A nonlinear Schrödinger equation for capillary waves on arbitrary depth with constant vorticity
Christian Kharif, Malek Abid, Yang-Yih Chen, Hung-Chu Hsu

To cite this version:
Christian Kharif, Malek Abid, Yang-Yih Chen, Hung-Chu Hsu. A nonlinear Schrödinger equation for capillary waves on arbitrary depth with constant vorticity. 2024. hal-04535263

HAL Id: hal-04535263
https://cnrs.hal.science/hal-04535263
Preprint submitted on 6 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A nonlinear Schrödinger equation for capillary waves on arbitrary depth with constant vorticity

Christian Kharif, Malek Abid, Yang-Yih Chen and Hung-Chu Hsu

Aix-Marseille Université, Institut de Recherche sur les Phénomènes Hors Equilibre, UMR 7342, CNRS, Centrale Méditerranée, Marseille, 13384, France

Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

(Received xx; revised xx; accepted xx)

A nonlinear Schrödinger equation for pure capillary waves propagating at the free surface of a vertically sheared current has been derived to study the stability and bifurcation of capillary Stokes waves on arbitrary depth.

A linear stability analysis of weakly nonlinear capillary Stokes waves on arbitrary depth has shown that (i) the growth rate of modulational instability increases as the vorticity decreases whatever the dispersive parameter \(k \hbar \) where \(k \) is the carrier wavenumber and \(\hbar \) the depth (ii) the growth rate is significantly amplified for shallow water depths and (iii) the instability bandwidth widens as the vorticity decreases. A particular attention has been paid to damping due to viscosity and forcing effects on modulational instability. In addition, a linear stability analysis to transverse perturbations in deep water has been carried out, demonstrating that the dominant modulational instability is two-dimensional whatever the vorticity. Near the minimum of linear phase velocity in deep water, we have shown that generalized capillary solitary waves bifurcate from linear capillary Stokes waves when the vorticity is positive. Moreover, we have shown that the envelope of pure capillary waves in deep water is unstable to transverse perturbations. Consequently, deep water generalized capillary solitary waves are expected to be unstable to transverse perturbations.

1. Introduction

The effect of wind blowing above the air-sea interface is twofold: (i) it generates short waves that take place within the first millimeters to meters, and (ii) it generates a shear flow in the uppermost layer of the water. Consequently, these waves propagate in the presence of vorticity. These small scales participate in the exchanges of momentum, energy and mass across the air-sea interface. An accurate description of the surface stress is important in modelling and forecasting ocean wave dynamics. In addition, the knowledge of their properties is crucial for satellite remote sensing applications.

In this paper, we focus our study on weakly nonlinear capillary waves propagating at the free surface of a flow of constant vorticity. One of our aims is to complete and extend to finite depth the preliminary results of Hsu et al. (2018) and Dhar & Kirby (2023) on pure capillary

† Email address for correspondence: christian.kharif@centrale-med.fr
waves on deep water in the presence of constant vorticity. Hsu et al. (2018) used the cubic nonlinear Schrödinger equation, whereas Dhar & Kirby (2023) used a fourth-order nonlinear Schrödinger equation. Hsu et al. (2018) investigated the effect of a shear current of constant vorticity on the modulational instability of weakly nonlinear periodic gravity-capillary wave trains. To do this, they derived a cubic nonlinear Schrödinger equation for gravity-capillary water waves on arbitrary depth with constant vorticity. To extend their results in the absence of acceleration due to gravity, we consider the nonlinear Schrödinger equation for pure capillary water waves on finite-depth currents of constant vorticity. Later on, within the framework a fourth-order nonlinear Schrödinger equation Dhar & Kirby (2023) investigated the stability of periodic gravity-capillary waves on arbitrary depth in the presence of constant vorticity. To the best of our knowledge, there is no study on the stability of pure capillary waves on finite depth in the presence of constant vorticity.

On the other hand, several studies have been devoted to the stability of steadily propagating periodic capillary waves on deep water, but without vorticity. Chen & Saffman (1985) investigated the three-dimensional stability and bifurcation of capillary waves and gravity waves on deep water. To do this, they used the approach detailed by McLean (1982) for the fully nonlinear waves and the nonlinear Schrödinger equation for the modulational instability of weakly nonlinear capillary waves. Hogan (1985) derived from the Zakharov equation a fourth-order nonlinear Schrödinger equation in deep water and found that the mean flow effect on weakly nonlinear pure capillary waves are of opposite sign to those of pure gravity waves. Zhang & Melville (1986) considered the stability of weakly nonlinear gravity-capillary waves on deep water in the range of capillary waves of few millimeters. They focused their study on triad and quartet instabilities. Hogan (1988) found two superharmonic bubbles of instability of the exact nonlinear capillary wave solutions of Crapper (1957) at amplitudes less than the maximum. Tiron & Choi (2012) investigated the stability of the exact deep water capillary waves (Crapper’s solutions). They found that Crappers’s capillary waves are stable to superharmonic disturbances whatever the amplitude and unstable to subharmonic disturbances. Later on, Murashige & Choi (2020) considered the stability of Crapper’s capillary waves on deep water to weakly three-dimensional disturbances. They found that Crapper’s solutions are stable to two-dimensional superharmonic disturbances and unstable to three-dimensional superharmonic disturbances.

In the absence of vorticity, the existence of solitary gravity-capillary waves on deep water was proved numerically by Longuet-Higgins (1989). Later on, Akylas (1993), using the nonlinear Schrödinger equation in deep water, showed that gravity-capillary solitary waves occur when the phase velocity of the carrier wave matches the group velocity of the envelope soliton solution. The linear dispersion relation of gravity-capillary waves has a minimum in phase velocity, which is equal to the group velocity. Consequently, for values less than this extremum two-dimensional gravity-capillary waves may bifurcate into solitary waves in deep water. Abid et al. (2019) found that gravity-capillary solitary waves with decaying oscillatory tails exist in deep water in the presence of constant vorticity. For a review on this problem, one can refer to Dias & Kharif (1999). Steady three-dimensional gravity-capillary waves were investigated by Kim & Akylas (2005), Milewski (2005) and Parau et al. (2005). To the best of our knowledge, this bifurcation phenomenon has not been considered for pure capillary waves. This can be easily understood, since the linear dispersion relation of pure capillary waves has no minimum in phase velocity in the absence of vorticity.

In section 2 the nonlinear Schrödinger equation for capillary waves is given, and the physical phenomena associated with the singularities of the nonlinear coefficient are discussed. Section 3 is devoted to the stability analysis of periodic capillary waves on arbitrary depth in the presence of constant vorticity. Bifurcation of generalized solitary waves on deep water from periodic capillary wave trains is considered in section 4. Transverse instability of
Figure 1: Sketches of waves on a shear current in the fixed reference frame. Downstream propagation (left). Upstream propagating (right).

