes the space of square-integrable functions from
(0, 1) to R; H1((0, 1);R) = {f : (0, 1) → R | f ∈
L2((0, 1);R), f ′ ∈ L2((0, 1);R)} and X = L2((0, 1);R) ×
H1((0, 1);R) equipped with the norm:

∥·∥2X : (f, g) 7→ ∥f∥2L2((0,1),R)+∥g∥2L2((0,1);R)+∥g′∥2L2((0,1);R).

Given a function f : (0, 1) 7→ R, we denote by f =

max

{
0, sup

x∈(0,1)

f(x)

}
and f = inf

x∈(0,1)
f(x).

2. PROBLEM STATEMENT

Consider the following class of triangular 2x2 hyperbolic
system
∂tϕ(t, x) = Λ(x) (A(x)∂xϕ(t, x) +B(x)ϕ(t, x)) , x ∈ (0, 1),

ϕ(t, 1) = Dϕ(t, 0),

ϕ(0, x) = ϕ0(x)
(1)

with ϕ(t, x) = (ϕ1(t, x), ϕ2(t, x)) ∈ X being the state of the
system defined for any t ≥ 0 and any x ∈ [0, 1], ϕ0 ∈ X
a given initial condition satisfying zero-order and first-
order compatibility conditions Bastin and Coron (2016).



We have Λ(x) =

[
λ1(x) 0
0 λ2(x)

]
is such that λ1,2(x) > 0,

moreover we assume that λ1 ∈ C0
pw(0, 1;R) and λ2 ∈

C1
pw(0, 1;R), A(x) =

[
1 c(x)
0 1

]
where c ∈ C0

pw(0, 1;R), the

source term B(x) =

[
B11(x) B12(x)

0 B22(x)

]
is continuous, we

assume B11, B12 ∈ C0
pw(0, 1;R), B22 ∈ C1

pw(0, 1;R) and

D =

[
D11 D12

0 D22

]
.

System (1) is worth of interest in cases where the principal
part A(x) is not diagonalizable for some part of the space
x ∈ (0, 1), in other words if there exists x ∈ (0, 1) such
that λ1(x) = λ2(x) and if for all x ∈ (0, 1), c(x) ̸= 0.

Lemma 1. For any initial condition ϕ(0) = ϕ0 ∈ X, the
system (1) is well-posed and the (weak) solution t 7→
ϕ(t;ϕ0) belongs to C([0,+∞);X) for all t ≥ 0.

Proof. See Garetto et al. (2018). ■

Definition 1. The origin of system (1) is said to be globally
δ-exponentially stable if there exists an overshoot κ ≥ 1
and a decay rate δ > 0 such that for any initial condition
ϕ0 ∈ X:

∥ϕ(t;ϕ0)∥2X ≤ κ e−δt∥ϕ0∥2X , ∀t ≥ 0.

In this paper, we aim at giving sufficient conditions that
ensures exponential stablility of system (1) in the sense of
Definition 1.

3. STABILITY ANALYSIS

3.1 First study case : without the source term

In this section, we express a stability condition on sys-
tem (1) in the case where the source term, B, is null. This
one imposes a restriction on the diagonal terms of D with
respect to the function λ2.

Assumption 1. The function λ2 and the matrix D satisfy
the following inequality

max(D2
11, D

2
22) < 1− λ′

2

λ2
. (2)

Based on this assumption, we can now give the following
result which establishes exponential stability of the origin
and gives an estimate on the exponential convergence rate
and the overshoot.

Theorem 1. Assume B = 0. Let Assumption 1 holds

and let ν :=
λ′
2

λ2−λ′
2

, ν̄ :=
1−D2

22

D2
22

. Then, for any δ <

min{ ν̄λ1

1+ν̄ ,
ν̄λ2

1+ν̄ ,
(ν̄−ν)λ2

(1+ν̄)(1+ν)}, the origin of system (1) is δ-

exponentially stable with an overshoot given by

κ =

1
λ1

+ α20

λ2
+ α21

λ2

min( 1

λ1
, α20

λ2
, α21

λ2
)
(1 + ν̄ − ε

2 ), 0 < ε < ν̄ − ν,

and α20, α21 given by (10).

