
HAL Id: hal-04535288
https://cnrs.hal.science/hal-04535288

Submitted on 6 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispersive Wave Focusing on a Shear Current: Part
1-Linear Approximations

Simen Å. Ellingsen, Zibo Zheng, Malek Abid, Christian Kharif, Yan Li

To cite this version:
Simen Å. Ellingsen, Zibo Zheng, Malek Abid, Christian Kharif, Yan Li. Dispersive Wave Focusing on a
Shear Current: Part 1-Linear Approximations. Water Waves, In press, �10.1007/s42286-024-00085-3�.
�hal-04535288�

https://cnrs.hal.science/hal-04535288
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Dispersive wave focusing on a shear current.1

Part 1: Linear approximations2
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Abstract13

We consider the evolution and kinematics during dispersive focusing,14

for a group of waves propagating atop currents varying with depth.15

Our analysis assumes long-crested linear waves propagating at arbi-16

trary angles relative to the current. Although low steepness is assumed,17

the linear model is often a reasonable approximation for understanding18

rogue waves. A number of analytical approximate relations are derived19

assuming different sub-surface current profiles, including linearly varying20

current, exponentially varying current, and currents of arbitrary depth21

profile which are weakly sheared following the approximation of Stewart22

& Joy (Deep Sea Res. Abs. 21, 1974). The orbital velocities are like-23

wise studied. While shear currents have modest influence on the motion24

of the envelope of the wave group, they significantly change wave kine-25

matics. Horizontal orbital velocities are either amplified or suppressed26

depending on whether the shear is opposing or following, respectively.27

To illustrate these phenomena we consider a real-world example using28

velocity profiles and wave spectra measured in the Columbia River29

estuary. Near the surface at the point where focusing occurs, hori-30

zontal orbital velocities are respectively increased and decreased by31

factors of 1.4 and 0.7 for focusing groups propagating on following and32

1
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opposing shear (respectively upstream and downstream in the earth-33

fixed reference system). The implications for the forces a focusing wave34

group can exert on vessels and installations are profound, emphasizing35

the importance of considering current profiles in maritime operations.36

Keywords: Wave-shear current interaction, Focused wave group, Wave37

kinematics38

1 Introduction39

Rogue waves, characterized as enormous and abrupt waves appearing on the40

sea’s surface, pose a significant threat to maritime activities. These waves41

which are defined by being far higher than the waves around them, can emerge42

without warning, occurring both in deep and shallow waters, and they result43

from various physical mechanisms that concentrate the energy of water waves44

into a small area. Their occurrence has led to numerous fatalities, injuries, and45

extensive damages to ships and maritime structures. Among the mechanisms46

responsible for their formation are dispersive focusing, refraction influenced47

by variable currents and bottom topography, modulational instability, con-48

structive wave interference enhanced by second-order interactions, cross-sea49

interactions, and soliton interactions. For a comprehensive review of these50

mechanisms, refer to the works by Kharif & Pelinovsky [1], Dysthe et al. [2],51

and Onorato et al. [3].52

The main objective of this paper is to analyze the effect of depth-dependent53

underlying currents on the dispersive focusing of water waves in deep water.54

Extreme wave events resulting from dispersive focusing or spatiotemporal55

focusing phenomena can be described as follows: when initially shorter wave56

packets are positioned in front of longer wave packets with higher group veloc-57

ities, the longer waves eventually catch up and overtake the shorter waves58

during the dispersive evolution process. At a fixed location (known as the focus59

point) and time, the superposition of all these waves leads to the formation60

of a large-amplitude wave. Subsequently, the longer waves move ahead of the61

shorter waves, resulting in a decrease in the amplitude of the wave train. In62

the absence of vorticity, giant waves created by dispersive focusing have been63

frequently studied experimentally [4–7] and theoretically [8, 9], but studies in64

the presence of a shear current are very scarce. Kharif et al. [10] investigated65

the effect of a constant vorticity underlying current on the dispersive focus-66

ing of a one-dimensional nonlinear wave group propagating in shallow water.67

Their findings revealed that the presence of constant vorticity increases the68

maximum amplification factor of the surface elevation as the shear intensity69

of the current increases. The duration of extreme wave events follows a similar70

behavior. In narrowband assumption Xin et al. [11] report the different effects71

of following and opposing shear current on both the extreme and fatigue loads72

on fixed-bottom offshore slender structures in extreme wave events. The work73
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has shed light on the shear-current modified wave kinematics in the design of74

offshore structures, which will be explored further in this work as explained75

below.76

This study is the first part of an investigation of waves focusing dispersively77

on vertically sheared currents. The, in some respects, simplest case is treated in78

this first part, where the theory is linearised with respect to wave steepness; a79

second-order theory is found in part two [12]. Although nonlinear wave effects80

are significant for rogue wave situations, a linear approximation has been found81

to give reasonable results [13]. Our focus is on investigating the behavior of82

focusing wave groups propagating obliquely to the current direction, as well83

as wave groups traveling in the same direction as the current, in deep water84

(see Figure 1). By analyzing the impact of these depth-dependent underlying85

currents on the dispersive focusing of water waves, we aim to enhance our86

understanding of the formation and characteristics of rogue waves, contributing87

to improved safety measures for maritime activities as highlighted in [11].88

We consider a range of vertically sheared currents, and of wave shapes89

at focus, deriving a series of closed-form approximate results. The currents90

we consider include the linear and exponential depth dependence — cases for91

which closed-form solutions exist for the linear velocity field — and arbitrary92

current profiles which satisfy the weak-shear approximation (fundamentally93

that required for the celebrated approximation of Stewart & Joy [14]). Wave94

groups focusing to a δ-function singularity, and a narrowband Gaussian packet,95

are considered. The approximate formulae derived are, we propose, useful for96

their relative simplicity and analytical tractability, for instance for the creation97

of focusing waves on sheared currents in numerical and laboratory experiments98

(see, e.g., [15]).99

x

z

µ

y

eU

U(z)

Fig. 1 Geometry: a quasi-2D wave propagating along the x axis. A sub-surface shear cur-
rent makes an angle θ with the direction of wave propagation. Here U(z) = SzeU . Currents
with opposing and following shear are denoted by θ ∈ [0, π/2) and (π/2, π], respectively.

A main conclusion of our work, illustrated and quantified through many100

examples, is the following: within a linear framework, the presence of shear has101

modest effect on the focusing and defocusing of the wave-group envelope, but102
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a large effect on the wave kinematics. The component of the orbital velocities103

near the surface at the point of focus can be strongly enhanced.104

2 Theoretical background105

In this section we review the necessary background theory and phrase it in the106

formalism we use herein. While not in a strict sense novel, the reexamination107

of the basics sheds important light on the mechanisms in play which we will108

refer extensively to in later sections. After defining the problem and geometry,109

the linear initial-value solution is provided in a suitable form, and standard110

current profiles and highly useful approximations are briefly recapitulated.111

2.1 Problem definition112

We consider a body of water with a free surface which, when undisturbed, is at113

z = 0, and sustaining a shear current which depends arbitrarily on depth. The114

depth is infinite (some results are generalised to allow finite depth in Appendix115

A), and we ignore the effects of surface tension. The geometry is sketched in116

figure 1. The background current has the form117

U(z) = {Ux(z), Uy(z)} = U(z)eU ; (1)

eU = {cos θ, sin θ}, (2)

where eU is a unit vector in the xy plane. Without loss of generality we choose118

the coordinate system which follows the surface of the water so that U(0) = 0.119

As well as simplifying the formalism this choice emphasizes that the effects120

studies are due to shear rather than surface current. A nonzero surface current121

is easily worked back into solutions by adding a Doppler shift to frequencies.122

The angle between wave propagation and current is θ and we shall assume123

without loss of generality that the wave propagates along the x axis so that124

k ·U = kUx = kU(z) cos θ. In derivations we shall often retain a general wave125

vector k = {kx, 0}. We allow kx to take both signs in derivations, eventually126

arriving at expressions for waves propagating only in the positive x direction,127

whereupon we may consider only positive wave numbers. We assume long-128

crested waves, so the surface elevation is ζ(r, t) = ζ(x, t) where r = (x, y).129

We assume here that the current does not change direction with depth, but130

generalisation to a z-dependent θ is straightforward.131

As is well known (e.g. [16]), the surface elevation and dispersion relation132

depend only on U in the combination k·U = kUx, whereas Uy has no influence133

on ζ. The angle θ thus only plays the role of varying Ux through values between134

−U and U . We shall see in section 4 that the same is not the case for the135

velocity field beneath the waves.136

In this paper we linearise equations and boundary conditions with respect137

to ζ and its derivatives, as well as orbital velocities — a companion paper138

considers weakly nonlinear extensions.139
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2.2 Linear initial-value problem, and solution140

We will solve initial value problems in this set-up, a simpler, long-crested141

version of the theory presented in [17]. The general linear solution can be writ-142

ten in Fourier form with the 3D formulae in Ref. [17] assuming translational143

symmetry in the y direction, as144

ζ(r, t) =

∫ ∞

−∞

dkx
2π

[
b+(kx)e

−iω+(kx)t + b−(kx)e
−iω−(kx)t

]
eikxx (3)

where ω±(k) are the two solutions of the linear dispersion relation for a general145

wave vector k, and b±(k) = b±(kx) are spectral weights determined by initial146

conditions.147

In the reference system following the surface current (i.e., U(0) = 0), the148

dispersion relation always has one positive and one negative solution, corre-149

sponding to waves propagating in direction k and −k, respectively, implying150

that ω+ ≥ 0 and ω− ≤ 0.151

Our initial condition is that the shape of the packet is prescribed at focus,152

t = 0, and propagates only in the positive x direction. Let the Fourier transform153

of ζ at focus be154

ζ(x, 0) =

∫ ∞

−∞

dkx
2π

ζ̃0(kx)e
ikxx; ζ̃0(kx) =

∫ ∞

−∞
dx ζ(x, 0)e−ikxx, (4)

which with the general linear solution (3) implies155

b+(kx) + b−(kx) = ζ̃0(kx). (5)

In order to obtain the appropriate initial shape with only plane waves prop-156

agating in the +x direction, we couple the kernel exp(ikxx) to exp(−iω−t)157

when kx < 0 and to exp(−iω+t) when kx > 0:158

b±(kx) = ζ̃0(kx)Θ(±kx), (6)

where Θ is the Heaviside unit step function, explicitly159

ζ̃0(kx, t) = ζ̃0(kx)
[
e−iω−(kx)tΘ(−kx) + e−iω+(kx)tΘ(kx)

]
. (7)

Substituting kx → −kx for the b− term and noticing the well-known symmetry160

ω−(−kx) = −ω+(kx), (8)

the solution may be written161

ζ(x, t) =

∫ ∞

0

dk

2π

[
ζ̃0(−k)e−iψ + ζ̃0(k)e

iψ
]
, (9)
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where we now simplify the notation, kx → k and ω+(kx) → ω(k) is the positive-162

valued frequency. As shorthand, we define the wave phase163

ψ = ψ(x, t; k) ≡ kx− ω(k)t, (10)

frequently written without arguments for succinctness. Since (9) is real-valued,164

it follows that ζ̃0(−k) = ζ̃∗0 (k), so we finally write165

ζ(x, t) = 2Re

∫ ∞

0

dk

2π
ζ̃0(k)e

iψ. (11)