Figure 2: Sketches of waves on a shear current in the moving reference frame. Downstream propagation (left). Upstream propagating (right).

capillary envelope soliton and uniform capillary wave trains in deep water is considered in section 5.

2. Nonlinear Schrödinger equation for pure capillary waves

The unperturbed flow is a weakly nonlinear capillary wave train traveling steadily at the free surface of a vertically sheared current of constant vorticity (see figure 1). The fluid is assumed incompressible and inviscid.

In the fixed frame, the underlying current velocity is $u_0(y) = U_0 + \Omega y$, where Ω is the shear (the current intensity) and U_0 the current velocity at the free surface $y = 0$. The waves are stationary on a stream. Note that the vorticity is $-\Omega$. Downstream propagation corresponds to negative vorticity, whereas upstream propagation corresponds to positive vorticity.

Being primarily interested in the effect of the vorticity, we choose a reference frame moving with U_0 (see figure 2). In the moving frame, the fluid velocity is

$\mathbf{u}(x, y) = (\Omega y + \phi_x, \phi_y)$.

where (ϕ_x, ϕ_y) is the wave induced velocity.

The waves are potential due to the Kelvin theorem, which states that vorticity is conserved for a two-dimensional flow of an incompressible and inviscid fluid with external forces derived from a potential. There is no loss of generality if the study is restricted to carrier waves with positive phase speeds, so long as both positive and negative values of Ω are considered.

The governing equations are the Laplace equation (equation (2.1)) with the kinematic and dynamic boundary conditions (equations (2.2)-(2.3)) and the bottom condition (equation (2.4)).

$$\Delta \phi(x, y, t) = 0, \quad -h < y < \zeta(x, t),$$
(2.1)
where $\zeta(x,t)$ is the surface elevation.

$$\zeta_t + \zeta_x (\phi_x + \Omega \phi_y) - \phi_y = 0, \quad y = \zeta(x,t). \quad (2.2)$$

$$\phi_t + \frac{1}{2} (\nabla \phi)^2 + \Omega \zeta \phi_x - \Omega \psi - \frac{T}{\rho_w} \frac{\zeta_{xx}}{(1 + \zeta_x^2)^{3/2}} = 0, \quad y = \zeta(x,t), \quad (2.3)$$

where ψ is the stream function, T the surface tension and ρ_w the water density.

Without loss of generality, the atmospheric pressure, P_α, is set equal to zero.

$$\phi_y = 0, \quad y = -h. \quad (2.4)$$

Following Thomas et al. (2012) and Hsu et al. (2018), the stream function ψ can be removed by differentiating equation (2.3) with respect to x and using the Cauchy-Riemann relations.

The dynamic boundary condition becomes for weakly nonlinear water waves

$$\phi_{tx} + \phi_{xy} \zeta_x + \phi_x (\phi_{xx} + \phi_{xy} \zeta_x) + \phi_y (\phi_{xy} + \phi_{yy} \zeta_x) + \Omega \zeta \phi_x + \Omega (\zeta_x \phi_x) + \Omega (\phi_y - \phi_x \zeta_x)$$

$$- \frac{T}{\rho_w} (\zeta_{xxx} - \frac{3}{2} \zeta_x^2 \zeta_{xx} - 3 \zeta_x^2 \zeta_{xx}) = 0, \quad y = \zeta(x,t),$$

that corresponds to that of Hsu et al. (2018) for $g = 0$.

The method of multiple scales is used to derive the spatio-temporal evolution of the complex envelope, $a(\xi, \tau)$, of the free surface elevation $\zeta(x,t)$.

$$\zeta(x,t) = \frac{1}{2} \{ a(x, t) \exp(i(kx - \omega t)) + c.c. \} + O(\epsilon^2),$$

where $\xi = \epsilon (x - c_gt)$, $\tau = \epsilon^2 t$, c_g, k and ω are the group velocity, wavenumber and frequency of the carrier wave and ϵ a small parameter.

The nonlinear Schrödinger equation governing the evolution of the complex envelope of a packet of capillary waves on finite depth in the presence of constant vorticity (vor-NLS) is

$$ia_{\tau} + La_{\xi\xi} + N|a|^2 a = 0. \quad (2.6)$$

where the dispersive coefficient L and nonlinear coefficient N are

$$L = \frac{\omega}{k^2 (2 + X)^3 \sigma^2} \left[3(1 + X)(1 + X + X^2)\sigma^2 - 6(1 + X)^2 \mu \sigma (\sigma^2 - 1) + \mu^2 (\sigma^2 - 1) \left((1 + X)^2 + (3 + 2X)\sigma^2 \right) \right]$$

$$+ \mu^2 (\sigma^2 - 1) \left((1 + X)^2 + (3 + 2X)\sigma^2 \right), \quad (2.7)$$

and

$$N = \frac{\omega k^2}{8 \sigma^2} \left[\sigma^2 \frac{5 + 3X}{2 + X} - \frac{P_0 + P_1 X + P_2 X^2 + P_3 X^3 + X^4}{(3 - \sigma^2 + 3X)(2 + X)} \right.$$

$$+ 2\sigma (2 + X) \frac{(1 + X)^2 - \sigma^2}{(1 - \sigma^2)\mu + 3\sigma (1 + X)} + \mu ((1 - \sigma^2) + X(2 + X)) + 3\sigma (1 + X) \right), \quad (2.8)$$

with $\mu = kh$, $\sigma = \tanh \mu$, $X = \sigma \Omega / \omega$ and $P_0 = 21 - 10\sigma^2 + \sigma^4$, $P_1 = 42 + 2\sigma^2 - 4\sigma^4$, $P_2 = 30 + 12\sigma^2$, $P_3 = 9 + 5\sigma^2$.