With Assumption 1, it can be checked that ν, ν̄ and δ
which appear in the statement of Theorem 1 are all well
defined and positive.

Remark 1. Note that this result is inspired by Diagne et al.
(2012); Prieur and Mazenc (2012) and extends (Bastin
and Coron, 2016, Theorem 6.10) for the case of triangular
hyperbolic structure. For the diagonal case, i.e. c = 0 and
when λ′

2 = 0, we recover the well-known stability condition
|D11| < 1 and |D22| < 1 (i.e. D is a Schur matrix).

Remark 2. This result is establishes due to the cascade
structure of system (1). With assumption 1, it can be
shown that the origin of the first subsystem with state ϕ2

is globally exponentially stable in H1 norm for any decay
rate smaller than ν̄λ2 whereas the origin of the second part
of state ϕ1 is input-to-state stable with respect to the H1

norm of ϕ2.

Remark 3. The presence of the non diagonal term c in
the system definition forces us to work with the L2 ×H1

norm (see Garetto et al. (2018)). We found that when
D21 ̸= 0, the term D21∂xϕ2(0)∂xϕ1(0) in the stability
analysis cannot be handled. It remains unclear whether
the system (1) is stable at the origin when D21 ̸= 0. Our
numerical observations suggest that the presence of this
term significantly affects the convergence properties of the
system.

Proof. The method used to prove Theorem 1 relies on
the construction of a Lyapunov functional inspired by
Kharitonov (2012); Krstic (2009). Consider the following
functional:

V(ϕ) =
∫ 1

0

ϕ⊤(x)P (x)ϕ(x)dx+

∫ 1

0

∂xϕ
⊤(x)Q(x)∂xϕ(x)dx,

(3)
with matrices P (x) and Q(x) given by

P (x) =

[
1+µx
λ1(x)

0

0 α20
1+µx
λ2(x)

]
, Q(x) =

[
0 0
0 α21

1+µx
λ2(x)

]
,

and scalars µ, α20, α21 > 0.

This functional will be decomposed term by term as
follows: V(ϕ) = V1(ϕ) + α20V20(ϕ) + α21V21(ϕ) with

V1(ϕ) =

∫ 1

0

1+µx
λ1(x)

ϕ2
1(x)dx,

V20(ϕ) =

∫ 1

0

1+µx
λ2(x)

ϕ2
2(x)dx,

V21(ϕ) =

∫ 1

0

1+µx
λ2(x)

(∂xϕ2)
2(x)dx

First, we assess the following inequalities :

min(
1

λ1

,
α20

λ2

,
α21

λ2

)∥ϕ∥X ≤ V(ϕ),

V(ϕ) ≤
(
1 + µ

λ1
+ α20

1 + µ

λ2
+ α21

1 + µ

λ2

)
∥ϕ∥X ,

(4)

Along C1 solutions to system (1) with B = 0, the time
derivative of each term of this functional is calculated
below.

First, we obtain

V̇20(ϕ) = 2

∫ 1

0

(1 + µx)ϕ2(x)∂xϕ2(x)dx,

= −µ

∫ 1

0

ϕ2
2(x)dx+ (1 + µ)ϕ2

2(1)− ϕ2
2(0)



As ϕ2(1) = D22ϕ2(0), and since by Assumption 1, |D22| <
1, we have

˙V20(ϕ) ≤ −µ∥ϕ2∥2L2 + (µ− ν̄)ϕ2
2(1). (5)

Second, in the same way, we obtain

V̇1(ϕ) = 2

∫ 1

0

(1 + µx)ϕ1(x)∂xϕ1(x)dx

+2

∫ 1

0

c(x)(1 + µx)ϕ1(x)∂xϕ2(x)dx,

= −µ

∫ 1

0

ϕ2
1(x)dx+ (1 + µ)ϕ2

1(1)− ϕ2
1(0)

+2

∫ 1

0

c(x)(1 + µx)ϕ1(x)∂xϕ2(x)dx.