In the following we shall use this form and therefore assume kx = k > 0, with166

the exception of derivations where it is sometimes necessary to return to the167

more fundamental form.168

In particular, if the shape at t = 0 is symmetrical around x = 0, ζ̃0(k) is169

real, hence170

ζ(x, t) = 2

∫ ∞

0

dk

2π
ζ̃0(k) cosψ(x, t; k). (12)

2.3 Vertically sheared currents171

We here introduce the classic linear and exponential shear profiles used172

as canonical examples, and approximate linear theories for arbitrary shear.173

Known results are briefly reviewed and framed in the formalism we use herein.174

2.3.1 Current with constant shear175

First we quote well-known results for the simple, linearly depth-dependent176

current177

U(z) = SzeU = Sz{cos θ, sin θ} (13)

with S the constant shear.178

Due to the symmetry (8) it is sufficient to consider the positive-valued ω(k)179

assuming positive k, which we write in the form180

ωσ(k) = kcσ(k) =
√
gκ − σ (14)

where the shear-modified wave number is181

κ(k) = k + σ2/g, (15)

and182

σ ≡ 1
2S cos θ. (16)

The group velocity is183

cgσ(k) =
1

2

√
g

κ
. (17)

Note for future reference that cgσ(k) is symmetrical under σ → −σ while cσ184

is not.185
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In the spirit of [17, 18] we may define a Froude-shear number for the linear-186

shear current based on velocity S/k and length 1/k,187

FSlin. =
S

2
√
gk

(18)

so that the shear-modified wave number is κ = k(1 + FS2lin. cos
2 θ). This is188

particularly instructive in narrow-band cases (e.g., long groups with Gaussian189

envelope) where there is a dominating carrier wave number; see sections 3.4190

and 4.1 for further details. Here and henceforth a subscript ‘lin.’ indicates the191

subscribed quantity pertains to the linear current.192

2.3.2 Current with exponential shear193

We will frequently make use of the model current with exponential depth194

profile, which we define195

Uexp(z) = U0(e
αz − 1)eU = {Ux0, Uy0}(eαz − 1), (19)

where α > 0 is a shear strength and Ux0 a current strength. This model has196

been considered for the purposes of wave-current interactions for a very long197

time, thanks to its similarity to a wind-driven shear-layer (Ekman current)198

[19].199

An explicit, exact solution to the linear problem with the exponential cur-200

rent can be found in terms of hypergeometric functions, which we review in201

section 4.4. The dispersion relation in this case is, however, implicit but easily202

calculated numerically.203

The exponential profile is a particularly useful model in combination with204

the weak-shear approximation (see section 2.4.1), an approximation which is205

excellent in the vast majority of oceanographic and coastal flows. Near-surface206

flows, such as wind-driven Ekman layers or estuarine plumes, are typically207

reasonably approximated by an exponential, and in this case the linearised208

weak-shear theory yields a wealth of explicit analytical results, a number of209

which we derive in this article.210

2.4 Weak-shear and weak-curvature theory211

We will summarise the results of theories for dispersion relations and flow fields212

for an arbitrary current U(z) satisfying criteria of weak shear and weak cur-213

vature, respectively. We emphasize that although the former approximation is214

termed ‘weak shear’ due to the formal requirements for it to be asymptotically215

accurate, in fact in an oceanic setting the shear can be very strong as in the216

case of the Columbia River Estuary considered in section 4.5.1, and still give217

results accurate to within a few percent or less.218

The weak-shear approximation is in practice that underlying the celebrated219

approximation of Stewart & Joy [14], typically sufficient in practice while in220
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cases of extremely strong shear (as effectively felt by a wave of the wave-221

length in question), the strong-shear-weak-curvature expressions [20] could be222

necessary.223

As discussed in Ref. [20], a suitable measure of the effective strength of224

the current shear is a dimensionless depth-integrated shear, or “directional225

shear-Froude number”, δ(k), defined as226

δ(k) ≡ 1

c0(k)

∫ 0

−∞
dz U ′

x(z)e
2kz ≡ FSgen. cos θ. (20)

with c0(k) =
√
g/k as usual. We use the symbol δ as well as FS to make contact227

with previously published theory [17, 18, 20], despite the slight redundancy.228

The x component of U is taken, being the component aligned with the waves,229

k ·U = kUx.230

That the parameter δ(k) is a direct generalisation of the shear-Froude num-231

ber (18) for linear shear based on the along-wave (here: x) current component,232

is easily seen by inserting Ux(z) = Sz cos θ = 2σz which gives δ(k) = δlin.(k)233

with234

δlin.(k) = 2σ

√
k

g

∫ 0

−∞
dz e2kz =

σ√
gk

= FSlin. cos θ. (21)

For ease of comparison to the linear-shear case above, it is also instructive235

for us to define the shear-induced Doppler shift for a wave propagating at an236

angle θ:237

σδ(k) = ω0(k)δ(k) = k

∫ 0

−∞
dz U ′

x(z)e
2kz (22)

a generalisation of σ for the linear current in Eq. (16). We defined ω0 =
√
gk.238

2.4.1 Weak shear239

A sufficient criterion for the approximate theory of Stewart & Joy [14] and its240

generalisations [21, 22] to be accurate is δ(k) ≪ 1 for all k which contribute241

significantly (we follow the convention of [23] that ≪ and ≫ refer to the242

absolute values of the quantities compared). The results in references [14, 22]243

were derived assuming weak current, U ≪ c, yet it is shown in ref. [20] that244

the true condition of validity is that the shear is weak. (This was suspected by245

Kirby & Chen [22] and in fact obliquely discussed already by Skop [21]). After246

a partial integration of the original form of the much-used approximation due247

to Stewart & Joy [14], it can be written248

ω(k) ≈
√
gk − σδ(k) = ω0(k)[1− δ(k)]. (23)

We mention in passing that although (20) performs excellently for most typical249

ocean and coastal currents concentrated in the near-surface region (e.g. [20,250
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24]), such as the exponential current profile, it does not perform particularly251

well for the linear shear case even when shear is moderate [24]; for currents252

which are close to linear, the strong-shear approximation in the next section253

should be used.254

Further formulae in the weak-shear approximation will be quoted or derived255

later, as they are needed. Explicit expressions for the exponential current in256

the context of surface motion are found in section 3.2.1, and weak-shear theory257

for the kinematics and orbital velocities may be found in Section 4.2.258

2.4.2 Strong shear, weak curvature259

A similar theory allowing U(z) to have arbitrarily strong shear, but weak260

curvature, was developed by Ellingsen & Li [20]; the explicit limitation on261

curvature may be found therein. Now δ(k) can be arbitrarily large compared262

to unity. The approximate dispersion relation derived in [20] (equation 18) is263

ω(k) ≈ ω0(k)(
√

1 + δ2 − δ) =
√
gk + σ2

δ − σδ. (24)

Ellingsen & Li finds no practical situations where (24) performs significantly264

worse than (23), and it fares far better when δ is not small compared to unity.265

Notice that when the linear current (13) is inserted, one finds σδ(k) = σ266

as defined in (16) and the dispersion relation (14) is regained exactly. The267

formalism thus bears a close similarity to that with constant shear, in section268

2.3.1. Moreover, δ ≪ 1 returns the weak-shear dispersion relation (23) to269

leading order.270

The close resemblance in form to the constant shear case makes it natural271

to define a generalised function analogous to Eq. (15),272

κδ(k) = k + σδ(k)
2/g. (25)

whereby (24) can be written ω(k) ≈ ωδ(k) =
√
gκδ(k)− σδ(k).273

3 Surface motion274

In this section we derive and analyse a number of potentially useful results for275

the moving free surface of a focusing wave groups, including explicit approx-276

imate expressions for general and special cases. We assume throughout in277

Section 3 that the surface elevation at focus, ζ(x, 0), is symmetric in x for278

simplicity.279

For purposes of analytical treatment, there are two challenges to contend280

with when a vertical shear current is present: the dispersion relation is not281

in general given in closed form, and the waves are described by Fourier inte-282

grals with no closed-form solutions. We consider in the following a number of283

special cases and/or simplifying assumptions which allow useful, closed-form284

expressions to be derived.285
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3.1 General dispersion considerations286

We briefly argue why the dispersion relation predicts that vertical shear of287

U(z) has little effect on the group envelope, but can greatly affect the phase288

velocity and hence the wave kinematics. We focus now on the simplest case of289

a linear shear current (13) which is sufficient to illustrate the overall effect of290

shear.291

If now σ is not small compared to
√
k, the phase velocity in equation (14)292

depends strongly on θ; for cos θ > 0 (opposing shear) the two terms in (14)293

tend to cancel each other while for cos θ < 0 (following shear) they add to each294

other, giving a phase velocity which can be far higher. In contrast, the group295

velocity is identical under θ → −θ since cgσ depends on |cos θ| only.296

Bearing in mind that the envelope of a focusing group of waves is governed297

by the group velocity and its k derivative, the evolution of the group as a whole298

is largely independent of whether propagation is upstream or downstream.299

The kinematics of the wave patterns within the focusing group, however, are300

related to the phase velocity which can be very different depending on the301

direction θ. To wit, the ratio between phase velocity for opposite directions302

θ = 0 and θ = π is303

c(θ = π)

c(θ = 0)
=

√
1 + FS2lin. + FSlin.√
1 + FS2lin. − FSlin.

=

(√
1 + FS2lin. + FSlin.

)2

(26)

which very significant indeed when FSlin. ∼ O(1). In section 4 we study the304

closely related amplification of horizontal velocities at focus depending on θ.305

The situation becomes particularly pointed for strong shear, σ ≫ 1, in306

which case the phase and group velocities in equations (14) and (17) are307

cσ(k) =
1

k
(|σ| − σ) +

g

2|σ|
+ ... (27a)

cgσ(k) =
g

2|σ|
+ ... (27b)

For cos θ > 0 the group and phase velocities become asymptotically equal and308

the wave becomes nondispersive, whereas for cos θ < 0 phase velocity can be309

many times greater than group velocity.310

The effect is illustrated in Fig. 2 where we plot η(x, t) at a series of equidis-311

tant times as the wave group focuses and defocuses. A short Gaussian packet312

with carrier wave number k0 and length L is chosen for improved illustration,313

as defined and discussed in section 3.4. We plot time in units of Tref =
√
L/g.314

The surface elevation ζ(x, t) was evaluated numerically from Eq. (12). The315

shear S is constant and made strong for clarity of illustration, FSlin. cos θ takes316

the values − 1
2 , 0 and 1

2 at k = k0. When θ = 0 focusing is characterised by317

a wave group which slowly varying phase as the group passes through focus.318

When θ = π on the other hand, crests and troughs move so rapidly that they319
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Fig. 2 Illustration of the different kinematic behaviour for waves focusing into a short
group, k0L = 3 with a Gaussian envelope of standard deviation L in deep water for opposing,
zero and following linear shear. (a,b,c): ζ(x, t)/a for t̃ from −30 to 30 in steps of 0.25 with
graphs growing progressively lighter in colour for increasing |t|, and the t = 0 (focused)
wave group drawn as thicker white lines. The dashed lines are plots of the maximum group
height, ±L(L4 + B2