Note that $|X|$ can be considered as a Strouhal number, which is the ratio between the

Focus on Fluids articles must not exceed this page length
characteristic frequency of the vorticity and that of the capillary waves. The coefficients L and N given by equations (2.7) and (2.8) correspond to those of Hsu et al. (2018) for $\kappa = k^2 T/(\rho_w g) \to \infty$ and $\Omega \neq 0$ and to those of Djordjevic & Redekopp (1977) in finite depth for $\kappa \to \infty$ and $\Omega = 0$. The linear dispersion relation of capillary waves in the presence of constant vorticity is

$$\omega^2 + \sigma \Omega \omega - \sigma \frac{k^3 T}{\rho_w} = 0.$$ \hfill (2.9)

From (2.9) it is easy to show that $X > -1$. As emphasized above, we consider a carrier wave propagating from left to right of frequency ω, phase velocity c_p and group velocity c_g whose expressions are

$$\omega = -\frac{\sigma \Omega}{2} + \sqrt{\left(\frac{\sigma \Omega}{2}\right)^2 + \sigma \frac{k^3 T}{\rho_w}},$$ \hfill (2.10)

$$c_p = -\frac{\sigma \Omega}{2k} + \sqrt{\left(\frac{\sigma \Omega}{2k}\right)^2 + \frac{k T}{\rho_w}},$$ \hfill (2.11)

$$c_g = -\frac{\Omega h}{2}(1 - \sigma^2) + \frac{(1 - \sigma^2)(\Omega^2 h^2/2 + \mu k^2 T/\rho_w) + 3\sigma k^2 T/\rho_w}{\sqrt{(\Omega^2 \sigma^2)^2 + 4\sigma k^3 T/\rho_w}}.$$ \hfill (2.12)

The nonlinear coefficient N presents two singularities that one should avoid, either

$$3 - \sigma^2 + 3X = 0,$$ \hfill (2.13)

or

$$\mu((1 - \sigma^2) + X(2 + X)) + 3\sigma(1 + X) = 0.$$ \hfill (2.14)

Equation (2.13) corresponds to the reduction of the second-harmonic resonance condition of gravity-capillary waves propagating at the free surface of an underlying current of constant vorticity when g goes to zero (κ goes to ∞). This resonance which is also called the Wilton ripple phenomenon was investigated by Martin & Matioc (2013) who proved rigorously the existence of Wilton ripples on finite depth for water waves with constant positive vorticity and capillary effect. However, their study focused on integer values of the wavenumber. The Wilton ripple phenomenon occurs when both the fundamental mode and the second harmonic have the same phase velocity, that is, when the phase velocity presents a minimum value. Note that in the absence of positive vorticity ($\Omega < 0$) there is no minimum of phase velocity for pure capillary waves. The phase velocity c_p reaches a minimal value when $\Omega < 0$ (positive vorticity) and $k = k_m$ given in deep water by

$$k_m = \left(\frac{2\rho_w}{T} \Omega^2\right)^{1/3}. $$ \hfill (2.15)

The wavenumber k satisfying $c_p(k) = c_p(2k)$ is

$$k = \left(\frac{3\rho_w}{4T} \Omega^2\right)^{1/3}. $$ \hfill (2.16)

The second-harmonic resonance corresponds to the following degenerate resonant triad

$$2k_1 - k_2 = 0,$$
\[2\omega_1 - \omega_2 = 0,\]

where

\[
\omega_1 = -\frac{\Omega}{2} + \sqrt{\left(\frac{\Omega}{2}\right)^2 + \frac{T}{\rho_w}k^3}, \tag{2.17}
\]

\[
\omega_2 = -\frac{\Omega}{2} + \sqrt{\left(\frac{\Omega}{2}\right)^2 + \frac{8T}{\rho_w}k^3}, \tag{2.18}
\]

with \(k\) given by (2.16).

Injecting the expression of \(k\) in (2.17) and (2.18), we obtain \(\omega_1 = -3\Omega/2\) and \(\omega_2 = -3\Omega\).

Constantin & Kartashova (2009) showed that only positive vorticity \((\Omega < 0)\) can trigger the occurrence of three-wave resonant interactions of capillary water waves on an underlying current of constant vorticity. As Martin & Matioc (2013) they considered integer values of the wavenumber. We have shown that the Wilton ripple phenomenon exists in infinite depth for pure capillary waves travelling on a current of constant positive vorticity. To a given fixed value of the vorticity, \(-\Omega\), corresponds a resonant real-valued wavenumber given by (2.16) and inversely, to a given fixed real-valued resonant wavenumber, \(k\), corresponds a value of the shear \(\Omega = -\sqrt{4Tk^3/(3\rho_w)}\). Fixing \(k = 1\) gives the minimal value of the vorticity found by Constantin & Kartashova (2009). Note that within the framework of capillary water waves, the vorticity must be strong to trigger the second-harmonic resonance.

The wavenumber given by equation (2.16) does not satisfy equation (2.13) unless \(\sigma = 1\) that does not mean that there are no second-harmonic resonances in finite depth within the framework of pure capillary waves.

The second singularity corresponds to the reduction of the short wave/long wave resonance of gravity-capillary propagating at the free surface of an underlying current of constant vorticity when \(g\) goes to zero. Note that this singularity disappears in the nonlinear coefficient \(N\) when \(\sigma = 1\), that is, in deep water. Nevertheless, this does not mean that there are no resonant triad interactions in deep water.

Equation (2.14) has two real-valued negative roots: one is less than minus one and is ruled out because \(X > -1\) and the other belongs to \((-1, 0)\) when \(\mu\) ranges from zero to infinity. It is useful to note that whatever the depth, there exists a singular value of \(X\) for \(-1 < X < 0\).

Constantin & Kartashova (2009) demonstrated that in deep water, capillary waves on a current of positive vorticity \((\Omega < 0)\) may give rise to resonant triads.

We found in finite depth triads of capillary waves satisfying the following resonance conditions

\[
k_1 - k_2 + k_3 = 0,
\]

\[
\omega_1 - \omega_2 + \omega_3 = 0,
\]

with

\[
\omega_i = -\frac{\sigma\Omega}{2} + \sqrt{\left(\frac{\sigma\Omega}{2}\right)^2 + \frac{\sigma k_i^3 T}{\rho_w}}, \quad i = 1, 2, 3. \tag{2.19}
\]

To illustrate this feature of capillary waves on a current of constant positive vorticity in finite depth, three examples are shown in figure 3 which gives pairs of capillary waves of wavenumbers \((k_1, k_2)\) that excite a third wave of wavenumber \(k_3\). To a given value of \(k_1\) corresponds a value of \(k_2\) and consequently a value of \(k_3\). The three curves present a minimum for the wavenumber \(k_2\).

We can conclude that (2.14) corresponds to resonant triads of capillary waves in finite depth.
with positive constant vorticity. At any depth, there exists a forbidden positive vorticity value corresponding to a resonant triad.

3. Stability of weakly nonlinear capillary waves on arbitrary depth with constant vorticity

The NLS equation (2.6) admits the Stokes’ wave solution

\[a = a_0 \exp(iNa_0^2 \tau), \] (3.1)

with the initial condition \(a_0\).