For any a, b ∈ L2((0, 1);R) and γ > 0, Young’s inequality
ensures

2

∫ 1

0

a(x)b(x)dx ≤ γ

∫ 1

0

a2(x)dx+ 1
γ

∫ 1

0

b2(x)dx.

Taking a(x) = |ϕ1(x)| and b(x) = |∂xϕ2(x)|, the crossed
term can be bounded as follows

2

∫ 1

0

c(x)(1 + µx)ϕ1(x)∂xϕ2(x)dx

≤ (1 + µ)c

(
γ

∫ 1

0

ϕ2
1(x)dx+ 1

γ

∫ 1

0

(∂xϕ2)
2(x)dx

)
≤ (1 + µ)c

(
γ∥ϕ1∥2L2 + 1

γ ∥∂xϕ2∥2L2

)
with c = max

x∈(0,1)
|c(x)|. Hence, the time derivative of V1 is

bounded by

V̇1(ϕ) ≤ (−µ+ (1 + µ)cγ) ∥ϕ1∥2L2 +
(1+µ)c

γ ∥∂xϕ2∥2L2

+(1 + µ)(D11ϕ1(0) +D12ϕ2(0))
2 − ϕ2

1(0)

Moreover, Young’s inequality ensures

(1 + µ)(D11ϕ1(0) +D12ϕ2(0))
2 − ϕ2

1(0)

≤ (D2
11 − 1)ϕ2

1(0) +D2
12ϕ

2
2(0) +D11D12(aϕ

2
1(0) +

1
aϕ

2
2(0)),

≤ (D2
11 − 1 + a|D11D12|)ϕ2

1(0) + (D2
12 +

|D11D12|
a )ϕ2

2(0).

Since by Assumption 1, |D11| < 1, picking µ sufficiently
small it yields that

a :=
1− (1 + µ)D2

11

(1 + µ)|D11D12|
> 0. (6)

Consequently, it implies

V̇1(ϕ) ≤ (−µ+ βγ) ∥ϕ1∥2L2 + αϕ2
2(1) +

β
γ ∥∂xϕ2∥2L2 , (7)

with

α =
(1 + µ)

D2
22

(
D2

12 +
|D11D12|

a

)
=

(
1 + µ

1− (1 + µ)D2
11

)
D2

12

D2
22

,

β = (1 + µ)c.

Third, similarly, the time derivative of the last part of the
Lyapunov candidate functional yields

V̇21(ϕ) = 2

∫ 1

0

(1 + µx)∂xϕ2(x)
∂xtϕ2(x)
λ2(x)

dx,

= 2

∫ 1

0

(1 + µx)∂xϕ2(x)∂xxϕ2(x)dx

+2

∫ 1

0

(1 + µx)
λ′
2(x)

λ2(x)
(∂xϕ2)

2(x)dx,

= −µ

∫ 1

0

(∂xϕ2)
2(x)dx+ (1 + µ)∂xϕ

2
2(1)− ∂xϕ

2
2(0)

+2

∫ 1

0

(1 + µx)
λ′
2(x)

λ2(x)
(∂xϕ2)

2(x)dx.

As ∂xϕ2(1) = D22∂xϕ2(0) from the compatibility condi-
tion, we have

V̇21(ϕ) ≤ (−µ+2(1+µ)
λ′
2

λ2
)∥∂xϕ2∥2L2+(µ−ν̄)∂xϕ

2
2(1). (8)

Considering ν = (1 − λ′
2

λ2
)−1 λ′

2

λ2
is equivalent to

λ′
2

λ2
= ν

1+ν

which means that (−µ + 2(1 + µ)
λ′
2

λ2
) = ν−µ

1+ν . Thus, from

(5), (7) and (8), we end up with

V̇(ϕ) ≤ (−µ+ βγ) ∥ϕ1∥2L2 − α20µ∥ϕ2∥2L2

+
(

β
γ + α21

ν(2+µ)−µ
1+ν

)
∥∂xϕ2∥2L2

+(α20(µ− ν̄) + α)ϕ2
2(1)

+α21(µ− ν̄)∂xϕ
2
2(1).