0tg(x)
2)−1/4, using Eqs. (56), (54) and tg(x) = x/cg(k0). (d,e,f): same,

with ζ as shades from darkest to lightest (ζ/a = −1 and ζ/a = 1, respectively), varying in
space and time.

appear almost chaotic at this time resolution. (An illustration of the shallow320

water case is given in A.3.)321

Another case suitable for illustration is the wave which takes the form of322

a Gaussian soliton at focus,323

ζ(x, 0) = ae−x
2/2L2

; ζ̃0(k) =
√
2πaLe−

1
2k

2L2

. (28)
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Fig. 3 Illustration of the different kinematic behaviour for waves focusing into a Gaussian
soliton of nondimensional width 1 in deep water. The solid graphs show ζ(x, t)/a for t/Tref

from −20 to 20 in steps of 0.5. Here Trefσ = 1, 0 and −1 (top to bottom). The abcissa is
x/L, and ζ(x, 0)/a is shown with thicker, red line.

the width of the Gaussian focused shape. The shape is considered by [25],324

where an explicit solution is found in the shallow-water case without shear.325

The surface elevation according to Eq. (12) is326

ζ(x, t) =

√
2

π
aLRe

[∫ ∞

0

dk e−
1
2k

2L2+ikx−iω(k)t

]
. (29)

The time evolution of a group focusing into a Gaussian soliton with constant327

shear in deep water is shown in Fig. 3. The behaviour is once again that the328

wave group focusing on following shear (cos θ = −1) and that on opposing329

shear (cos θ = 1), while sharing the same averaged envelope, behave quite dif-330

ferently in a kinematic sense, the former appearing as a single soliton rising331

slowly to its maximum and declines again, whereas the latter draws a hec-332

tic picture of crests and troughs rapidly replacing each other as the focus is333

approached.334

3.2 Stationary phase approximations335

Before considering particular cases we derive a general expression for the sta-336

tionary phase approximation of the shape of the wave packet sufficiently far337

from focus. Assume therefore that x, t≫ 1. Formally we write ψ = t(kξ−ω(k))338
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where339

ξ ≡ x/t, (30)

and we assume ξ is moderately large, in the order of cg(k), then take the340

asymptotic solution as |t| → ∞ [23].341

Equation (12) is rapidly oscillating and dominated by its stationary points342

when |t| → ∞. We presume for simplicity that only one such exists, which is the343

case for for gravity waves except very special and extreme cases; should several344

stationary points exist, the procedure is simply repeated for each one. Equation345

(12) has its stationary point at k = ksp which solves ψ′(ksp) = 0 where a prime346

here denotes differentiation w.r.t. k. This implies cg(ksp) = ξ with cg(ksp) being347

the stationary-point group velocity. In general the stationary point must be348

found numerically, for example with the Direct Integration Method [26] which349

we will employ later.350

Now let a subscript ‘sp’ indicate the quantity is evaluated at k = ksp. To351

connect with formalism in following sections (equation (54) in particular), we352

define353

Asp =
dω

dk

∣∣∣∣
k=ksp

; Bsp(ξ) =
d2ω

dk2

∣∣∣∣
k=ksp

. (31)

Clearly, Asp = ω′
sp = cg(ksp) = ξ, and ψ′′

sp = −ω′′
spt = −Bsp(ξ)t (note that Bsp354

is a function of ξ because ksp is). With the stationary phase approximation355

(e.g., §6.5 of [23])356

ζ(x, t) =Re

{
1

π

∫ ∞

0

dk ζ̃0(k)e
iψ(x,t; k)

}
≈

√
2

π|Bsp(ξ)t|
Re

{
ζ̃0(ksp) exp

[
i(ψsp + π

4 Sg(x))
]}

Θ(ξ ≥ cg,min), (32)

where ‘Sg’ denotes the sign function, Θ is the unit step function, and cg,min is357

the smallest value cg(k) can take. In particular, solutions only exist for ξ > 0358

(bear in mind the assumption ξ/cg ∼ 1).359

In all cases in the following, Sg[ψ′′
sp] = Sg(x) = Sg(t) when a stationary360

point exists, which we therefore assume henceforth.361

3.2.1 Stationary phase approximation, exponential shear362

Consider next the case of an exponential current, equation (19). The weak-363

shear approximation is sure to be accurate in any direction θ if δ(k) ≪ 1364

where, from equation (20), δ(k) = δα(k) with w365

δα(k) =
Ux0
c0(k)

α

α+ 2k
. (33)

We might equally refer to δα as the Froude-shear number for the exponential366

case (notation FSexp cos θ = δα, although we will use δα in the following).367
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fig/stationaryphasek01.pdf

Fig. 4 Wave surface elevation on an exponential shear current (19) with U0/
√
gL = 0.2,

αL = 2.5 and θ = 0. The red dashed line is the stationary phase approximation (32) with
the weak exponential shear approximation using equations (35b), (36) and (37). The black
solid line is the numerical solution using the Direct Integration Method [26]. The initial wave
surface is a Gaussian group ζ(x, 0) = a exp(− 1

2
x2/L2) cos(k0x) with k0L = 1The focusing

occurs at t = 0.

For a particular propagation direction θ it is sufficient that δ(k) ≪ 1 for all368

significant values of k. The maximum absolute value of δα is at k = α/2 where369

δα,max = |Ux0|
√
α/8g. (34)

Note that the global maximum of δα does not depend on the lengthscale L,370

i.e., δmax ≪ 1 guarantees the accuracy of weak-shear theory independently of371

the size and shape of the wave group at focus, as should be expected. However,372

note that this is a sufficient, not a necessary condition: if αL is much greater373

or smaller than unity, δα could remain far smaller than its maximal value for374

all k which contribute significantly.375

We note in passing the correnspondence with the assumption in Stewart376

& Joy’s theory of weak current compared to the phase velocity; at k = α/2377

the condition δmax ≪ 1 can be written Ux0/2c ≪ 1 since the phase velocity378
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is approximately
√

2g/α. This is a (reference system invariant) weak current379

assumption: the maximum difference in Ux0(z) over the water column is much380

smaller than twice the phase velocity.381

The weak-shear approximation, eq. (23), yields382

ω(k) ≈
√
gk − Ux0αk

2k + α
; (35a)

Asp =ξ =
1

2

√
g

ksp
− Ux0α

2

(2ksp + α)2
; (35b)

Bsp =− 1

4ksp

√
g

ksp
+

4Ux0α
2

(2ksp + α)3
= − ξ

2ksp
− Ux0α

2(α− 6ksp)

2ksp(2ksp + α)3
. (35c)

We wish to solve (35b) with respect to ksp. The assumption behind the weak-383

shear approximation is that δ ≪ 1 as defined in Eq. (20). In this spirit we384

write αU0k → γαU0k with γ a “smallness” parameter for bookkeeping we will385

eventually take to 1. We expand ksp = k
(0)
sp + γk

(1)
sp and solve (35b) in orders386

of γ and insert into (35c) to obtain387

ksp =
g

4ξ2
− 2gUx0α

2ξ

(g + 2αξ2)2
+O(γ2); (36)

Bsp(ξ) =− 2ξ3

g
− 8Ux0α

2ξ6(g − 6αξ2)

g(g + 2αξ2)3
+O(γ2). (37)

The frequency in the weak-shear stationary phase approximation is found by388

inserting (36) into (35a) and retaining terms to O(γ),389

ωsp =
g

2ξ
− Ux0gα(g + 6αξ2)

2(g + 2αξ2)2
+O(γ2), (38)

while the applicability of weak-shear theory is well indicated by the Froude-390

shear number at the stationary point,391

δα,sp =
αξUx0
g + 2ξ2α

+O(γ2) (39)

which has its maximum at ξ =
√
g/2α where the result (34) is regained.392

We test the stationary phase surface elevation solution in figure 4. The393

red line indicates the arbitrary-accuracy numerical solution using the method394

of reference [26], whereas the black is the weak-shear stationary phase solu-395

tion, found by inserting (38) and (37) into equation (32). We observe a very396

slight phase shift over time because the frequency ωsp is only approximate,397

whereas the ‘exact’ and approximate envelope of the group are virtually398

indistinguishable.399
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3.2.2 Stationary phase approximation for linear shear400

In the special case of linear shear, an explicit formula is readily derived. Rather401

than use Eq. (32) we substitute ϖ =
√
gk + σ2 into the dispersion relation402

(14), ω = ωσ = ϖ−σ, from which it follows that k(ϖ) = (ϖ2 −σ2)/g; dk =403

(2ϖ/g)dϖ, and according to equation (12) ζ(x, t) is,404

ζ(x, t) =2Re

∫ ∞

0

dk

2π
ζ̃0(k)e

ikx−iωσt

=
2

πg
Re

[
e−ixσ

2g+iσt

∫ ∞

|σ|
dϖϖζ̃0(k(ϖ))eixϖ

2/g−iϖt

]
. (40)

Formally we write the exponent as itϕ(ϖ) with ϕ(ϖ) = ϖ2x/gt−ϖ, and405

consider the asymptote t → ∞ while assuming x/t ∼ O(1). The stationary406

phase ϖ = ϖsp is407

ϕ′(ϖsp) =

(
2x

gt
ϖsp − 1

)∣∣∣∣
ϖ=ϖsp

= 0, (41)

or, in other words, ϖsp = gt/2x. (Introduction of the symbol ξ = x/t is not408

equally handy as in the previous section, and we retain x and t here.) With409

the stationary phase approximation the integral is (e.g., §6.5 of [23])410 ∫ ∞

|σ|
dϖϖζ̃0(k(ϖ))eixϖ

2/g−iϖt ≈
√
πg

|x|
tζ̃0(ksp)

2x
exp i

[
−gt

2

4x
+
π

4
Sg(x)

]
Θ(ksp)

(42)
with411

ksp =
ϖ2

sp − σ2

g
=
gt2

4x2
− σ2

g
. (43)

There is no stationary point unless t/2x > |σ|, hence the unit step function Θ.412

Thus, taking the real part, the stationary phase approximation to ζ(x, t) is413

ζ(x, t) ≈
√

g

π|x|
t

x
Re

{
ζ̃0(ksp) exp i

[
−σ

2x

g
− gt2

4x
+ σt+

π

4
Sg(x)

]}
Θ(ksp).