Let us consider an infinitesimal disturbance of this solution so that the perturbed solution is written as follows

\[a' = a_0(1 + \delta_a) \exp(iNa_0^2 \tau) \exp(i\delta_w). \] (3.2)

Substituting the expression (3.2) of the perturbed solution in the NLS equation (2.6), linearizing and separating between real and imaginary parts leads to a system of linear coupled partial differential equations with constant coefficients. Consequently, this system admits solutions of the following forms,

\[\delta_a = (\delta_a)_0 \exp(i(p\xi - \Gamma\tau)), \]
\[\delta_w = (\delta_w)_0 \exp(i(p\xi - \Gamma\tau)), \]

where the real \(p \) is the perturbation wavenumber.

The necessary and sufficient condition for the existence of a non-trivial solution is

\[\Gamma^2 = p^2(L^2 p^2 - 2NLa_0^2). \]

The Stokes’ wave solution is stable when \(L^2 p^2 - 2NLa_0^2 \geq 0 \) and unstable when \(L^2 p^2 - 2NLa_0^2 < 0 \).

The growth rate of instability is

\[\Gamma_i = p(2NLa_0^2 - L^2 p^2)^{1/2}. \quad (3.3) \]

The maximal growth rate of instability is

\[\Gamma_{imax} = \sqrt{\frac{N}{L}} \sqrt{NLa_0^2}, \quad (3.4) \]

for \(p = \sqrt{\frac{N}{L}} a_0 \).

Note that instability occurs when \(LN > 0 \).

For \(\Omega = 0 \) the rate of growth of the modulational instability of pure capillary waves on finite depth is,

\[\Gamma_i = \frac{\omega}{8k^2} \sqrt{3a_0^2k^4p^2 - 9p^4}. \]

which can be found in Hsu et al. (2018) and Chen & Saffman (1985). The maximum growth rate is \(\omega(a_0k)^2/16 \), corresponding to the wavenumber \(p_{max} = a_0k^2/\sqrt{6} \).

We introduce dimensionless coefficients \(\tilde{L} = k^2L/\omega \) and \(\tilde{N} = N/(\omega k^2) \) so that the dispersive and nonlinear coefficients of the NLS equation are functions of \(\mu = kh \) and \(X = \sigma\Omega/\omega \).

The dimensionless growth rate of instability reads

\[\frac{\Gamma_i}{\omega(a_0k)^2} = \tilde{p}(2\tilde{N}\tilde{L} - \tilde{L}^2 \tilde{p}^2)^{1/2}, \quad (3.5) \]

with \(\tilde{p} = p/(a_0k^2) \) and its maximal value is

\[\frac{\Gamma_{imax}}{\omega(a_0k)^2} = \sqrt{\frac{\tilde{N}}{\tilde{L}}} \sqrt{\tilde{N}\tilde{L}}, \quad (3.6) \]

for \(\tilde{p} = \sqrt{\tilde{N}/\tilde{L}} \).

The dimensionless bandwidth of instability is

\[\Delta \tilde{p} = \sqrt{\frac{\tilde{N}}{\tilde{L}}}, \quad \frac{\Delta p}{k} = \Delta \tilde{p} a_0k. \quad (3.7) \]

The analytic expression of the dimensionless maximal growth rate of instability in deep water reads

\[\frac{\Gamma_{imax}}{\omega(a_0k)^2} = \frac{3 + 14X + 23X^2 + 11X^3 - 3X^4}{24(X + 1)(3X + 2)}. \quad (3.8) \]
Figure 4: Dimensionless growth rate of instability as a function of the dimensionless perturbation wavenumber for $k h = 0.30$ and $X = -0.40$ (orange solid line), $X = 0$ (blue solid line), $X = 0.40$ (green solid line).

For weak vorticity equation (3.8) becomes

$$\frac{\Gamma_{\text{max}}}{\omega(a_0 k)^2} = \frac{1}{16} \left(1 + \frac{13}{6} X + \frac{3}{4} X^2\right) + O(X^3).$$

On figures 4-7 is plotted the dimensionless growth rate of instability given by (3.5) as a function of the dimensionless perturbation wavenumber \tilde{p} for several values of the depth and vorticity. The dimensionless growth rate of instability increases as the dimensionless shear increases and as the dimensionless vorticity decreases for a given value of the depth. This feature can be observed whatever the depth. For negative dimensionless vorticity the dimensionless growth rate of instability increases as the depth decreases. This feature is still present in shallow water for positive vorticity. The bandwidth of instability increases as the depth decreases.

Figure 8 shows the dimensionless maximal growth rate of instability as a function of the dimensionless depth, $\mu = k h$ for several values of the dimensionless vorticity. We observe that it starts to increase significantly while $\mu < 2$. In finite and infinite depths, positive (negative) dimensionless vorticity increases (reduces) the dimensionless growth rate of instability. In shallow water, this feature persists only for weak dimensionless vorticity.

In figure 9 is plotted the dimensionless maximal growth rate of instability as a function of the vorticity for several values of the dimensionless depth. For about $X < 3$ the dimensionless maximal growth rate of instability increases as the depth decreases, whereas for about $X > 3$ it increases as the depth increases.

Within the framework of irrotational flow ($X = 0$), Tiron & Choi (2012) investigated the stability of the exact deep water capillary wave solution, derived by Crapper (1957), to two-dimensional infinitesimal disturbances. In figure 10 is plotted the dimensionless growth...
Figure 5: Dimensionless growth rate of instability as a function of the dimensionless perturbation wavenumber for $kh = 0.50$ and $X = -0.40$ (orange solid line), $X = 0$ (blue solid line), $X = 0.40$ (green solid line).

Figure 6: Dimensionless growth rate of instability as a function of the dimensionless perturbation wavenumber for $kh = 1$ and $X = -0.40$ (orange solid line), $X = 0$ (blue solid line), $X = 0.40$ (green solid line).
rate as a function of the dimensionless wavenumber of the modulational perturbation for several values of the wave steepness of the carrier wave. The symbols correspond to the results of Tiron & Choi (2012) whereas the solid line coresponds to the results obtained with the vor-NLS equation. A quite good agreement between the two approaches is obtained when $a_0k \leq 0.69$. Note that the maximal wave steepness of Crapper’s capillary waves is $a_0k \approx 2.29$.

The rate of decay of the amplitude of linear waves due to bulk viscosity is $2\nu k^2$ where ν is the kinematic viscosity and k the wavenumber. In the following we consider the modulational instability of capillary waves in the presence of dissipation due to viscosity and some forcing due for instance to wind. Note that this problem has been investigated by Kharif et al. (2010) for pure gravity waves in deep water. The latter authors used the Miles’ mechanism to model wind effect.