(9)

To make the last three terms negative, we select the
positive scalars µ, α20, α21, γ as follows

µ = ν̄ − ε

2
, γ =

µ− ν̄ + ε

β
=

ε

2β

α20 =
1

(ν̄ − µ)
α =

2α

ε
,

α21 =
1 + ν

µ− ν(2 + µ)− (ν̄ − ν − ε)

β

γ
=

4(1 + ν)β2

ε2
.

(10)

and sufficiently small scalar ε verifying ε < ν̄ − ν. With

Assumption 1,
λ′
2

λ2
< 1−D2

22, hence, we clearly check that

ν < µ < ν̄ holds. Then, as:

∥ϕ1∥2L2 ≥ λ1

1+µV1(ϕ) ≥
λ1

1+ν̄V1(ϕ),

∥ϕ2∥2L2 ≥ λ2

1+µV20(ϕ) ≥
λ2

1+ν̄V20(ϕ),

∥∂xϕ2∥2L2 ≥ λ
2

1+µV21(ϕ) ≥
λ
2

1+ν̄V21(ϕ),

the time derivative of the Lyapunov candidate functional
along C1 solutions of system (1) satisfy

V̇(ϕ) ≤ −(ν − ε)
λ1

1+νV1(ϕ)− α20(ν − ε
2 )

λ2

1+νV20(ϕ)

−α21
ν̄−ν−ε
1+ν

λ
2

1+νV21(ϕ)

meaning for sufficiently small scalar ε that

V̇(ϕ) ≤ −δV(ϕ), (11)

for any δ < min{ ν̄λ1

1+ν̄ ,
ν̄λ2

1+ν̄ ,
(ν̄−ν)λ2

(1+ν̄)(1+ν)}. With Grönwall in-

equality the above equation (11), and by standard density
arguments yields

V(ϕ(t;ϕ0)) ≤ e−δtV(ϕ0) , ∀ϕ0 ∈ X.

To conclude, using the equivalence of norm (4),∥∥ϕ(t;ϕ0)
∥∥2
X

≤ κe−δt
∥∥ϕ0

∥∥
X

holds with κ and δ given explicitely independtly from the
initial condition, which allows us to close the proof. ■



3.2 Second study case : with the source term

In this section, we consider the case in which the source
term B is non null. The new assumption that we consider
is given as follows.

Assumption 2. Assume that the functions λ2, B and the
matrix D satisfy

1−max

{
2B11,

λ′
2

λ2
+ 2B22

}
> max(D2

11, D
2
22). (12)

With this assumption, the following theorem can be ob-
tained.

Theorem 2. Let Assumption 2 holds and let

ν1 := 2B11(1− 2B11)
−1,

ν2 :=
λ′
2 + 2λ2B22

λ2 − λ′
2 − 2λ2B22

,

ν̄ :=
1−D2

22

D2
22

.

(13)

Then, for any δ < min{δ1, δ2} where δ1 =
λ1(ν̄−ν1)

(1+ν1)(1+ν̄) and

δ2 =
λ
2
(ν̄−ν2)

(1+ν2)(1+ν̄) , system (1) is δ-exponentially stable with

an overshoot given by

κ =

1
λ1

+ α20

λ2
+ α21

λ2

min( 1

λ1
, α20

λ2
, α21

λ2
)
(1+ν̄− ε

2 ), 0 < ε < ν̄−max{ν1, ν2},

and α20, α21 given by (18).

In this second theorem, the stability is obtained under sev-
eral conditions. As previously, the ratio between diagonal
velocities and its derivatives must be small. In addition,
the diagonal coefficients of the source term must be upper-
bounded (a fortiori when B11 and B22 are negative As-
sumption 2 reduces to Assumption 1).

Remark 4. This result extends (Bastin and Coron, 2016,
Theorem 6.10) from strictly hyperbolic to a class of weakly
hyperbolic systems. For the strict case, i.e. c = 0, we fall
back to the well-known stability condition B11, B22 < 0
(B a Hurwitz matrix).