(44)
The approximation is only nonzero when x and t are either both negative or414

both positive, as is reasonable since we have assumed propagation towards415

positive x. In the symmetrical case where ζ(x, 0) = ζ(−x, 0), ζ̃0(k) is real and416

the exponential becomes a cosine.417

3.3 Waves focusing to δ-function singularity418

Assuming the wave form at focus is a Dirac δ function is the most extreme419

form of focusing. As is conventional, we overlook the obvious fact that linear420

theory cannot describe such a wave packet close to its maximum, and regard421
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the solution some time before and after focusing. The case is particular in the422

sense that the wave shape at focus has no intrinsic length scale. We write the423

elevation at focus with the delta function in the limit form [e.g., 27, §7.2]424

ζ(x, 0) = aδ(x/L) = lim
µ→0+

a

π

µ

x2/L2 + µ2
(45)

where L is some arbitrary, finite lengthscale for dimensional reasons (in later425

sections it will play the role of characteristic width of the wave packet at focus).426

Its obtains physical meaning is only when this singular model flow is compared427

to whatever real flow it models. The Fourier transform is428

ζ̃0(k) = aL lim
µ→0+

e−µL|k|. (46)

Using (12) we have429

ζ(x, t) = 2aL lim
µ→0+

∫ ∞

0

dk

2π
cos[kx− ω(k)t]e−µLk. (47)

The role of µ is to render the integral well defined.430

For an integral with rapidly oscillating integrand of form431 ∫
dqf(q)eiXϕ(q) (48)

with ϕ(q) ∼ O(1), the stationary phase approximation is accurate for X ≫ 1432

assuming f(q) is significant for q ∼ O(1). Substituting q = µk into (47),433

we observe that X = x/µ, which is very large for any nonzero x. Thus the434

stationary phase approximation should be sufficiently accurate everywhere, for435

practical purposes.436

From equation (44) the stationary phase approximation for linear shear is437

ζ(x, t) = aL

√
g

π|x|
t

x
cos

[
σ2x

g
+
gt2

4x
− σt− π

4
Sg(x)

]
Θ

(
gt2

2x
− |σ|t

)
. (49)

Corresponding expressions for ζ(x, t) on other shear currents, including the438

special case of an exponential currents, are obtained by inserting ζ̃sp = aL into439

the results in sections 3.2.440

The surface elevation for a linear wave focusing towards a δ-function sin-441

gularity is shown in Fig. 5. Lines show a direct calculation of integral (47)442

with the integration path rotated slightly into the complex k plane (closed443

with a non-contributing arc at infinity), ensuring exponential convergence. Let444

σ̃ = σTref and t̃ = t/Tref with reference time Tref =
√
L/g. Three differ-445

ent shear strengths are shown: σ̃ = −0.5, 0 and 0.5 with reference time The446

circular markers are the values obtained using equation (49); these are indis-447

tinguishable from the exact integral in all cases. As discussed in connection448
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fig/deltapack_sigma_pm0.5.pdf

Fig. 5 Surface elevation ζ/a (x in units of L, t in units of Tref =
√

L/g) for a wave group
focusing to a δ-function singularity on a linear shear current. a) t = −25Tref , b) t = −5Tref .
Three different shear strengths: Trefσ = −0.5 (blue, solid), Trefσ = 0.5 (black, dashed), and
Trefσ = 0 (red, dotted); circular markers show the stationary phase approximation (49).

with equation (44), the cases σ̃ = −0.5 and 0.5 are nearly indistinguishable at449

t̃ = −25, but differences manifest at the later time t̃ = −5.450

In stark contrast, the behaviour of the wave phase for case σ̃ = 0 is always451

quite distinct from the others, as should be obvious from inspection of the452

argument of the cosine in Eq. (49), where the term σ2x/g is highly significant453

when t/x ∼ σ/g. This observation has consequences for creating a focusing454

wave in a laboratory with a shear current.455

An approximate solution in the shallow-water limit, which generalises456

results in Refs. [25, 28], is found in appendix A.2.457



Springer Nature 2021 LATEX template

Wave focusing on a shear current 19

3.4 Long wave group with Gaussian envelope458

We next consider a group with Gaussian envelope of characteristic length L459

and carrier wave number k0 > 0, i.e.,460

ζ(x, 0) = ae−x
2/2L2

cos(k0x). (50)

We allow the shear current U(z) in equation (1) to be arbitrary and assume461

ω(k) and its first and second derivatives are known. Note that k0L now acts as462

a bandwidth parameter: The higher k0L, the narrower the bandwidth: k0L is463

approximately the number of wavelengths of the carrier wave within the group.464

We will assume in derivations that the group is long (i.e., narrowband), k0L≫465

1, yet we will see in the following that narrowband (long-group) approximations466

are excellent for many practical purposes already at k0L = 3 - 5 which would467

not in most cases be considered a ‘long’ group.468

Taking the Fourier transform of the Gaussian group we obtain with469

equation (11)470

ζ(x, t) =
aL√
2π

∫ ∞

0

dk
[
e−

1
2 (k−k0)

2L2

+ e−
1
2 (k+k0)

2L2
]
cos[kx− ω(k)t]. (51)

When k0L ≫ 1, only the first term in the brackets makes a significant con-471

tribution, so, ignoring a term of order exp(− 1
2k

2
0L

2), we may simplify (51)472

to473

ζ(x, t) ≈ aL√
2π

∫ ∞

0

dk e−
1
2 (k−k0)

2L2

cos[kx− ω(k)t]. (52)

This simplification becomes suspect for k0L ≲ 3, depending on the required474

level of accuracy.475

This is the Gaussian group in the sense of [15], prescribing the spatial shape476

of the wave at focus, slightly different from the definition used in, e.g., [29, 30]477

where the time series of the wave elevation is specified in the time domain.478

The integral (52) gets its significant contributions from near k = k0. The479

longer the group, i.e., the more periods of the carrier wave it contains, the more480

focused the integral is around this value. We thus assume the group width L481

is much larger than a wavelength, i.e., k0L≫ 1. Following [15] we expand the482

dispersion relation in a Taylor series around k = k0,483

ω(k) = ω(k0) +A0(k − k0) +
1
2B0(k − k0)

2 + ... (53)

where484

A0 =
dω

dk

∣∣∣∣
k=k0

; B0 =
d2ω

dk2

∣∣∣∣
k=k0

(54)

are found from the dispersion relation, either analytically or numerically using,485

e.g., the Direct Integration Method [26].486

Since k0L is large the resulting integral is of Laplace type and is approx-487

imated as such (see, e.g., § 6.4 of [23]) whereby ζ tends asymptotically to488
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489

ζ(x, t)

a
≈ L√

2π
Re

{
eik0x−iω(k0)t

∫ ∞

−∞
dq e−

1
2 (L

2+iB0t)q
2+iq(x−A0t)

}
(55a)

= Re

{
L√

L2 + iB0t
exp

[
ik0x− iω(k0)t−

(x−A0t)
2

2(L2 + iB0t)

]}
(55b)

with q = k − k0. Taking the real part readily yields490

ζ(x, t)

a
≈
(

L4

L4 +B2
0t

2

) 1
4

exp

[
−L

2(x−A0t)
2

2(L4 +B2
0t

2)

]
× cos

[
k0x− ω(k0)t−

1

2
arctan

(B0t

L2

)
+

(x−A0t)
2B0t

2(L4 +B2
0t

2)

]
. (56)

This is the very general result of Ref. [15]. The effect of currents (and other491

factors affecting the dispersion, such as finite depth) is only to modify the492

expressions for A0 and B0 through the more general dispersion relation. For493

gravity waves, A0 is typically positive and B0 negative. In the cases we con-494

sider, the approximation (56) is reasonable already at k0L ∼ 3, adequate for495

many purposes.496

3.4.1 Linear shear497

Turning to our special case of constant shear and deep water, A0 and B0 are498

easily found from Eq. (14) and may be instructively written in terms of a499

shear-modified wave number (see eq. (15))500

κ0 = k0 + σ2/g (57)

as501

A0,lin. =
1
2c0(κ0); B0,lin. = − 1

4c0(κ0)/κ0 (58)

with c0(k) =
√
g/k as usual. Insertion into (56) gives the approximation of502

ζ(x, t) for a long Gaussian focusing group. Expressions for general water depth503

are derived in A.3.504

Figure 6 compares the approximation (56) to the exact linear solution (52)505

for Gaussian groups of two different lengths and strong following and opposing506

shear, σ̃ = −0.5 and σ̃ = 0.5 for the left and right group on each horizontal line,507

respectively. In Fig. 6b a moderately long packet (k0L = 10) is considered, and508

the approximation (56) is excellent in all cases, out to having propagated 50509

times the initial group width. Surprisingly, Fig. 6a shows how even for a short510

package k0L = 3 performs reasonably well especially in the central region of511

the group. In accordance with our discussion in Section 3.1, the development512

of the envelopes in time is indistinguishable for the two opposite, strong shear513

currents, making still images of surface elevations such as these qualitatively514

indistinguishable.515
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fig/GaussGroupComparison_dx_combo_editedbyZ-eps-converted-to.pdf

Fig. 6 Comparison of exact and approximate linear solution for a defocusing Gaussian
wave group on linear currents with σ̃ = −0.5 and σ̃ = 0.5 for the packets to the left and right
on each horizontal line, respectively, as a function of x measured in number of “widths” L
of the Gaussian envelope at focus. The first time (bottommost line of graphs) is at focus,
whereupon defocusing is illustrated with time increasing from bottom to top in each panel
by intervals ∆T = 10L/cg with cg(k0) = A0,lin. from Eq. (58) (i.e., the group travels 10
times the ‘envelope width’ between subsequent times). Thin black line: full linear solution
(52), thick red graph: approximation (56). a) Short group, k0L = 3, focusing at x = 0 and
x = 60L. b) Long group, k0L = 10 focusing at x = 0 and x = 30L, respectively.

3.4.2 Arbitrary current with weak shear516

The first two derivatives of σδ(k) from equation (22) are517

σ′
δ(k) =

∫ 0

−∞
dz (1 + 2kz)U ′

x(z)e
2kz; (59a)

σ′′
δ (k) =4

∫ 0

−∞
dz z(1 + kz)U ′

x(z)e
2kz, (59b)
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from which we obtain, by insertion into Eq. (54), the coefficients A0 and B0518

for use in equation (56)519

A0δ =
1
2c0(k0)− σ′

δ0(k0); B0δ = − 1
4c0(k0)/k0 − σ′′

δ0(k0). (60)

Comparison with Eq. (58) shows that the first term on the right-hand sides of520

Eq. (60) are the no-shear expressions, and the remaining terms are corrections521

due to the weakly sheared current.522

The quantities σδ, σ
′
δ and σ

′′
δ can be written in closed form for a number of523

different profiles Ux(z) including the linear current (a special case where the524

weak-shear theory does not perform particularly well [24]) and the exponential525

which we consider next.526

Note in passing that with a partial integration of (22) we may write527

σδ(k) =
1
2U

′
x(0)− 1

2

∫ 0

−∞
dz U ′′

x (z)e
2kz; (61a)

σ′
δ(k) =−

∫ 0

−∞
dz zU ′′

x (z)e
2kz; (61b)

σ′′
δ (k) =− 2

∫ 0

−∞
dz z2U ′′

x (z)e
2kz; (61c)

in other words, σδ represents the first-order correction to the wave-averaged528

shear compared to the surface shear because Ux(z) has nonzero curvature.529

This is an indication why the weak–curvature theory in section 2.4.2 becomes530

exact for the linear current which has U ′′(z) = 0, and also why the linear531

current is a special case where weak–shear theory does not perform very well:532

the shear correction to A0 and B0 for linear shear in equation (58) (which533

is exact for the linear–current case) is symmetrical under σ → −σ, but (60)534

does not have this symmetry under σδ → −σδ. Another way of putting it is535

that when shear-current corrections in the surface-following system may be536

treated perturbatively, the first-order correction to the phase velocity is due537

to mean shear, but for the group velocity it is due to mean curvature. When538

the curvature vanishes, however, the leading group-velocity correction becomes539

second order in the average shear. For further discussions, see [20].540

3.4.3 Exponential shear. Weak-shear approximation vs541

numerical solution542

As a particular example consider the exponential current (19). We will see543

that a number of useful approximate expressions can be found assuming weak544

shear and exponential current. Note that even the Columbia River delta shear545

current, considered to be a very strongly sheared current in this context [31],546

the weak-shear approximation is sufficient for most practical purposes as we547

detail in section 3.4.4.548
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We find A0 = A0α and B0 = B0α with549