Equation (2.6) becomes

$$ia_\tau + La_\xi_\xi + N|a|^2 a = i(\Delta - 2\nu k^2)a,$$

(3.9)

where $\Delta > 0$ corresponds to a forcing term.

Equation (3.9) admits the following solution,

$$a_s = a_0 \exp(K\tau) \exp\left(\frac{iN}{2K}a_0^2(e^{2K\tau} - 1)\right),$$

(3.10)

where $K = \Delta - 2\nu k^2$.

Note that a_s is spatially constant.

We superimpose to this solution a small disturbance

$$a(\xi, \tau) = a_s(1 + \varepsilon a'(\xi, \tau)),$$

(3.11)
Figure 8: Dimensionless maximal growth rate of instability as a function of the dimensionless depth, $\mu = kh$. (Top) $X = -0.10$ (orange solid line), $X = 0$ (blue solid line), $X = 0.10$ (green solid line). (Bottom): $X = 1$ (orange solid line), $X = 1.5$ (blue solid line), $X = 2$ (green solid line) with $\epsilon \ll 1$.

Substituting (3.11) into (3.9) and keeping only terms of order ϵ and separating the real and imaginary parts of $a'(\xi, \tau) = a'_r(\xi, \tau) + i a'_i(\xi, \tau)$ gives

\[
a'_r \tau - La'_r \xi \xi - 2Na'_0 \exp(2K\tau)a'_r = 0.
\]

\[
a'_r \tau + La'_i \xi \xi = 0.
\]
Set \(a'_r(\xi, \tau) = \Re(a'_r(0)(\tau) \exp(ip\xi)) \) and \(a'_i(\xi, \tau) = \Im(a'_i(0)(\tau) \exp(ip\xi)) \) where \(p \) is the wavenumber of the perturbation. Then,

\[
\frac{da'_{i0}}{d\tau} + (Lp^2 - 2Na_0^2 \exp(2K\tau))a'_{r0} = 0.
\]

Combining the two previous equations gives

\[
\frac{d^2a'_{r0}}{d\tau^2} + L^2p^4 \left(1 - \frac{2N}{Lp^2}a_0^2 \exp(2K\tau)\right)a'_{r0} = 0. \tag{3.12}
\]

One may distinguish two cases according to whether \(K \) is negative or positive.

(i) Let \(K \) be negative. This case was analysed by Segur et al. (2005) and Kharif et al. (2010). In the presence of damping, the modulational instability is stabilised by viscous dissipation. However, note that the modulational instability may grow, but its growth is limited and starts to stabilise after a time \(\tau = -\frac{1}{2K} \ln\left(\frac{2Na_0^2}{Lp^2}\right) \) corresponding to the change of sign of the coefficient of \(a'_{r0} \) of equation (3.12). Note that the bandwidth of instability shrinks as the amplitude of the carrier wave diminishes, resulting in stabilisation of unstable modes. The most unstable perturbation starts stabilisation at \(\tau = \ln 2/(4\nu k^2) \). Let us consider a carrier wave of wavelength \(\lambda = 0.005 \text{m} \) in deep water. For \(X = 0 \), stabilizing of the most unstable perturbation will start at \(\tau \approx 7\tau_0 \) where \(\tau_0 \) is the dimensional period of the carrier wave. For \(X = 0.4 \) and \(X = -0.4 \), we found that the most unstable perturbation stabilises at \(\tau \approx 6\tau_0 \) and \(\tau \approx 9\tau_0 \), respectively. These critical times are more or less confirmed by numerical simulations of dimensionless equation (3.14) (see figure 11) without forcing.

(ii) Let \(K \) be positive. This case was discussed by Kharif et al. (2010) who considered gravity.
wave trains on the surface of water acted upon by wind and under influence of viscosity. Herein, a similar situation is considered within the framework of pure capillary wave trains. In this case, the modulational perturbations are initially oscillating for $0 < \tau < \frac{1}{2K} \ln\left(\frac{2N\alpha_0^2}{Lp^2}\right)$ and then start to grow exponentially for $\tau > \frac{1}{2K} \ln\left(\frac{2N\alpha_0^2}{Lp^2}\right)$. The bandwidth of instability increases as the amplitude of the carrier wave increases. Consequently, stable modes may become unstable. Let ρ be a perturbation wavenumber corresponding to a stable state. There is a critical value of the carrier wave amplitude, a_0, for which the bandwidth instability is equal to ρ. For carrier wave amplitude larger than this critical value, the perturbation becomes unstable. The critical value is given by $\Gamma_i = 0$, that is to say,

$$a_{0c}^2 = \frac{Lp^2}{2N} \quad (3.13)$$

The modulational instability will start to grow as soon as the carrier wave amplitude reaches the critical value. When the carrier wave amplitude is set equal to a_{0c}, the instability starts at $\tau = 0$.

Let us consider the case without vorticity ($X = 0$) in deep water. The dispersive and nonlinear coefficients of the vor-NLS equation are $L = 3\omega/(8k^2)$ and $\omega k^2/16$. The critical wave
steepness of the carrier wave is
\[a_{0c} k = \sqrt{3} \frac{p}{k} \]
This critical value is more or less confirmed by numerical simulations of dimensionless equation (3.14) (see figure 12-(a)) with forcing, \(\tilde{K} = (\tilde{\Delta} - 2/R_e) \).

For \((X, p/k) = (0.4, 0.8) \) and \((X, p/k) = (-0.4, 0.5) \) we found, in deep water, \(a_{0c} k \approx 1.12 \) and 1.27, respectively (see figure 12-(b)-(c)).

To complete the linear stability analysis, we consider the nonlinear evolution of unstable and stable modes. To do this, we use equation (3.9) written in dimensionless form with respect to the reference length \(1/k \) and reference time \(1/\omega \) where \(k \) and \(\omega \) are the wavenumber and frequency of the carrier wave, respectively.

\[i \tilde{a} \partial_t + \tilde{L} \tilde{a} \partial_x + \tilde{N} |\tilde{a}|^2 \tilde{a} = i(\tilde{\Delta} - 2/R_e) \tilde{a}, \quad (3.14) \]

where \(R_e = \omega/(k^2 \nu) \).

Within the framework of numerical simulations of the vor-NLS equation, figure 11 shows, in the presence of viscous dissipation only and for several values of the vorticity, the temporal evolution of the amplitude of the carrier wave, \(a_0 \), and those of the most unstable sidebands, \(a_{-1} \) and \(a_{+1} \), whose curves overlap. At the beginning of the nonlinear interaction, the modulational instability is growing due to a transfer of energy from the carrier wave to the sidebands and then stabilises under the effect of the dissipation (see figure 11-(a)-(b)). The case corresponding to figure 11-(c) presents a different behaviour because the initial rate of growth of the instability and the rate of damping are of the same order, preventing the instability from developing.