Remark 5. Note that the case c ̸= 0 and λ1 = λ2 imposes
the constraint B21 = 0 in our Lyapunov analysis. Indeed,

when B21 ̸= 0, a term in
∫ 1

0
B21(x)∂xϕ2(x)∂xϕ1(x)dx

appears and cannot be compensated in the absence of
negativity on the H1 norm of the state ϕ1. A deeper
analysis should be carried out to handle full matrices B.

Proof. Note that with Assumption 2, ν1, ν2 are positive
and all the constant involved in the statement of the
theorem are well defined. Consider the functional V = V1+
α20V20+α21V21 expressed in (3) with scalars µ, α20, α21 >
0 to be fixed later. The equivalence of norm (4) is still
verified. Let us now repeat the time derivation of each of
the three terms along the C1 trajectories of system (1) and
let us focus on the additional terms that will be denoted
W1,W20,W21 coming from the source term.

First, we obtain

W20(ϕ) = 2

∫ 1

0

(1 + µx)B22(x)ϕ
2
2(x)dx,

leading to

W20(ϕ) ≤ 2(1 + µ)B22∥ϕ2∥2L2 . (14)

Second, we obtain

W1(ϕ) = 2

∫ 1

0

(1+µx)
(
B11(x)ϕ

2
1(x) +B12(x)ϕ1(x)ϕ2(x)

)
dx.

Applying Young’s inequality, for any γ1 > 0, it leads to

W1(ϕ) ≤ (1+µ)
(
(2B11 + γ1|B12|)∥ϕ1∥2L2 +

|B12|
γ1

∥ϕ2∥2L2

)
,

(15)

Third, we obtain

W21 = 2

∫ 1

0

(1 + µx)B22(x)∂xϕ
2
2(x)dx,

+2

∫ 1

0

(1 + µx) (λ2B22)
′(x)

λ2(x)
∂xϕ2(x)ϕ2(x)dx.

Applying Young’s inequality, for any γ2 > 0, it leads to

W21(ϕ) ≤ (1 + µ)
(
2B22 + γ2

(λ2B22)′

λ2

)
∥∂xϕ2∥2L2

+(1 + µ) 1
γ2

(λ2B22)′

λ2
∥ϕ2∥2L2

(16)

To sum up inequations (9), (14), (15) and (16), we have:

V̇(ϕ) ≤
[
−µ+ 2(1 + µ)B11 + γβ + γ1β1

]
∥ϕ1∥2L2

+
[
α20

(
−µ+ 2(1 + µ)B22 +

α21

α20

β2

γ2

)
+ β1

γ1

]
∥ϕ2∥2L2

+

[
α21

(
−µ+ (1 + µ)(

λ′
2

λ2
+ 2B22) + γ2β2

)
+ β

γ

]
∥∂xϕ2∥2L2

+ (α20(µ− ν̄) + α)ϕ2
2(1) + α21(µ− ν̄)∂xϕ

2
2(1).

with

β1 = (1 + µ)|B12|, β2 = (1 + µ) (λ2B22)′

λ2
.

From expression (13) we have

2B11 = ν1

1+ν1
,

λ′
2

λ2
+ 2B22 = ν2

1+ν2
.

Thus

V̇(ϕ) ≤
[
ν1−µ
1+ν1

+ γβ + γ1β1

]
∥ϕ1∥2L2

+
[
α20

(
ν2−µ
1+ν2

+ α21

α20

β2

γ2

)
+ β1

γ1

]
∥ϕ2∥2L2

+
[
α21

(
ν2−µ
1+ν2

+ γ2β2

)
+ β

γ

]
∥∂xϕ2∥2L2

+ (α20(µ− ν̄) + α)ϕ2
2(1) + α21(µ− ν̄)∂xϕ

2
2(1).

Similarly to (10), we begin with setting µ, γ, γ1, γ2 as
follows

µ = ν̄ − ε

2
, γ =

ε

4(1 + ν1)β
,

γ1 =
ε

4(1 + ν1)β1
, γ2 =

ε

4(1 + ν2)β2
.