A0α = 1
2c0(k0)−

Ux0α
2

(2k0 + α)2
; B0α = −c0(k0)

4k0
+

4Ux0α
2

(2k0 + α)3
. (62)

In figure 7 the approximate solution (56) with coefficients (62) inserted is550

compared with the ‘exact’ numerical solution of the linear-wave initial value551

problem. It is striking that although the derivation assumes k0L ≫ 1, the552

approximation is reasonable already for k0L = 3. Moreover, the shear is here553

not extremely weak; from equation (33) we find that for maximally opposing554

shear (θ = 0), δ(k0) = 0.10 and δ(k0) = 0.07 for k0L = 3 and 10, respectively,555

the former of which is slightly higher than that for the Columbia River scenario556

we consider in sections 3.4.4 and 4.5.1. This demonstrates the wide applicabil-557

ity of the simple closed-form approximation, equations (56) and (62). A slight558

phase shift with propagation is observed in both cases in figure 7 due to the559

approximate dispersion relation, from equations (23) and (33). In both cases560

in figure 7 the envelope is excellently approximated; we quantify this in figure561

8 where the decaying height of the defocusing wave group is plotted. Even for562

k0 = 2 the agreement is reasonable although this can in no way be called a563

‘narrowband’ wavegroup.564

3.4.4 Measured current profiles: The Columbia River estuary565

The flow conditions in the estuary of the Columbia River have been much566

studied for a long time (e.g., [32–34]) due to its strong, and strongly sheared,567

tidal current, severe wave climate and high shipping traffic. It is also a much568

used case for studies of waves interacting with sheared currents in various569

contexts (examples include [24, 26, 35–37]).570

In their study of the Columbia River delta, Zippel & Thomson [38] (ZT)571

measured simultaneous wave spectra and shear current profiles in the delta of572

the Columbia River. An even more strongly sheared current is found among573

the measurements of Kilcher & Nash (KN) from the same area [39] (another574

set of measurements is described and used in refs [33, 35, 37]). Their respective575

current profiles are shown in figure 9. In section 4.5.1 we also make use of the576

measured wave spectrum in reference [38], while here we shall use a model577

wave group which at focus is slightly more narrowband than the one measured;578

this would represent the situation where only the part of the spectrum near579

the peak is involved in the focusing, the remainder forming a small-amplitude580

random-phase background which we presently ignore.581

The velocity profiles shown were shifted to the reference frame following the582

mean (Eulerian) surface velocity and fitted to an exponential profile U(z) =583

U0[exp(αz) − 1] (see figure 9c) which gives U0 = 1.6m/s, α = 0.26m−1 for584

current ZT and U0 = 1.4m/s, α = 0.39m−1 for current KN.585

To study an example of a focusing group we choose reasonable values for586

a dispersively focusing wave group in this location — see also section 4.5.1:587
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fig/stationaryphasek3.pdf

fig/stationaryphasek10.pdf

Fig. 7 Surface elevation of a Gaussian-envelope group on an exponential current (19),
where Ux0 = 0.2Uref and −0.2Uref for the wave packets to the left and right, respectively,
and αL = 2.5. Here Uref =

√
gL. Red lines refer to the combined narrow-band and weak-

shear approximation solution, eqs. (56) and (62). Black lines are the arbitrary-accuracy
numerical solution from the DIM algorithm [26]. Top: k0L = 3 focusing at x/L = 0 and 60,
bottom: k0L = 10 focusing at x/L = 0, 30. In both panels, ζ is plotted at times (bottom to
top) t = 0, 20L/cg and 40L/cg .
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fig/err_combo.pdf

Fig. 8 The decay of envelope amplitude for increasing wave group length k0L (decreas-
ing spectral bandwidth) on the same exponential shear current as in figure 7. Each point is
calculated as the maximum modulus of the Hilbert transform of the analytic surface eleva-
tion. Red solid lines: narrow-band weak-shear approximation. Black dash-dot lines: ‘exact’
numerical solution.

k0 = 0.15 rad/m, L = 20m, which gives k0L = 3.0. We choose for our example588

the average of the two values for U0 and α, respectively.589

It is worth pointing out at this stage that these parameters give a shear590

Froude number of δ0α = 0.11 (KN) and 0.080 (ZT), respectively, when inserted591

into equation (33) (δ0α = 0.090 with the chosen model parameters); in other592

words, even though the Columbia River current is frequently used as an exam-593

ple of a very strongly sheared current where the effect of shear on the waves594

is highly significant, we can safely employ weak-shear theory with errors no595

greater than a few percent, less than those from typical measurement uncer-596

tainty from field measurements. Moreover, although k0L = 3 is not what one597

would refer to as a narrowband wave group, we see from Fig. 7 that narrow-598

band weak-shear theory gives a more than adequate approximation of the599

surface. Thus we may confidently approximate ζ(x, t) with the approximate600

formula (56) with coefficients (62) inserted.601

With the mentioned approximation we plot a focusing and defocusing wave602

group representative of the Columbia River flow conditions, in figure 10. Albeit603

less extreme than for the model linear current, the trend is once again clear: in604

the case of opposing shear (the focusing group propagates ‘downstream’ in the605

river, in an earth-fixed system) the crests and troughs focus and defocus more606
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fig/CRfigCurr.pdf

Fig. 9 Shear current profiles of the Columbia River delta current. Measured data by Zippel
& Thomson (blue dots) and Kilcher & Nash (red crosses), the lines are exponential functions
of form (19) fitted to the data.

gently than for the case of following shear (‘upstream’) where individual crests607

and troughs within the group move faster and live shorter. The corresponding608

increase in orbital velocities in the latter case is considered and quantified in609

section 4.5.1. Once again we notice that the group envelope, represented by610

the change in maximum group height with time, varies modestly.611

3.4.5 Arbitrary current with strong shear612

Insering dispersion relation (24) into formula (54) now gives the coefficients613

A0 and B0 for strong shear in the strong shear, weak curvature approximation614

(SSWCA) of Ellingsen & Li [20],615

A0,EL = 1
2c0(κδ0)(1 + 2σδ0σ

′
δ0/g)− σ′

δ0 (63a)

B0,EL =− (g + 2σδ0σ
′
δ0)

2

4ω0(κδ0)3
+
σ′2
δ0 + σδ0σ

′′
δ0

ω0(κδ0)
− σ′′

δ0, (63b)

where we use the shorthand κδ0 = κδ(k0) and ω0(κδ0) =
√
gκδ0 = κδ0c0(κδ0);616

κδ was defined in equation (25). If the Froude-shear number δ is small we617

obtain (60) to leading order, while assuming linear shear (κδ(k) → κ, and618

σ′
δ = σ′′

δ = 0) yields expressions (58). The SSWCA should replace the weak-619

shear approximation when the shear as seen by the significant waves as620
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fig/GaussPack_fineres_combo_CR-exp.jpg

Fig. 10 Same illustration as in figure 2, but with an exponential current representative
of the Columbia River, shown in figure 9; see main text for further details. The exponential
profile (19) is used with k0L = 3, αL = 6.5 and U0 = 0.107Uref with θ = 0, π/2 and π (top
to bottom). The nondimensional time t̃ runs from from −50 to 50 in steps of 0.4. The dashed
lines are plots of the maximum height, ±L(L4 +B2

0αtg(x)
2)−1/4 with tg(x) = x/A0α.

extremely strong (by oceanographic standards), i.e., when δ is not small com-621

pared to 1, and/or the current shear appears close to constant with depth.622

For the exponential current representative of the Columbia River, figure 9,623

using expressions (63) instead of (62) gives practically identical results. Deriv-624

ing explicit formulae for A0,EL and A0,EL with the exponential current (19) is625

straightforward, but the resulting expressions are sufficiently bulky that we do626

not quote them here. Several realistic situations where the weak-shear theory627

is insufficient are mentioned and discussed in reference [20], although these are628

not currents which occur in ocean or coastal waters.629
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4 Wave kinematics and orbital velocities630

We proceed now to considering the shear-affected wave orbital motion. We631

consider three cases, a weakly sheared current in the approximation of [14] (see632

sections 2.4.1 and 3.4.2), and two cases where an exact solution to the linear633

problem exists: a current with constant shear and with exponential shear.634

Taking a step back to the more general formalism of section 2, we set635

k = {kx, 0} (kx once again takes either sign) and write the orbital velocities636

of a linear plane wave as637  u(x, z, t)
v(x, z, t)
w(x, z, t)

 = Re

∫ ∞

0

dk

2π

 ũ(z, t; k)
ṽ(z, t; k)
w̃(z, t; k)

 eikx + c.c. (64)

where as before we used that if some function φ(x) is real, its Fourier transform638

satisfies φ̃(−kx) = φ̃∗(kx) to only retain positive values of k. Solving the 3-639

dimensional, linearised Euler equation in Fourier form produces the well-known640

Rayleigh equation (e.g. [16, 40])641 [
∂2z − k2 +

k ·U′′(z)

ω − k ·U(z)

]
w̃(z, t; k) = 0 (65)

(note that k = |k| = |kx| here). Once w is found, the horizontal velocity642

components ũ⊥ = {ũ, ṽ} are obtained using the general relation [26]643

k2(ω − k ·U)ũ⊥ = i[k ·U′w̃ + (ω − k ·U)w̃′]k− ik2U′w̃, (66)

where the arguments of ũ⊥(z, t; k), w̃(z, t; k),U(z) and ω(k) are understood,644

and a prime denotes derivative with respect to z. Note in particular that when645

k = {k, 0}, one finds646

ũ = iw̃′/k; (67a)

ṽ =
−iU ′

y(z)

ω − kUx(z)
w̃. (67b)

The eigenvalues of ω(k) are real provided the denominator in (65) is not zero647

[41], i.e., no critical layer exists. We shall assume this to be the case, physically648

implying that no critical layers occur.649

Equation (67b) shows how the orbital velocities are modified by the shear650

current also for θ = π/2 (i.e., k · U = kUx = 0), even though the surface651

elevation is equal to that without current in that case (equation (3) shows652

that ζ is affected by the current only via the dispersion relation ω(k), in turn653

obtained as eigenvalues of the Rayleigh equation (65) which depends only on654

k ·U.)655

We now define656

w̃(z, t; k) = w̃(0, t; k)ekzf(z; k) (68)
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with f(0; k) = 1. The function f differs from 1 when Ux(z) has curvature (i.e.,657

nonzero second derivative) [20] — see e.g., equation (82) below. Thus, from658

equation (67a),659

ũ(z, t; k) = iw̃(0, t; k)ekz[f(z; k) + f ′(z; k)/k]. (69)