Figure 12 shows, in the presence of forcing, the temporal evolution of the amplitude of the carrier wave, \(a_0 \), and those of the initially stable sidebands, \(a_{-1} \) and \(a_{+1} \) for several values of the vorticity. At the beginning, numerical simulations show that the perturbations are oscillating and then are growing.

4. Capillary solitary waves on deep water in the presence of constant vorticity

Equation (2.6) admits as solution the envelope soliton given by the following expression
\[a(\xi, \tau) = \pm a_0 \text{sech}\left(a_0 \left(\frac{N}{2L} \right)^{1/2} \xi \right) \exp(iN a_0^2 \tau/2). \quad (4.1) \]

The corresponding surface elevation of a weakly nonlinear wave train of envelope given by (4.1) is
\[\zeta = \pm \frac{1}{2} \epsilon a_0 \text{sech} \left(\sqrt{\frac{N}{2L}} a_0 \epsilon (x - c_gt) \right) \exp \left(ikx - i(\omega - N \epsilon^2 a_0^2) t \right) + c.c., \quad (4.2) \]
where \(k \) and \(\omega \) are the carrier wavenumber and carrier frequency and \(c.c. \) is the complex conjugation.

Near the minimum of phase velocity of linear gravity-capillary waves, the phase velocity and the group velocity are nearly equal. As stated by Longuet-Higgins (1993) in any dispersive medium supporting envelope soliton and whose linear dispersion has an extremum we can expect that steady solitary waves with decaying oscillatory tails bifurcate from linear periodic waves. These waves are called generalized solitary waves to distinguish them from those which are flat at \(x = \pm \infty \). For a review on this problem, one can refer to Dias & Kharif (1999). It is noteworthy to emphasize that pure periodic capillary wave train can bifurcate
Figure 11: Temporal evolution of the dimensionless amplitudes of the carrier wave (solid blue line) and most unstable sideband modes (solid red line) in the presence of viscous dissipation in deep water. (a) $X = 0$, $Re \approx 240$; (b) $X = 0.4$, $Re \approx 202$; (c) $X = -0.4$, $Re \approx 308$. Herein, $\omega = 1$.

into generalized solitary waves only in the presence of positive vorticity as mentioned in section 2. Bifurcation cannot occur for negative vorticity because there is no phase velocity minimum.

Following Akylas (1993) and Abid et al. (2019) we consider a train of periodic pure capillary waves on deep water bifurcating into a solitary wave with a decaying oscillatory tail in the presence of positive vorticity ($\Omega < 0$). Note that Akylas (1993) and Abid et al. (2019) considered gravity-capillary waves.

We use $T/(\rho_w c^2)$ and $T/(\rho_w c^3)$ as unit of length and unit of time, where c is the phase velocity of the envelope soliton. In this way c is the reference phase velocity scale. Note that this normalisation is equivalent to set $T = 1$, $\rho_w = 1$ and $c = 1$.

Within the framework of the new normalisation, the condition for the envelope soliton to be a solitary is

$$\omega(k, \Omega) - \frac{1}{2} N a_0^2 \epsilon^2 = k, \quad \frac{\partial \omega}{\partial k} = 1.$$ \hfill (4.3)

Critical values of the parameters are obtained by setting $\epsilon = 0$ in (4.3)

$$k_0 = \omega(k_0, \Omega_0), \quad \frac{\partial \omega}{\partial k}(k_0, \Omega_0) = 1.$$ \hfill (4.4)

Solving these two equations gives

$$k_0 = \frac{1}{2}, \quad \Omega_0 = -\frac{1}{4}, \quad \omega_0 = \frac{1}{2}$$ \hfill (4.5)
Figure 12: Temporal evolution of the dimensionless amplitudes of the carrier wave (solid blue line) and stable sideband modes (solid red line) in the presence of weak forcing in deep water. (a) \(X = 0, p = 0.7 \); (b) \(X = 0.4, p = 0.8 \); (c) \(X = -0.4, p = 0.5 \); \(K = 3/10000 \). Herein, \(\omega = 1 \).

The carrier wavenumber \(k \) and the shear \(\Omega \) are expanded about \((k_0, \Omega_0) \) as follows

\[
\begin{align*}
k &= k_0 + k_1 \epsilon^2 + O(\epsilon^3) , \\
\Omega &= \Omega_0 + \Omega_1 \epsilon^2 + O(\epsilon^3).
\end{align*}
\]

Expanding \(\omega(k, \Omega) \) about \((k_0, \Omega_0) \) and using

\[
k = \omega(k, \omega) - \frac{1}{2} N \epsilon^2 a_0^2,
\]

with \(\partial \omega / \partial k(k_0, \Omega_0) = 1 \) gives

\[
\begin{align*}
\Omega_1 &= \frac{1}{2} \frac{N(k_0, \Omega_0)}{\frac{\partial \omega}{\partial k}(k_0, \Omega_0)} a_0^2 , \\
k_1 &= -\frac{\partial^2 \omega}{\partial k \partial \Omega}(k_0, \Omega_0) \Omega_1.
\end{align*}
\]

Let \(\delta \Omega \) be the difference between \(\Omega \) and the critical value \(\Omega_0 \)

\[
\delta \Omega = \Omega_1 \epsilon^2 + O(\epsilon^3).
\]

The wave steepness of the generalized solitary wave is

\[
a_0^2 \epsilon^2 = 2 \frac{\partial \omega}{\partial k}(k_0, \Omega_0) \frac{\partial \Omega}{\partial k}(k_0, \Omega_0) \delta \Omega.
\]
and

\[k = k_0 - \frac{\delta^2 \omega (k_0, \Omega_0)}{2L(k_0, \Omega_0)} \delta \Omega \]

(4.8)

Substituting the critical values given by (4.5) into (4.7) and (4.8) gives

\[a_0^2 \epsilon^2 = -\frac{32}{3} \delta \Omega, \quad \delta \Omega < 0. \]

(4.9)

Consequently, the profile of the generalized solitary wave is

\[\zeta(x, t) = \pm \frac{32}{\sqrt{3}} \sqrt{-\delta \Omega} \text{sech}\left(\sqrt{-\delta \Omega}(x - t)\right) \cos\left(k(x - t)\right) \]

(4.9)

The profile of the generalized solitary wave is known once the bifurcation parameter \(\delta \Omega \) is fixed. At \(\Omega = \Omega_0 \) the train of linear periodic capillary waves bifurcates into a solitary wave whose profile is given by (4.9). The (+) sign corresponds to a generalized solitary wave of elevation, whereas the (−) sign corresponds to a generalized solitary wave of depression.