(17)

to obtain

V̇(ϕ) ≤ ν1−ν̄+ε
1+ν1

∥ϕ1∥2L2

+

[
α20

ν2−ν̄+
ε
2

1+ν2
+ α21

4(1+ν2)β
2
2

ε +
4(1+ν1)β

2
1

ε

]
∥ϕ2∥2L2

+

[
α21

ν2−ν̄+
3ε
4

1+ν2
+ 4(1+ν1)β

2

ε

]
∥∂xϕ2∥2L2

+
(
−α20

ε
2 + α

)
ϕ2
2(1)− α21

ε
2∂xϕ

2
2(1).

Finally, we set α20, α21 as



α20 = max
{

2α
ε , α21

16(1+ν2)
2β2

2

ε2 ,
16(1+ν2)(1+ν1)β

2
1

ε2

}
,

α21 =
16(1 + ν1)(1 + ν2)β

2

ε2
.

(18)

to achieve

V̇(ϕ) ≤
ν1−ν̄+ε
1+ν1

∥ϕ1∥2L2 + α20
ν2−ν̄+ε
1+ν2

∥ϕ2∥2L2 + α21
ν2−ν̄+ε
1+ν2

∥∂xϕ2∥2L2 .

Then, selecting ε small enough, the time derivative of the
Lyapunov candidate functional along the trajectories of
system (1) satisfies V̇(ϕ) ≤ −δV(ϕ) for all δ < min(δ1, δ2)
and the equivalence of norm (4) ends the proof. ■

4. NUMERICAL RESULTS

In this numerical results section, we make use of several
challenging test cases to illustrate the performance of the
Lyapunov stability analysis approach proposed in the pre-
vious section for system (1).
System (1) represents a coupling of two transport equa-
tions with negative velocities. In order to design a numer-
ical discretization of the PDEs system, we consider an up-
wind type explicit finite difference scheme that takes into
account the directions of waves propagation (see LeVeque
(2002)).
We denote the space-time domain D = [0, 1] × [0, T ], T
being the final time for system (1) dynamics. A discretiza-
tion of this continuous domain is made; given p ∈ N∗

sufficiently large, we introduce the space mesh-size as
∆x = 1

p+1 . Such procedure generates a sequence of grid

points (xi, t
n) = (i∆x, n∆t), i ∈ J0..p + 1K, n ∈ N∗. The

time-stepping increment ∆t will be specified later on.

Approximations of the states of system (1) will be made
on the grid points of the mesh, we introduce the following
notations: 

ϕk(xi, t
n) = ϕn

k,i k ∈ {1, 2}
λk,i = λk(xi), k ∈ {1, 2}
ci = c(xi)

4.1 First study case: without the source terms

System (1) is expressed in discrete form as :
ϕn+1
1,i

−ϕn
1,i

∆t = λ1,i
ϕn
1,i+1−ϕn

1,i

∆x + ciλ2,i
ϕn
2,i+1−ϕn

2,i

∆x

ϕn+1
2,i

−ϕn
2,i

∆t = λ2,i
ϕn
2,i+1−ϕn

2,i

∆x

(19)

Setting:

γ1,i =
λ1,i∆t
∆x , γ2,i =

ciλ2,i∆t
∆x

we get the numerical scheme :

ϕn+1
1,i = (1−γ1,i)ϕ

n
1,i+γ1,iϕ

n
1,i+1−γ2,iϕ

n
2,i+γ2,iϕ

n
2,i+1 (20)

ϕn+1
2,i = (1− γ2,i)ϕ

n
2,i + γ2,iϕ

n
2,i+1 (21)

Lemma 1. The numerical scheme (17)-(18) is stable 1 un-
der the following Courant–Friedrichs–Lewy (CFL) condi-
tion :

∆t ≤ min(∆x

λ1
, ∆x

λ2
) (22)

1 The method must be stable in some appropriate sense, meaning
that the small errors made in each time step do not grow too fast in
later time steps

Let us now consider system (1) with:

λ1(x) =

{
10, x < 1

2

−4(x− 1
2 )

2 + 10 1
2 ≤ x ≤ 1

λ2(x) =

{
10, x < 1

2

4(x− 1
2 )

2 + 10 1
2 ≤ x ≤ 1

c(x) = x+4,D =

[
1
2 1
0 1

2

]
, ϕ0

1(x) = 0, ϕ0
2(x) =

x2

2 (1− x
3 )−

2
3 .