The kinematic boundary condition gives660

w̃(0, t; k) = −iω(k)ζ̃0(k)e−iω(k)t (70)

where we used (7), whereby we obtain the general expressions661

w(x, z, t) =2 Im

∫ ∞

0

dk

2π
ω(k)ζ̃0(k)f(z; k)e

kzeiψ(x,t; k); (71a)

u(x, z, t) =2Re

∫ ∞

0

dk

2π
ω(k)ζ̃0(k)[f(z; k) + f ′(z; k)/k]ekzeiψ(k)t; (71b)

v(x, z, t) =− 2Re

∫ ∞

0

dk

2π

ω(k)U ′
y(z)

ω(k)− kUx(z)
ζ̃0(k)f(z; k)e

kzeiψ(k)t. (71c)

We define the surface velocity amplification as the ratio of the horizontal662

orbital velocity at the (linearised) surface at the point of focus, u(0, 0, 0), with663

vs without shear;664

amp0 =
Re

∫∞
0

dk ω(k)ζ̃0(k)[1 + f ′(0; k)/k]

Re
∫∞
0

dk ω0(k)ζ̃0(k)
(72)

with ω0(k) =
√
gk as usual, and noting that f(z; k) → 1 without shear.665

In the presence of following shear where U ′
x(z) is primarily positive, the666

maximum of the horizontal velocity at focus u(0, z, 0) can lie below the surface.667

In this case we define a maximum amplification668

ampmax = max
z

{
u(0, z, 0)

u0(0, 0, 0)

}
, (73)

where u0 is the horizontal velocity of the no-current case.669

4.1 Long Gaussian group (narrow-band)670

Assume now as in section 3.4 the initial shape ζ̃0(k)/aL =
√
π/2 exp[− 1

2 (k −671

k0)
2L2] with k0L ≫ 1. We may restrict ourselves to the upper range of the672

water column |z| ≪ k0L
2, which is no significant limitation since velocities,673

which decay exponentially as exp(k0z), are negligible when |z| ∼ k0L
2 ≫ L.674

The Laplace integral approximation becomes identical as in in section 3.4 with675
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expansion around k = k0, giving the orbital velocities as the real part of676

u ≈ ac(k0)L√
L2 + iB0t

exp

[
ik0x− iω(k0)t−

(x−A0t)
2

2(L2 + iB0t)

]
d

dz

[
f(z; k0)e

k0z
]
;

(74a)

v ≈ − ac(k0)k0L√
L2 + iB0t

exp

[
ik0x− iω(k0)t−

(x−A0t)
2

2(L2 + iB0t)

]
U ′
y(z)f(z; k0)e

k0z

ω(k0)− k0Ux(z)
;

(74b)

w ≈ −iac(k0)k0L√
L2 + iB0t

exp

[
ik0x− iω(k0)t−

(x−A0t)
2

2(L2 + iB0t)

]
f(z; k0)e

k0z, (74c)

with A0, B0 as in equation (54). We leave it to the reader write out the real677

part along the lines of equation (56) if desired. Correction terms of order678

(x−A0t)/k0L enter far from the centre of the group at x = A0t.679

In the narrowband case it is opportune to also define a surface-shear number680

Υ0 =
U ′
x(0)

ω0(k0)
(75)

as well as a current strength number681

U0 =
max[Ux]−min[Ux]

c0(k0)
. (76)

Here ω0(k0) = k0c0(k0) =
√
gk0 as usual, and the functions max and min find682

extrema with respect to z.683

In particular, for linear shear (13)

Υ0,lin. =
2σ√
gk0

= 2FSlin. cos θ = 2δlin.,

(σ was defined in equation (16)) whereas U0 is not defined in deep water. For684

the exponential current profile in the Stewart & Joy weak-shear approximation,685

see section 4.2.1.686

4.2 Wave kinematics with arbitrary, weakly sheared687

current688

In this section we derive expressions for the orbital velocities under a focusing689

wave group on an arbitrary, weakly sheared current. Special cases of the final690

expressions, equations (83), will be simplified further in the following.691

Consider a focusing wave group on a current U(z) = {Ux, Uy}(z) which is692

well described by the approximate theory first put forward by Stewart & Joy693

[14, 42] as described in section 3.4.2. This is typically a very good approxi-694

mation even in strongly sheared oceanic flows (e.g. [20, 24, 26]). The orbital695
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velocities of a linear plane wave of wave number k of either sign in the xz-696

plane for such a situation have been found using assumptions of weak current697

[14, 42], although as discussed in section 2.4.1 these approximations are in698

fact valid for weakly sheared current, usefully measured via the small-shear699

parameter (or Froude number) δ(k) (see Eq. (20)).700

The vertical orbital velocity to O(δ) is [20, 42]701

w̃(z, t; k) =w̃0(0, t; k)e
kz
[
1−∆(z; k)

]
; (77)

plus terms of O(δ2), w̃0 is the vertical velocity without current (which can be702

related to ζ̃0 via equation (70)), and703

∆(z; k) ≡ 1

c0

∫ z

−∞
dz̃ U ′

x(z̃)e
2k(z̃−z). (78)

Comparison with (20) reveals that704

∆(0; k) = δ(k), (79)

hence ∆(z; k) is a generalisation of the small-shear Froude number δ(k) but705

with contributions only from the wave-aligned current component Ux(z) at706

depths greater than |z|. (Note: ∆ must not be confused with the quantity of707

the same name in ref [20]). Clearly ∆ ∼ O(δ). The dependence of ∆ and δ on708

k will often be suppressed. We will need the derivative709

∆′(z) = −2k∆(z) + U ′
x(z)/c0. (80)

The corresponding horizontal velocities, obtained via equation (67), are710

ũ(z, t; k) =iw̃0(0, t; k)e
kz
[
1 + ∆(z; k)− U ′

x(z)/ω0

]
, (81a)

ṽ(z, t; k) =− iw̃0(0, t; k)e
kzU ′

y(z)/ω0 (81b)

plus terms of order δ2.711

In the formalism of equation (68),712

f(z; k) =
1−∆(z; k)

1− δ(k)
. (82)

The function only occurs in equations (71) in the constellation ω(k)f(z; k) =713

ω0(k)[1−∆(z; k)], using the weak-shear dispersion relation in equation (23).714

We shall also require the derivative ωf ′(z) = 2kω0∆(z; k) − kU ′
x(z) so that715

ωf ′(0) = 2ω0kδ − kU ′
x(0).716
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For a group which at t = 0 focuses to a shape ζ(x, 0) the velocity fields are717

found by insertion into (71):718

u(x, z, t) = 2Re

∫ ∞

0

dk

2π
ω0(k)ζ̃0(k)

[
1 + ∆(z; k)− U ′

x(z)

ω0

]
ekz+iψ; (83a)

v(x, z, t) = −2U ′
y(z)Re

∫ ∞

0

dk

2π
ζ̃0(k)e

kz+iψ; (83b)

w(x, z, t) = 2 Im

∫ ∞

0

dk

2π
ω0(k)ζ̃0(k)[1−∆(z; k)]ekz+iψ, (83c)

plus corrections of order δ2; here, ψ = ψ(x, t; k).719

The surface velocity amplification for an arbitraryU(z) satisfying δ(k) ≪ 1720

for all significantly contributing k, from equation (72), is now721

ampw.s.,0 = 1 +

∫∞
0

dkRe{ζ̃0(k)}[ω0δ(k)− U ′
x(0)]∫∞

0
dk ω0Re{ζ̃0(k)}

. (84)

4.2.1 Gaussian wave group on exponential weak shear722

Consider the same situation as in section 3.4.3: a Gaussian wave packet with723

carrier wave number k0 considerably greater than L−1 i.e., the group is fairly724

narrowbanded. The current profile is exponential, (19) in the now familiar725

weak-shear approximation. A subscript ‘α’ will refer to the exponential current726

as before, and a subscript 0 means evaluation at k = k0. The velocity fields727

are readily found from (83) by inserting {U ′
x, U

′
y}(0) = α{Ux0, Uy0}eαz and728

∆(z) = ∆α(z) where729

∆α(z) = δαe
αz (85)

with δα(k) from Eq. (33). We define the shorthand730

a ≡ α/k0. (86)

and note that for the exponential current the definitions (75) and (76) yield731

U0α =
Ux0
c0(k0)

; Υ0α =
αUx0
ω0(k0)

= aU0α; δα0 =
aU0α

a+ 2
. (87)

We find from equations (74) and (85) — with (82) and noting that c(k0) =732

ω0(k0)(1−δα0)/k0 in the Stewart & Joy approximation (23) — that the orbital733

velocities are approximated by734

u(x, z, t) ≈ Re

{
aω0(k0)L√
L2 + iB0αt

[1− (1 + a)δα0e
αz] eΨ0(x,z,t)

}
; (88a)

v(x, z, t) ≈ −Re

{
aU ′

y(z)L√
L2 + iB0αt

eΨ0(x,z,t)

}
; (88b)
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w(x, z, t) ≈ Im

{
aω0(k0)L√
L2 + iB0αt

[1− δα0e
αz] eΨ0(x,z,t),

}
(88c)

with the shorthand735

Ψ0(x, z, t) = k0z + ik0x− iω(k0)t−
(x−A0αt)

2

2(L2 + iB0αt)
, (89)

and Υ0α from equation (87). A0α and B0α were given in equation (62). The736

approximate expression (88a) is compared to the exact analytical expression737

presented below in section 4.4.2 in figure 13.738

The surface amplification is now easily found from equation (88a),739

amp0 = 1− (1 + a) δα0. (90)

Equation (88) demonstrates a striking observation mentioned above: when740

shear is opposing, i.e., Υ0 > 0, the maximum value of u is not necessarily741

at z = 0 but can be positioned below the surface. With the approximate742

expression (88a), the criterion for the maximum to lie below the surface —743

that u′(z) < 0 at z = 0 — is readily found to be744

(a+ 1)2δα0 > 1 (91)

or alternatively745

U0α >
a+ 2

a(a+ 1)2
∼ a−2 + ... (92)

with the current strength parameter U0α from equation (87). The last form746

is the asymptotic expansion as a ≫ 1, which is good to better than 10% for747

a ≳ 3.5. A sufficient criterion for (92) to hold valid asymptotically as a → ∞748

is thus simply that the maximum lies beneath the surface if749

a2U0α > 1. (93)

Note that the large-a limit is not in contradiction to the weak-shear approxi-750

mation if U0α ≪ 1 since lima→∞ δα0 = U0α.751

For Ux0 > 0 the maximum value of u is located where u′(z) = 0, provided752

this occurs at a negative z, otherwise it is at z = 0. Differentiating (88a) we753

find the maximum value at focus to be at level zmax,α and give amplification754

ampmax,α as follows,755

zmax,α =min

{
0,− 1

α
ln[(a+ 1)2δα0]

}
; (94)

ampmax,α =

{
a

1+a

[
(a+ 1)2δα0

]−1/a
, if (a+ 1)2δα0 > 1,

1− (a+ 1)δα0, otherwise
(95)
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fig/amplification_sae_v2-eps-converted-to.pdf

Fig. 11 Velocity amplification for an exponential current. Marker shapes indicate values
of δα0 as quoted in the legend of panel (a), and graphs and markers are colour coded as the
legend in panel (b) shows; both legends are common to all panels; we defined c00 = c0(k0).
The solid lines show the maximum amplification, while the dashed lines of the same colour
show the surface amplification (visible only when the two are different). The small black
dots show the weak-shear narrowband approximation of equation (95). The insets show the
shape of the wave group at focus.