The envelope soliton is unstable to transverse perturbations (see section 5). Consequently, capillary solitary waves with decaying oscillatory tails are expected to be unstable, too.

Within the framework of irrotational flow, Itfrim & Tataru (2020) proved rigorously that there are no capillary solitary waves in deep water with a free surface asymptotically flat at infinity. We have shown that capillary solitary waves with decaying oscillatory tails in the presence of constant positive vorticity may exist in deep water. Within the framework of rotational flows, we have shown that generalized capillary solitary waves may exist. In figures 13 and 14 are plotted the dimensionless profiles of generalized capillary solitary waves in deep water for two values of the bifurcation parameter \(\delta \Omega \). The profiles become flatter when \(|\delta \Omega| \) increases. This feature could suggest the existence of capillary solitary waves being flat in the far-field at the free surface of rotational flows of positive vorticity in deep water.

5. Transverse instability of the capillary envelope soliton and capillary Stokes wave in deep water with constant vorticity

In the two following subsections, we consider the stability of the capillary envelope soliton and capillary Stokes waves to transverse perturbations. Note that the vorticity of the underlying current is now perturbed by the infinitesimal periodic vorticity due to the perturbation, while
in 1D propagation the perturbation is potential and does not affect the shear. Nevertheless, the phase average of the vorticity is $-\Omega$.

5.1. Capillary envelope soliton

In 2D the NLS equation in deep water reads

$$\imath a_\tau + La_\xi_\xi + Ma_{\eta\eta} + Na^2 a = 0, \quad (5.1)$$

with

$$L = \frac{3\omega}{k^2} \left((1 + X) \left(1 + X + X^2 \right) \right),$$

$$N = \frac{\omega k^2}{24} \left(\frac{3 + 14X + 23X^2 + 11X^3 - 3X^4}{(X + 1)(3X + 2)} \right),$$

$$M = \frac{3T}{2\rho_w} \left(\frac{k}{\omega(2 + X)} \right).$$

Herein $X = \Omega/\omega$.

Equation (5.1) admits as solution the two-dimensional envelope soliton, $\bar{a}(\xi, \tau)$, given by (4.1). We consider the stability of this solution to infinitesimal disturbances

$$a(\xi, \eta, \tau) = \bar{a}(\xi, \tau) + a'(\xi, \eta, \tau) \exp \left(iNa_0^2\tau/2 \right), \quad (5.2)$$

The stability analysis is similar to that used by Abid et al. (2019) for gravity-capillary envelope soliton, except that now the coefficients of the NLS equation correspond to pure capillary envelope soliton. Linearisation of (5.1) about \bar{a} with $a' = u + iv$ gives

$$\nu_\tau = Lu_\xi_\xi + Mu_{\eta\eta} + (3NA^2 - Na_0^2/2)u, \quad (5.3)$$

$$u_\tau = -Lv_\xi_\xi - Mu_{\eta\eta} - (NA^2 - Na_0^2/2)v, \quad (5.4)$$

where

$$A = a_0 \text{sech} \left(a_0 \left(\frac{N}{2L} \right)^{1/2} \xi \right)$$

The system (5.3)-(5.4) of linear partial differential equations with constant coefficients admits solutions of the following form

$$u = \hat{u}(\xi) \exp(iq\eta + \Gamma\tau), \quad (5.5)$$
\[v = \hat{v}(\xi) \exp(iq\eta + \Gamma\tau). \]

(5.6)

Substitution of (5.5) and (5.6) into (5.3) and (5.4) gives

\[\Gamma \hat{v} = L \frac{d^2 \hat{u}}{d\xi^2} - Mq^2 \hat{u} + (3NA^2 - Na_0^2/2)\hat{u}, \]

(5.7)

\[\Gamma \hat{u} = -L \frac{d^2 \hat{v}}{d\xi^2} + Mq^2 \hat{v} - (NA^2 - Na_0^2/2)\hat{v}. \]

(5.8)

The eigenfunction \(\hat{v} \) can be eliminated

\[\Gamma^2 \hat{u} = -(D_0 - Mq^2)(D_1 - Mq^2)\hat{u}, \]

(5.9)

with

\[D_0 = L \frac{d^2}{d\xi^2} + NA^2 - Na_0^2/2, \]

\[D_1 = L \frac{d^2}{d\xi^2} + 3NA^2 - Na_0^2/2. \]

The eigenfunction \(\hat{u} \to 0 \) as \(\xi \to \infty \) (the eigenfunctions are local in \(\xi \)). Note that the non-local states corresponding to the continuum spectrum are stable or marginally stable (Saffman & Yuen (1978) and Rypdal & Rasmussen (1989)).

The numerical method used to solve (5.9) is outlined in Appendix A of Abid et al. (2019).

Without loss of generality, we set \(T = 1, \rho_w = 1 \) and \(k = 1 \) as Saffman & Yuen (1985) and Tiron & Choi (2012). For the sake of clarity, the same symbols are used to call the coefficients of the NLS equation. For comparison, we consider the analytic expression of the instability growth rate derived by Rypdal & Rasmussen (1989) and Abid et al. (2019), given in dimensionless form by

\[\Gamma^2 = \frac{32}{\pi^2} MNq^2(1 - \frac{M}{3N}q^2). \]

(5.10)

\[\Gamma_{\text{max}}^2 = \frac{24}{\pi^2} N^2, \]

with

\[q_{\text{max}} = \sqrt{\frac{3N}{2M}}. \]

The capillary envelope soliton is unstable to infinitesimal transverse perturbations of wavenumber \(q \) satisfying \(q^2 < 3N/M \). Figure 15 shows the square of the dimensionless growth rate as a function of the square of the dimensionless transverse wavenumber for different values of the vorticity. The numerical and analytic results are in excellent agreement.

The dimensionless growth rate and instability bandwidth increase as the dimensionless vorticity decreases. Note that in deep water

\[\Omega^2 = \frac{Tk^3}{\rho_w} \frac{X^2}{1 + X} \quad \text{with} \quad X > -1, \]

and in dimensionless form

\[\Omega^2 = \frac{X^2}{1 + X}. \]
Figure 15: Square of the dimensionless growth rate of the transverse unstable mode of capillary envelope soliton in deep water as a function of the square of the dimensionless wavenumber for (top) \(X = -0.1 \) (*), \(X = 0 \) (solid line), \(X = 0.1 \) (○) and (bottom) \(X = -0.5 \) (*), \(X = 0 \) (solid line), \(X = 0.5 \) (○). The dashed lines correspond to the analytic expression given by (5.10).