In this example, λ1(x) = λ2(x) for x ∈ [0. 12 ], which makes
the system weakly hyperbolic.
Fig.1 gives the time-space evolution of the two state

variables ϕ1 and ϕ2. The time evolution of
∥ϕ∥2

X

∥ϕ0∥2
X

is given

in Fig.2.

Fig. 1. State ϕ1 over (x,t) plane, (final time T = 2s)
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Fig. 2. Time evolution of
∥ϕ∥2

X

∥ϕ0∥2
X

in logarithmic scale

Both states are stabilized to zero as time grows up, the
simulations are carried out using the numerical scheme
(17)-(18) for 500 grid points in space, with CFL=0.9.

Here, regarding Theorem 1, the assumption

max(D2
11, D

2
22) =

1
4 < 1− λ

′
2

λ2
= 3

5

is satisfied. Thus, the numerical result corroborates the
theoretical one. Theoretically, we expect a decay rate given



by δth = min{ν̄λ1, ν̄λ2,
ν̄−ν
1+ν λ2} = 7

2 whereas, numerically,
we found δnum = 14.71 > δth. The difference is due to
the conservatism introduced by the proposed Lyapunov
analysis.

4.2 Second study case: with the source term

The numerical scheme when adding the source term is
written as:

ϕn+1
1,i = (1−γ1,i)ϕ

n
1,i+γ1,iϕ

n
1,i+1−γ2,iϕ

n
2,i+γ2,iϕ

n
2,i+1 (20)

+∆t(λ1,iB11,iϕ
n
1,i + λ1,iB12,iϕ

n
2,i)

ϕn+1
2,i = (1− γ2,i)ϕ

n
2,i + γ2,iϕ

n
2,i+1 +∆tλ2,iB22,iϕ

n
2,i (21)

Let us now consider system (1) with λ1, λ2, c, D and
initial conditions that are similar to first example but with

a source term B =

[
x
6 c(x)
0 x

6

]

Fig. 3. State ϕ1 over (x,t) plane, (final time T = 2s)
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Fig. 4. Time evolution of
∥ϕ∥2

X

∥ϕ0∥2
X

in logarithmic scale

In this situation both states are also stabilized to zero as
time grows up. The simulations are carried out using the
numerical scheme (20)-(21) for 500 grid points in space,
with CFL= 0.9.

Here, regarding Theorem 2, the assumption:

max(D2
11, D

2
22) =

1
4 < 1−max

{
2B11,

λ′
2

λ2
+ 2B22

}
= 4

15 is

satisfied. As stated by Theorem 2, exponential stability is

guaranteed with a decay rate at least equal to δth = 0.16.
Hopefully, the numerical result leads to a decay rate of

δnum = 12.89 > δth

which is better than expected. This confirms the encour-
aging approach currently proposed by our Lyapunov func-
tionals.

Remark 6. Several other tests have been carried out, par-
ticularly in the case where matrices D and B have a non-
null under diagonal element (which we denote respectively
D21, B21, for such situations system (1) is always unstable.
We conjecture that closing the loop has a destabilizing
effect.

5. CONCLUSIONS

To study the stability of weakly hyperbolic systems, where
the principal part is non-uniform and non-diagonalizable
everywhere, we return to the non-trivial study of triangu-
lar structures. Based on a Lyapunov analysis in the L2×H1

norm, two sufficient conditions for exponential stability
emerge: the velocity and source terms have to be small
in front of the edge back-reaction. Our refined analysis
also allows us to specify upper bounds for decay rate and
overshoot values, as illustrated in numerical simulations.

Upcoming works will be dedicated to a non-diagonal Lya-
punov functional (full matrix P ) to reduce the conser-
vatism and tackle the case of systems where D21 and B21

are non null (full matrices B,D). Applications to some real
physical systems will also be considered in the future.
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