with δα0 from equation (87). Asymptotes for a → ∞ are756

ampmax,α ≈

{
1− 1+ln(U0αa2)

a + ..., U0α > 0;

−aU0α + 1 + U0α +O(a−1) U0α < 0,
(96)

while757

ampmax,α ≈ 1− 1
2aU0α + ..., a → 0. (97)

Equation (95) is a main result of this paper. Although derived assuming a758

narrowband wave package, it approximates the velocity amplification to within759

a few percent already for relatively broadband (short) wave groups, k0L = 2.760
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As the inset of figure 11 shows, this Gaussian group is so short as to hardly761

be referred to as a “group” at all.762

The close similarity between the four panels of figure 11 shows with clarity763

that the amplification factor is essentially determined by two nondimensional764

groups, the relative current strength U0α and the relative shear parameter765

a. Moreover, it is striking how closely the simple formulae (95) approximate766

the numerically calculated amplification for a wide range of parameters of767

the Gaussian wave group on an exponential profile, even when the underlying768

assumptions (k0L≫ 1 and δα0 ≪ 1) are clearly violated.769

4.3 Wave kinematics with arbitrary strongly sheared,770

weakly curved current771

When the current Ux0(z) is not weakly sheared, i.e., δ(k) ∼ O(1), an approx-772

imate solution for the vertical velocity is found by applying the method of773

dominant balance to the Rayleigh equation (65) [20]774

w̃(z, t; k) = w̃0(0, t; k)

[
ekz − 1

k

∫ z

−∞
dz̃

U ′′
x (z̃)

c(k)− Ux(z̃)
ekz̃ sinh k(z − z̃)

]
(98)

with c approximated by equation (24). With (67a) it follows that775

ũ(z, t; k) = iw̃0(0, t; k)

[
ekz − 1

k

∫ z

−∞
dz̃

U ′′
x (z̃)

c(k)− Ux(z̃)
ekz̃ cosh k(z − z̃)

]
.

(99)
When Ux(z)/c ≪ 1 these expressions can be reduced to equations (77) and776

(81a), respectively, in the latter case noting that cosh ξ = − sinh ξ + 2 exp(ξ).777

When an exponential current (19) is inserted, the integral can be evaluated778

in closed form and expressed in terms of a hypergeometric function. However,779

the resulting expression is no simpler than the exact solution in this case with780

no restrictions on shear or curvature, presented in 4.4.2. Due to the relative781

complexity of the analytical expressions we will not pursue the weak-curvature782

approximation further for the purposes of kinematics.783

4.4 Exact linear solutions784

Exact solutions to the Rayleigh equation (65) exist for nonzero ω only in785

special situations [16]. We consider two cases:U being a linear or exponentially786

decaying function of z.787

4.4.1 Current with linear shear788

Consider linear shear, U(z) = {Ux, Uy} = Sz{cos θ, sin θ} and ω =
√
κ − σ,789

κ = k + σ2/g and σ = 1
2S cos θ as before. The linear-theory orbital velocities790

for a wave with wave vector k = {k, 0} on such a current are well known. Since791

U ′′
x (z) = 0, the Rayleigh equation (65) becomes near trivial and following [43]792



Springer Nature 2021 LATEX template

36 Wave focusing on a shear current

fig/VelLin.pdf

Fig. 12 Horizontal velocity profiles with linear shear current. The shear profile is expressed
as Ux(z) = 2σz with, left to right, σ̃ = {0.75, 0.5, 0.25, .0.125, 0,−0.125,−0.25,−0.5,−0.75}.
The wave shape at focus, shown as inset, is ζ(x, 0, t)/a = exp(− 1

2
x2/L2) cos(k0x) with

k0L = 3, i.e., a maximum Froude-shear number |FSlin.| = 0.43 according to equation (18).

(after a rotation of the coordinate system) gives the simple result793

w̃(z, t; k) = w̃(0, t; k)ekz; ũ(z; k) = iw̃(0, t; k)ekz. (100a)

This is ostensibly the potential wave solution, which one obtains for a strictly794

2-dimensional flow with constant vorticity [43], but note that ṽ is not zero;795

instead796

ṽ(z, t; k) = − iS sin θ

ω(k)− kUx(z)
w̃(0, t; k)ekz. (101)

This accords with [43] and describes a shifting and twisting of vortex lines as797

the plane wave passes. ṽ vanishes when shear is zero or the current is parallel798

or antiparallel to the wave (θ = 0 or π).799

Thus for the focusing wave group one obtains (notice that with our800

convention, k = {k, 0} with k > 0)801

w(x, z, t) =2 Im

∫ ∞

0

dk

2π
ω(k)ζ̃0(k)e

kzeiψ; (102a)
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u(x, z, t) =2Re

∫ ∞

0

dk

2π
ω(k)ζ̃0(k)e

kzeiψ; (102b)

v(x, z, t) =− 2Re

∫ ∞

0

dk

2π

Sω(k) sin θ

ω(k)− kUx(z)
ζ̃0(k)e

kzeiψ. (102c)

At first glance it might seem as if u and w are not much affected by the802

shear, having as they do the same structure as the expressions sans current.803

However, the quantitative effect is highly significant, because as previously804

discussed the frequency ω contained in ψ varies very significantly with the805

sign of σ when the latter is not very small compared to
√
gk. Thus, being806

proportional to ω(k), the orbital velocities u,w can be very significantly greater807

for σ < 0 compared to σ > 0. Secondly an oblique angle between wave and808

current makes for significant horizontal motion across the wave plane (also true809

for currents of more general depth profile, provided vertical shear is non-zero,810

according to equation (67b)).811

For the linear profile the velocity is always highest at the surface, hence812

the velocity amplification is813

amplin =

∫∞
0

dk ω(k)Re{ζ̃0(k)}∫∞
0

dk ω0(k)Re{ζ̃0(k)}
(103)

with ω(k) from equation (14). The case of a narrowband wave group is con-814

sidered in section 4.5, in which case the amplification becomes particularly815

simple.816

The qualitative difference in behaviour during focusing and defocusing was817

illustrated in figures 2 and 3. Figure 12 shows the horizontal velocity pro-818

files beneath the focus point, u(0, z, 0) for linear shear currents of different819

strengths, for a Gaussian wave group with k0L = 3. The qualitative shape of u820

remains the same, except amplified. The surface amplification varies between821

approximately 0.65 and 1.52 for the strongest opposing and following shear,822

respectively.823

4.4.2 Current with exponential shear824

In the case of an exponential current (19), Hughes & Reid [44] showed that the825

Rayleigh equation (65) permits the exact solution (see also [45] and Appendix826

B of [46])827

w̃(z, t; k) = W̃ (t; k)2F1(A−,A+; R; W(z))ekz (104)

with 2F1 being the hypergeometric function, W̃ (t, k) follows from free-surface828

boundary conditions, and829

A± = (k ±
√
α2 + k2)/α; R = 1 + 2k/α; W(z) =

kUx0e
αz

ω + kUx0
. (105)
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Fig. 13 Horizontal orbital velocity profiles at focus, u(0, z, 0), normalised by the surface
value without shear, for a medium-bandwidth focusing wave, k0L = 3 (a) and k0L = 5
(b) on an exponential current, equation (19). Insets show the wave group shape at focus.
Here Ux0 = 0.2Uref (solid lines) and −0.2Uref (dashed lines). Comparison of exact solution
[equations (67a) and (106)] (black lines) and the weak-shear narrowband approximation (red
lines), equation (88). The values on the top of each curve refer to α/k0.

The horizontal velocity ũ(z, t; k) is found from equations (67), u = iw̃′/k,830

giving831

w̃′(z) = kw̃(z)−αkUx0W̃ (t; k)

(ω + kUx0)R
e(k+α)z2F1(A−+1,A++1; R+1,W(z)) (106)

The dispersion relation to find ω(k) is implicit, given by the combined832

free-surface boundary condition (see [26])833

ω2w̃′(0)− k(gk − ωαUx0)w̃(0) = 0. (107)
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whose solution ω(k) is readily found numerically. Alternatively we may apply834

the Direct Integration Method [26] directly.835

The solutions (104) and (106) are exact for linear waves regardless of how836

strongly sheared the current is. The comparison of the exact solution using the837

theory in this section and the approximate solution in section 4.2.1 is shown838

in figure 13. The results demonstrate that the approximate expression gives839

fairly accurate solution given a relatively weak shear current. Although the840

exact solution (106) can be used without difficulty, the computation of the841

hypergeometric function can be time consuming. Therefore, one may consider842

the approximate expression instead.843

4.5 Surface velocity amplification for long, Gaussian844

groups845

Consider the case of a long, or narrowbanded, Gaussian group with carrier846

wavenumber k0, as considered in section 3.4, i.e., ζ̃0(k)/a =
√
π/2L exp[ 12 (k−847

k0)
2L2], where k0 ≫ 1 (as we have seen, k0L ∼ 5 is sufficiently large). At848

x = z = t = 0 the integrals in equation (72) now particularly simple in the849

Laplace approximation, and we obtain850

amp0 ≈ c(k0)

c0(k0)

[
1 +

1

k0
f ′(0; k0)

]
. (108)

In other words a typical value of the amplification is, to leading order, the851

ratio of phase velocities at the carrier frequency with and without shear, which852

as discussed in section 3.1 can vary greatly for realistic shear currents, with a853

currection term playing a role if the profile Ux(z) has significant curvature.854

In particular, for linear shear Ux(z) = Sz, we have f ′(z) = 0 (e.g. [17]) and855

with (14),856

amplin.shear ≈

√
1 +

σ2

ω2
0

− σ

ω0
=

√
1 + FS2lin. cos

2 θ − FSlin. cos θ (109)

where the shear-Froude number was defined in (18), taken here at k = k0.857

This accords with equation (26) which was based on the difference in phase858

velocity only.859

4.5.1 Velocity and amplification in real conditions: the860

Columbia River Estuary861

We consider now the current and wave climate measured in the estuary of the862

Columbia River, as detailed in section 3.4.4. To make the study as realistic as863

possible, we devise a focusing wave based on the wave spectrum reported in864

reference [38] and generate a wave field from this. The power spectrum we use865

is shown in figure 14 (a).866
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fig/CRfigSpectrum.pdf

Fig. 14 (a) Power energy spectrum measured in the Columbia River delta [38], (b) intial-
value spectrum ζ̃0(k) based on S(f). Circular markers: measured data. Solid line: fitted
function.