5.2. Capillary Stokes waves

Equation (5.1) admits as solution the Stokes wave envelope given by (3.1). This solution is unstable to perturbations of longitudinal and transverse wavenumbers \(p \) and \(q \) if

\[
Lp^2 + Mq^2 < 2Na_0^2.
\]
Using the linear dispersion (2.9) the coefficient M is rewritten as follows

$$M = \frac{3\omega}{2k^2} \frac{1 + X}{2 + X}$$

In a more explicit form, condition (5.11) reads

$$\frac{3(1 + X)(1 + X + X^2)}{(2 + X)^3} p^2 + \frac{3(1 + X)}{2(2 + X)} q^2 < \frac{3 + 14X + 23X^2 + 11X^3 - 3X^4}{12(1 + X)(2 + 3X)} a_0^2 k^4 \quad (5.12)$$

The instability condition $p^2 + 2q^2 < k^4 a_0^2/3$, established by Chen & Saffman (1985), is recovered for $X = 0$.

The square of growth rate of instability is

$$\Gamma_i^2 = (Lp^2 + Mq^2)(2Na_0^2 - Lp^2 - Mq^2) \quad (5.13)$$

Substituting the expressions of L, M and N into (5.13), we obtain in dimensionless form

$$\frac{\Gamma_i^2}{\omega^2} = \frac{3(1 + X)}{2 + X} \left(\frac{1 + X + X^2}{k^2} p^2 + \frac{q^2}{k^2} \right) \left(\frac{3 + 14X + 23X^2 + 11X^3 - 3X^4}{12(1 + X)(2 + X)} a_0^2 k^2 \right)
- \frac{3(1 + X)}{2 + X} \left(\frac{1 + X + X^2}{k^2} p^2 + \frac{q^2}{k^2} \right) \quad (5.14)$$

For $X = 0$ we recover the growth rate of instability of Chen & Saffman (1985) given by

$$\Gamma_i = \frac{1}{8} \left(3a_0^2 k^3 (p^2 + 2q^2) - \frac{9}{k}(p^2 + 2q^2)^2 \right)^{1/2}. \quad (5.15)$$

Note that Chen & Saffman (1985) used the relation $\omega^2 = k^3$.

The boundary of the stability diagram in the $(p/k, q/k)$-plane is given by the following ellipse equation

$$\frac{(1 + X + X^2)}{(2 + X)^2} \left(\frac{p}{k} \right)^2 + \frac{1}{2} \left(\frac{q}{k} \right)^2 = \frac{3 + 14X + 23X^2 + 11X^3 - 3X^4}{36(1 + X)^2} a_0^2 k^2. \quad (5.16)$$

Figure 16 shows the stability diagram in the $(p/k, q/k)$-plane for three values of the dimensionless vorticity. The domain of instability increases as the vorticity decreases. Dots plotted in the figure, located on the p-axis, corresponds to the dimensionless maximal growth rate of modulational instability. Consequently, the dominant modulational instability of weakly nonlinear capillary waves on deep water is two-dimensional. The wavelength of the dominant modulational instability increases as the vorticity decreases. For $\Omega = 0$ we found $p/k = 0.0416$ which is very close to the value obtained by Chen & Saffman (1985) in their Table 1.

6. Conclusion

A nonlinear Schrödinger equation for pure capillary waves on arbitrary depth with a shear current of constant vorticity has been derived, which completes the previous works of Thomas et al. (2012) and Hsu et al. (2018) on gravity waves and gravity-capillary waves, respectively. We have shown that the Wilton ripple phenomenon exists in infinite depth for pure capillary waves propagating on a current of constant positive vorticity and that the second singularity of the nonlinear coefficient of the vor-NLS equation corresponds to resonant triads of capillary waves in finite depth with positive vorticity.

The influence of the vorticity on the modulational instability of weakly nonlinear capillary
Figure 16: Stability diagram in the \((p/k, q/k)\)-plane for \(a_0k = 0.1\) and three values of the vorticity. Blue: \(\Omega = 0\). Orange: \(\Omega = -0.4\). Green: \(\Omega = 0.4\). Dots correspond to the maximal growth rate of instability.

waves on arbitrary depth has been investigated in detail. We found that the dimensionless growth rate of modulational instability increases as the dimensionless vorticity decreases whatever the dispersive parameter, \(k\eta\), where \(k\) is the carrier wavenumber and \(\eta\) the depth. The dimensionless maximal growth rate is strongly amplified for shallow water depths. The dimensionless bandwidth of instability increases as the dimensionless vorticity decreases.

To measure the effect of bulk viscosity on the modulational instability of pure capillary waves travelling on a current of constant vorticity, we have considered the damped vor-NLS equation. The linear stability analysis reduces to a Sturm-Liouville problem. We found that the most unstable perturbation stabilizes faster for negative vorticity and later for positive vorticity. This was confirmed by numerical simulations of the damped vor-NLS equation in deep water. In the presence of a forcing term, we have used the forced vor-NLS equation. We found that a stable perturbation will become unstable as soon as the carrier wave amplitude reaches a critical value, which depends on the vorticity and the wavenumber of the perturbation. Furthermore, a stability analysis of weakly nonlinear capillary waves in deep water to transverse perturbations, has shown that the dominant modulational instability is two-dimensional whatever the vorticity.

Within the framework of rotational flows of positive vorticity, we have shown, near the minimum of phase velocity of linear capillary waves on deep water, that generalized capillary solitary waves bifurcate from linear periodic capillary waves.

We investigated the linear stability of the envelope soliton of pure capillary waves to transverse perturbation in deep water. We found that the dimensionless growth rate and instability bandwidth increase as the dimensionless vorticity decreases.
REFERENCES

Ifrim, Mihaela & Tataru, Daniel 2020 No solitary waves in 2d gravity and capillary waves in deep water. *Nonlinearity* **33** (10).

Milewski, Paul A 2005 Three-dimensional localized solitary gravity-capillary waves .

Saffman, PG & Yuen, HC 1985 Three-dimensional waves on deep water. *Advances in nonlinear waves* .

Supplementary data. No supplementary data.

Acknowledgements.

Funding. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The data that support the findings of this study are available upon request.

Author ORCIDs. C. Kharif, https://orcid.org/0000-0003-0716-8183; M. Abid, https://orcid.org/0000-0002-0438-4182

Author contributions. Christian Kharif: Formal analysis; Investigation; Project administration; Methodology; Validation; Writing. Malek Abid: Formal analysis; Investigation; Project administration; Software; Validation; Visualization; Writing; Data curation. Yang-Yih Chen: Formal analysis; Project administration. Hung-Chu Hsu: Formal analysis; Project administration.