We devise a smooth initial-value spectrum ζ̃0(k) based on the measured867

wave spectrum S(f) with f = ω/2π is the wave frequency in cycles per second.868

In this paragraph only, we use dimensional units without an asterisk. Unlike for869

generating a random sea state [47], for a focusing wave group we can obtain an870

initial wave elevation spectrum ζ̃0(k) which resembles that which is measured,871

as follows. The discrete measured values {fi, Si} are transformed to a set of872

discrete value pairs {ki, ζ̃i},873

√
2Si∆f = ζ̃i∆k (110a)

ζ̃i =

√
2Si∆f

∆ω

(
dω

∆k

)
i

=

√
2Si∆f

4π2 ∆f

g

2fi
(110b)
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where we used ∆ω/∆k ≈ dω/dk, ∆f is the distance between frequency values874

fi, and we used ω =
√
gk. We finally fit the set of points {ki, ζ̃i} to the spectrum875

of a broadband Gaussian group, (51), ζ̃0(k) =
∑

± a exp[−L2(k ± k0)
2/2],876

which gives k0 = 0.13 rad/m and 1/L = 0.087/mThe measured spectrum S(ω)877

is shown in panel (a) of figure 14, and the smooth ζ̃0(k) is plotted along with878

the measurements, transformed with equation (110b) in figure 14(b).879

The governing nondimensional parameters are thus U0α = 0.18, a = 2.03880

(ZT) and U0α = 0.16, a = 3.05 (KN). The shear-Froude number for current ZT881

and KN are δα0 = 0.092 and 0.095, respectively, so although these currents are882

frequently referred to as very strongly sheared in the context of natural flows883

[31, 34, 35], the conditions lie safely in the weak-shear regime where Stewart &884

Joy’s approximation (sections 2.4.1 and 4.2) can be used. Moreover, although885

the wave shape at focus is so broadband as to hardly be called a group (resem-886

bling the shape in the inset of figure 11a), the narrow-band approximation887

(88a) is an excellent approximation to the velocity profiles at focus.888

The resulting horizontal orbital velocity profile u(z, 0, 0) at focus is shown889

in figure 15(a) for the wave group propagating downstream, across and890

upstream on the Columbia River current as seen by an earth-fixed observer,891

corresponding to, respectively, maximally opposing, zero and maximally fol-892

lowing shear, i.e., θ = 0, θ = π/2 and θ = π. (Bear in mind that velocities in893

our formalism are measured in the system following the mean surface velocity;894

see figure 9).895

The surface shape at focus is identical by construction, and the envelope896

of the focusing and defocusing groups are virtually indistinguishable, yet the897

difference in maximum orbital velocity is dramatic. The wave-induced orbital898

velocity beneath the focus point, u(0, 0, 0), is increased and reduced by factors899

of approximately 1.4 and 0.7 compared to the no-shear case for groups propa-900

gating upstream and downstream on the river, respectively. This corresponds901

to the wave-induced dynamic pressure, at x = t = 0, pdyn = 1
2ρu

2, being902

approximately doubled and halved, respectively, very significantly affecting903

the force exerted on vessels and constructions. (For balance is worth bearing904

in mind that waves propagating against the current are typically higher than905

those propagating downstream in this location [38]).906

5 Conclusions907

We have considered the linearised theory of focusing long-crested wave groups908

on shear currents of arbitrary vertical depth dependence, allowing an arbi-909

trary angle between the current and wave propagation. Although limited in910

steepness, a number of insights into the way groups of waves focus and defo-911

cus can be gained. We derive a large number of approximate relations which912

can explicitly reveal the underlying physics, while at the same time being use-913

ful tools in their own right, for instance for the generation of focusing wave914

groups in a wave tank along the lines of [15].915
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Fig. 15 Top: Horizontal orbital velocity u(0, z, 0) beneath the focus of a medium-
bandwidth Gaussian group (k0L = 1.48) in the presence of measured currents in the
Columbia River Estuary, as measured by Zippel & Thomson (ZT, [38]) and Kilcher &
Nash (KN, [39]), shifted so that U(0) = 0 and approximated by exponentials U(z) =
U0[exp(αz) − 1]. Values for |Ux0|, α, a and δα0 for ZT and KN are found in the main
text. Black lines show ‘exact’ numerical solutions, red lines are the weak-shear-narrowband
approximation, equation (88a). Solid, thick, and dashed lines refer to cos θ = 0, π/2 and π,
respectively. Bottom: velocity amplification as a function of the angle θ between wave prop-
agation direction and current for the same two velocity profiles.
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Particular attention is paid to two groups of currents: the current vary-916

ing linearly with depth, and currents of arbitrary depth dependence whose917

effect on waves may be approximated using the theory by Stewart & Joy’s [14]918

and others, the criterion for which is that the depth-averaged shear is, in the919

appropriate sense, sufficiently weak. For the linear current, exact and read-920

ily tractable solutions exist, allowing several classical results without shear921

to be generalised. The “weak-shear” assumption behind the latter class of922

currents is not a significant limitation in practice, since the vast majority of923

oceanographic currents and wave spectra satisfy the appropropriate criterion924

of validity. For instance in the Columbia River delta which we consider as925

an example, the shear is frequently described as being very strongly sheared926

[31, 34, 35], yet remains safely within the weak-shear assumption’s range of927

validity. The assumption is already in widespread use in ocean modelling (e.g.928

[35]).929

For the much used model of a current profile varying exponentially with930

depth — modelled as U(z) = U0[e
αz − 1] with α > 0 — the weak-shear931

approximation yields a number of broadly applicable, simple and closed-form932

approximate relations for the surface elevation of a progressing wave group,933

and its concomitant orbital velocity field.934

Particular attention is paid to Gaussian wave groups which at focus takes935

the shape of a carrier wave (wavenumber k0) with a Gaussian envelope of width936

L: ζ0(x) ∝ exp(− 1
2x

2/L2) cos k0x. Assuming a long group — i.e., narrowband937

in Fourier space — we may derive a wealth of relations which can describe938

a wide range of realistic situations. Strikingly, the group does not need to be939

particularly long (or narrowband): the narrowband results are excellent for940

most practical purposes already k0L = 3, a group which at the point of focus941

mainly consists of a single tall crest with deep troughs either side.942

A key observation from studying the developing wave group is that while943

the shear current has modest effect on the evolution of the group envelope, the944

behaviour inside the group is far more affected. In opposing shear individual945

crests rise slowly and take longer to traverse the length of the group, while946

following shear causes the wave behaviour inside the group to appear more947

volatile, with individual crests and troughs rising and falling more rapidly.948

Regarding the orbital wave motion beneath the surface, this difference in949

behaviour depending on the direction of sub-surface shear becomes even more950

important. For following shear, horizontal orbital velocities are significantly951

amplified compared to the case sans shear, and reduced in opposing shear.952

The amplification can significantly alter the wave forces acting on a body953

encountering the focusing group.954

We derive a simple approximate relation for the velocity amplification955

beneath the focus point of a Gaussian wave group atop an exponential velocity956

profile, as a function of two nondimensional groups of parameters: the relative957

current strength U0

√
k0/g, and the vertical vs horizontal rate of variation,958

α/k0.959
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For illustration of these observed phenomena in a practical setting we have960

considered waves in the mouth of the Columbia River, where depth-resolved961

current measurements as well as measured wave spectra are available [38, 39].962

For a focusing wave with the same spectrum as that measured, i.e., hav-963

ing the same surface elevation ζ(x, 0) at the point of focus, the horizontal964

orbital velocity beneath the crest is increased by approximately 40% for fol-965

lowing shear (i.e., propagating upstream in an earth-fixed frame) compared966

to a depth-uniform current, whereas for opposing shear (downstream propa-967

gation) the amplitude is reduced by about a factor 0.72. This corresponds to968

the wave-induced dynamic pressure being approximately doubled and halved,969

respectively, greatly affecting the forces such a focused group will exert on970

vessels and structures.971

A Linear focusing theory in shallow water972

A.1 Linear shear973

The dispersion relation with finite depth h is now (e.g. [43]),974

ω(k) =

√
gk tanh kh+

(
σ tanh kh

)2 − σ tanh kh. (111)

Following Refs. [25, 28], the surface elevation integral (11) can be solved975

approximately in shallow water by expanding ω(k) in powers of h and k976

ω(k) =kch − kσh+ 1
2kσ

2g−
1
2h

3
2 − g−

3
2 ( 16g

2k3 + 1
8kσ

4)h
5
2

+ 1
3k

3σh3 − g−
3
2σ2( 14g

2k2 − 1
16σ

4)h
7
2 +O(h

9
2 ) (112a)

≡w1k − 1
3w3k

3 + ... (112b)

with977

w1 =ch − hσ + 1
2σ

2g−
1
2h

3
2 − 1

8g
− 3

2 kσ4h
5
2 +O(h3); (113a)

w3 = 1
2chh

2 − σh3 +O(h
7
2 ), (113b)

where ch =
√
gh is the phase (and group) velocity in the shallow-water limit978

in absence of a shear current.979

A.2 δ-function singularity in shallow water with linear980

current profile981

Consider the case of a group focusing to the delta function singularity, equation982

(47), where the expansion (111) is inserted. We shall need the linear and cubic983

in k.984
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Evaluating the integral (47), the surface shape at any time t is then,985

approximately,986

ζ(x, t) =
aL

(w3t)1/3
Ai

[
x− w1t

(w3t)1/3

]
. (114)

This is a direct generalisation of the result of refs. [25, 28] including a constant987

shear.988

A.3 Gaussian wave group, arbitrary depth989

For linear shear S and general depth h, the expressions for A0 = ω′(k0) and990

B0 = ω′′(k0) which may be inserted into (56) are991

A0 =− hσ

C2
0

+
C0S0 + (2κ − k0)h

2C2
0

√
T0

√
g

κ
; (115a)

B0 =
2h2σT0

C2
0

−
√
gκT0

[
1

4κ2

(
hk0
C0S0

− 1

)2

+
h2

C2
0

(
2− k0

κ

)]
, (115b)

with shorthand992

C0 ≡ cosh k0h, S0 ≡ sinh k0h, T0 ≡ tanh k0h = S0/C0, (116)

and shear-modified wave number993

κ = k0 + σ2T0/g −→

{
k0 + σ2/g k0h→ ∞
k0(1 + σ2h/g) k0h→ 0

. (117)

(Note ω(k0) =
√
gκT0 − σT0 in this formalism).994

In the shallow water regime, k0h ≡ ξ0 ≪ 1 we obtain995

A0 =
√
gh− vσξ0 +

1
2 (v

2
σ/c00)ξ

3
2
0 − 1

2c00(1 +
1
4v

4
σ/c

4
00)ξ

5
2
0 + vσξ

3
0 + ...

(118a)

k0B0 =− c00ξ
5
2
0 + 2vσξ

3
0 + ... (118b)

with c00 = c0(k0) =
√
g/k0 and vσ = σ/k0. For example, from equation996

(56) one sees that for a Gaussian package the time it takes for the group997

to change significantly is t ∼ L2/B0 ≈ (k0L
2/c00)ξ

− 5
2

0 , by which time the998

group has traveled of order A0t/λ0 ∼ (k20L
2/2π)ξ−2

0 wavelengths of the carrier999

wave. However, notice that the leading-order correction to the phase and group1000

velocities are order FSlin.ξ
1
2
0 and can be significantly affected by the shear even1001

when ξ0 is not extremely small. This is illustrated in Figure 16 in moderately1002

shallow water, ξ0 = 0.2: The group at focus (red graph) does not change shape1003

perceptibly, but the phase velocity is clearly increased for σ < 0 and decreased1004

for σ > 0.1005
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fig/Focus_Gaussian_Fs=0.5_shallow.pdf

Fig. 16 Waves focusing into a group with a Gaussian envelope in moderately shallow
water, k0h = 0.2. The solid graphs show η(x, t)/a for

√
gk0t from −45 to 45 in steps of 0.5

with the shape at t = 0 shown in red. Here S =
√
gk0, k0L = 3, and θ = 0 (top), π/2

(centre) and π (bottom).
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